HERIOT

RELEASE GWATT

oo
acc
Qoo

Scalable Persistent Storage for
Erlang: Theory and Practice

Amir Ghaffari, Natalia Chechina , Phil Trinder
May 7, 2013

Qoo
Qoo
coo

RELEASE .

Outline

Why Persistent Storage?
General principles of scalable DBMSs

NoSQL DBMSs for Erlang
Reliability of Riak in Practice
Scalability of Riak in Practice

Investigating the scalability of distributed Erlang

Conclusion & Future work

RE M “ASE . , w ﬁ

\\\\\\\\\\ [

3020°3 (0}

« RELEASE is an European project R A%

aiming to scale Erlang onto commodity
architectures with 100000 cores.

. -
«'~epF

University of

&)
w ERICSSON | I<ent

SOLUT/ONS

HIRELEASE 3

Why Persistent Storage?

* Erlang application need to store their data
persistently.

o Scalability limits of persistent storage can
limit the scalability of Erlang application.

:2:RELEASE

General principles of scalable
DBMSs

Data Fragmentation

1. Decentralized model (e.g. P2P model)
2. Systematic load balancing (make life easier for developer)
3. Location transparency

e.g. 20k data is fragmented among 10 nodes

20kB

S — S <—
2k-4K 4k-6K - == | 16k-18K 18k-20K

General principles of scalable
DBMSs

Replication

1. Decentralized model (e.g. P2P model)
2. Location transparency

3. Asynchronous replication (write is considered complete as soon as
on node acknowledges it)

e.g. Key Xis replicated on three nodes

N v e

General principles of scalable
DBMSs

Not achievable because network failures are inevitable CAP theorem: cannot
simultaneously guarantee:

sPartition tolerance: system
continues to operate despite nodes
can't talk to each other

Consistency

“Availability

«Availability: guarantee that every
Partition request receives a response

Tolerance

ACID Systems Eventual Consistency: all nodes see the

Consistency same data at the same time

Solution: Eventual consistency and reconciling conflicts via data versioning
ACID=Atomicity, Consistency, Isolation, Durability

IRELEASE ,

oco

NoSQL

DBMSs for Erlang

Mnesia CouchDB Riak Cassandra
Fragmentation *Explicit placement *Explicit placement sImplicit placement sImplicit placement
*Client-server *Multi-server *Peer to peer *Peer to peer
sAutomatic by using sLounge is not part of *Automatic by using *Automatic by using
a hash function each CouchDB node consistent hash consistent hash
technique technique
Replication *Explicit placement *Explicit placement sImplicit placement sImplicit placement
*Client-server *Multi-server *Peer to peer *Peer to peer
*Asynchronous sAsynchronous *Asynchronous *Asynchronous
(Dirty operation)
Partition *Strong consistency *Eventual consistency *Eventual consistency | e*Eventual consistency
Tolerant *Multi-Version *Vector clocks for *Use timestamp to
Concurrency Control reconciliation reconcile
for reconciliation
Query *The largest possible | *No limitation *Bitcask has memory *No limitation
Processing Mnesia table is 4Gb *Support Map/Reduce limitation Support Map/Reduce
& Queries *LevelDB has no gueries
limitation
Backend *Support Map/Reduce
Storage queries

Initial Evaluation Results

General
Principles

Scalable persistent
storage for SD Erlang
can be provided by
Dynamo-like DBMSs,
e.g. Riak,Cassandra
Initial Evaluation
* Mnesia
» CouchDB
* Riak
» Cassendra

Availability and Scalability of
Riak in Practice

« Basho Bench, a benchmarking tool for Riak
 We use Basho Bench on 348-node Kalkyl cluster
 How does Riak cope with node failure? (Availability)

 How adding more Riak nodes affect the throughput?
(Scalabillity)

e There are two kinds of nodes in a cluster:
 Traffic generators
 Riak nodes

5RELEASE o

|

oy lIIIIIIIIIIIIIIIIII

,,,,,,,,,,,,,,,,,,,,,, ~ Node Organisation

Traffic generators

H t s
enerator 1 (get, inse™h TH

Bash Bench e

enerator 2
Bash Bench

enerator ..

