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Why Persistent Storage?

* Erlang application need to store their data
persistently.

o Scalability limits of persistent storage can
limit the scalability of Erlang application.
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General principles of scalable
DBMSs

Data Fragmentation

1.  Decentralized model (e.g. P2P model)
2. Systematic load balancing (make life easier for developer)
3. Location transparency

e.g. 20k data is fragmented among 10 nodes
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General principles of scalable
DBMSs

Replication

1. Decentralized model (e.g. P2P model)
2. Location transparency

3. Asynchronous replication (write is considered complete as soon as
on node acknowledges it)

e.g. Key Xis replicated on three nodes
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General principles of scalable
DBMSs

Not achievable because network failures are inevitable CAP theorem: cannot
simultaneously guarantee:

sPartition tolerance: system
continues to operate despite nodes
can't talk to each other

Consistency

“Availability

«Availability: guarantee that every
Partition request receives a response

Tolerance

ACID Systems Eventual Consistency: all nodes see the

Consistency same data at the same time

Solution: Eventual consistency and reconciling conflicts via data versioning
ACID=Atomicity, Consistency, Isolation, Durability
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NoSQL

DBMSs for Erlang

Mnesia CouchDB Riak Cassandra
Fragmentation *Explicit placement *Explicit placement sImplicit placement sImplicit placement
*Client-server *Multi-server *Peer to peer *Peer to peer
sAutomatic by using sLounge is not part of *Automatic by using *Automatic by using
a hash function each CouchDB node consistent hash consistent hash
technique technique
Replication *Explicit placement *Explicit placement sImplicit placement sImplicit placement
*Client-server *Multi-server *Peer to peer *Peer to peer
*Asynchronous sAsynchronous *Asynchronous *Asynchronous
( Dirty operation)
Partition *Strong consistency *Eventual consistency *Eventual consistency | e*Eventual consistency
Tolerant *Multi-Version *Vector clocks for *Use timestamp to
Concurrency Control reconciliation reconcile
for reconciliation
Query *The largest possible | *No limitation *Bitcask has memory *No limitation
Processing Mnesia table is 4Gb *Support Map/Reduce limitation Support Map/Reduce
& Queries *LevelDB has no gueries
limitation
Backend *Support Map/Reduce
Storage queries




Initial Evaluation Results

General
Principles

Scalable persistent
storage for SD Erlang
can be provided by
Dynamo-like DBMSs,
e.g. Riak,Cassandra
Initial Evaluation
* Mnesia
» CouchDB
* Riak
» Cassendra



Availability and Scalability of
Riak in Practice

« Basho Bench, a benchmarking tool for Riak
 We use Basho Bench on 348-node Kalkyl cluster
 How does Riak cope with node failure? (Availability)

 How adding more Riak nodes affect the throughput?
(Scalabillity)

e There are two kinds of nodes in a cluster:
 Traffic generators
 Riak nodes
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Traffic generators

H t s
enerator 1 (get, inse™h TH

Bash Bench e

enerator 2
Bash Bench

enerator ..

Bash Bench
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90 warkers

Riak nodes

nodel

We use one traffic generator per 3 Riak nodes
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Traffic Generator

Basho Bench (An Erlang Application)

Config file
Kﬂa;‘cja‘m Uniform > oList of IP address
ey/Vaiue Random —al e

Generator Generator i LfSt of ports

_— = =Ljst of database operations
Update Insert Read

(Workerl B iciii - Workers9 *  Worker9o

PUT POST GET

HTTP/Protocol Buffers Interface
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20 nodes Sicdas

11 nodes

Murmbsar of Riak MNodes

W

30 48 78 96 126
Elapsed Minutes

Time-line shows Riak cluster losing nodes
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Observation

 Number of failures (37)
 Number of successful operations (approximately
3.41 million)

*\When failed nodes come back up, the throughput
has grown which means Riak has a good
elasticity.
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Scalability benchmark
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Benchmark on 348-node Kalkyl cluster at Uppsala University
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1.8e+007

Mumber of failures
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Disk usage (Percentage)
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Profiling-Network (Generator)

Traffic Generators
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Bottleneck for Riak Scalability

The results of profiing CPU, RAM,
Disk, and Network reveal that they
can't be bottleneck for Riak scalability.

Is Riak scalability limits due to limits in
distributed Erlang? To find it, we need
to measure the scalability of
distributed Erlang.
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DEbench

We design DEbench for measuring the scalability of

distributed Erlang
Based on Basho Bench

Measures the Throughput and Latency of Distributed

Erlang commands



Distributed Erlang Commands

*Spawn. a peer to peer command
eregister_name . global name tables located on every node
sunregister_name : global name tables located on every node

ewhereis_name : a lookup in the local table

Register
Erlang VM Erlang VI\/I/ \ Erlang VM Erlang VM

Global
name table

Global Global Global
name table name table name table
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Scalability of Distributed Erlang

0.5% Global operation

Scalability benchmark
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*Throughput peaks at 50 nodes
sLittle improvement beyond 40 nodes
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Throughput

Frequency of Global Operation

Scalability of Distributed Erlang

Frequently Max Throughput
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What is the Bottleneck?

Latency for global update commands
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Latency of whereis_name
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Conclusion and Future work

*Our benchmark confirms that Riak is highly available and fault-
tolerant.

*\We have discovered the scalability limits of Riak is ~60 nodes
*Global operation limits the scalability of distributed Erlang.

*\We are trying to find the Riak global operations.

In RELEASE, we are working to scale up Distributed Erlang by

grouping nodes in smaller partitions.
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Thank you!
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