Bash Bench

(0= ¢

90 warkers

Riak nodes

nodel

We use one traffic generator per 3 Riak nodes

©fIRELEASE

11

Traffic Generator

Basho Bench (An Erlang Application)

Config file
Kﬂa;‘cja‘m Uniform > oList of IP address
ey/Vaiue Random —al e

Generator Generator i LfSt of ports

_— = =Ljst of database operations
Update Insert Read

(Workerl B iciii - Workers9 * Worker9o

PUT POST GET

HTTP/Protocol Buffers Interface

12

20 nodes Sicdas

11 nodes

Murmbsar of Riak MNodes

W

30 48 78 96 126
Elapsed Minutes

Time-line shows Riak cluster losing nodes

SIRELEASE y

_Ope

Fails

Latency (ms)

Riak Availability

Throughput

Observation

 Number of failures (37)
 Number of successful operations (approximately
3.41 million)

*\When failed nodes come back up, the throughput
has grown which means Riak has a good
elasticity.

15

.
_

: :
.

-
. :
.

Scalability benchmark

2.5e+008

2e+008

1.5e+008 —
le+008 - b |
594-00?/

U_

ughput

Thro

-5e+007
10 20 30 40 30 a6l 70 a0 an 100

Mumber of nodes

Benchmark on 348-node Kalkyl cluster at Uppsala University

©IRELEASE

m“““m“mmm““mm““““““ll'llilllmm.........,,,“““.mm"m.mmmmm'mmmmmm

@@
=

| mm“m“'mm"“m“m“""'“"""""""“"l'llllllIll||m.............m“mmmmm“mmmmm“m

16

1.8e+007

Mumber of failures

1.6e+007

1.4e+007

1.2e+007

le+007

Be+006

Failures

2e+006 —

[[I I T
Failures +

variation H——=—

iE G

-2e+006
10

S22RELEASE

20

50 &0 0 a0 an 100
Mumber of nodes

17

«m‘‘!'“m"I“ll'1!llll!llllllIIIIIIIIIllllll|||||||||||mln|||llIllIllIIIIIIIIIIIIIIIIIIIIII"I""“wm!mi

‘l“IIlllllllllllllllllllIllllllIllllllllllIIlllllllllllllllllllllllnIIIIIIIIlIIIIIllIIIIIIIIIllllllllllilllllmmn

CPU usage
550 T T
] Riak nodes —+—

200 = Traffic generators —=— 7

450 -
— 400 [
g
2 350 -
o)
S 300
a,
a 250
]
S 200 |-
&
o 130 -

100

50

0
10 20 30 40 50 60 70 80 an 100
Mumber of nodes
CPU Usage

18

Disk usage (Percentage)
i
T

I I
Riak nodes ——

Traffic generators —*—

4 - o
3 i
L T
Fir= =

e il
]] 1 |] 1 1 | 1

10 20 30 40 a0 &0 70 80 oo 100

Mumber of nodes
DISK Usage

S22RELEASE

19

rrrr;xxn\[H[[[[[Hl[[[ll[[[[[[[[['l[llll
|

xunxxnur[[[l[lll[[[[[[[ll[ll

Memory usage
3 T T T T T T
,\Riak nodes —+—
Traffic ‘generators ——
o 25 -
o
3
=
Ak}
o
[ak]
o,
il .2 [- iy |
o
[
[1]
=
=
&
&
E 1.5 —]
i : : ! ! : ! !
10 20 30 40 50 (A 70 a0 ag 100
Mumber of nodes

S22RELEASE

Memory Usage

20

Profiling-Network (Generator)

Traffic Generators

7e+008 T T T | T T T T
Sent packets —+—
. Received packets
'%“ 6e+008 - ,x// \\ Retransmission packets —%—
g f_,.:”g
8 Se+008 o -
e g e
E !/#, __kx
@ A L o
£ 4e+08 - P i
- b
‘é" o W
o 3e+008 - ¥ \ s
; ,,
b > & \
2 2e+008 - i -
5 A U
.-""'-‘l 6.
2 1e+00s ~
0¥ & 4 2 e * e & 2 -
10 20 30 40 a0 &0 70 a0 an 100

Number of nodes

Network Traffic of Generator Nodes

|

g

|

Riak Modes
3.5e+009 T T T T T T T T
Sent packets —+—
i Received packets ——
) 3e+009 smission packets —%— 7
I 3
[
B 2,5e+009
LT,
(=]
g‘ 2e+009
g 1.5e+009
[]
5
= le+009
(=]
£
Z Se+008
0 * * % % % % % % % *
10 20 30 40 a0 ol 70 a0 an 100
Number of nodes
Network Traffic of Riak Nodes

22

Bottleneck for Riak Scalability

The results of profiing CPU, RAM,
Disk, and Network reveal that they
can't be bottleneck for Riak scalability.

Is Riak scalability limits due to limits in
distributed Erlang? To find it, we need
to measure the scalability of
distributed Erlang.

:2:RELEASE

23

DEbench

We design DEbench for measuring the scalability of

distributed Erlang
Based on Basho Bench

Measures the Throughput and Latency of Distributed

Erlang commands

Distributed Erlang Commands

*Spawn. a peer to peer command
eregister_name . global name tables located on every node
sunregister_name : global name tables located on every node

ewhereis_name : a lookup in the local table

Register
Erlang VM Erlang VI\/I/ \ Erlang VM Erlang VM

Global
name table

Global Global Global
name table name table name table

5RELEASE N

Il 1 ‘i‘1w"i“““i““‘idi“‘i“""""""""l‘1“1‘1‘!‘!!!!!!IIllIlllllIIIDIhFl“‘F“....____h____“hilhhhhhihjl______F_______ﬁ |

|

Physical host 1 Physical host 2
7T Elra VML /" EdangVM1

DEbench OEbench
C & A C

A« M

L b

o '\,

‘DEhench < > ‘[}Ehench

. Erlangvm2 ./ ‘. Erlangvmz ./

{2 RELEASE

*“mmmmhﬁmmwmwwwﬂ“““”““mm”mwmm»mmwmuwmmﬂmﬁmﬁmmmmm#

26

Scalability of Distributed Erlang

0.5% Global operation

Scalability benchmark

£.2e+006 T T T T T T T T
! ! : s Successful operations

Se+006 3 e aeisd i ,{ i] ; i e R 3 ?xhﬂ. i]
4.50+006 [--ooooorieeeen b R LR (L R . R
FYNT = S PN (S A— TN WO ATV S 0 e
ST SN MRS N SRORRE: COMCRWIS IS SURPOSIGN. | WO ISR (O SOp

Throughput

1584006 |- of-- =it e e T

1e+006 i i i i i i i i i
] 10 20 30 40 a0 o0 Z0 B0 a0 100
Mumber of nodes

*Throughput peaks at 50 nodes
sLittle improvement beyond 40 nodes

IRELEASE N

Throughput

Frequency of Global Operation

Scalability of Distributed Erlang

Frequently Max Throughput
2e+007 | T | T | T | T
: : : : 1% Global Operation —+—
ai 0
0.5% Global Operation 1% 30 nodes
0.33% Global Operation —#%— 0.5% 50 nod
Oy i . 0 noaes
ol : - 0% Global Operation —8— |
Y : : : : 0.33% 70 nodes
— g H— g S
e : : : : 0% | 1600 nodes
Se+006 - o .
e _"‘———+_______ :
+ | s —r]
0 i i I | I i I |
10 20 30 40 a0 &0 70 80 ag 100
Mumber of nodes
i2:RELEASE
E88 28

What is the Bottleneck?

Latency for global update commands

1.4e+007 I T I I I I T I T
: : : : : : Register —+—

. : : Z : : : Unregister — =
l.EE'H:”:'.._"r s e ; e R - S e 8 4 . pme e ; B : ._.___i_____--. =
! . . o !

-
-

T LTI LS. | RPN, COUTUNP | SYTSIPAL (Y / TIPS . —

R e s st L L e e R e s R

Latency (Microseconds)
+

4e4+006 - : 2 el .: GRS ? : i R ..'.E SESE i

g iR T T B B b A0 - e FEE &

0 I | I I
0 10 20 30 40 50 il 70 a0 ag 100

Number of nodes

Latency for register and unregister for 2% global update

5RELEASE .

i‘““l“ml|mmlIlI1lllll1IIIIllIlIllIlllllllll||||||||||||Illl|||||IIIIllllIIIIIIIIIIIIIIIIIIIIII'"mwm!ri.!i

&000

nds)

Laterncy (Microseco

0 10 20 30 40 a0 a0 70 a0 Qo 100

Mumber of nodes

Latency of spawn

RELEASE

30

Latency of whereis_name

m“'!mlllllllllllllllll!lllIIIIIIIlllml||||||||||||||Im|||||llllllllllllllllllllllllllllllmnmmmﬂ4 |

'_I.
=

[I
whereis_name —+—

= =
=} =] = P
I I | I

Latency (Microseconds)

=
I

%]
=

10 20 30 40 a0 60 70 80 a0

Mumber of nodes

Latency of whereis_name

RELEASE

100

31

Conclusion and Future work

*Our benchmark confirms that Riak is highly available and fault-
tolerant.

*\We have discovered the scalability limits of Riak is ~60 nodes
*Global operation limits the scalability of distributed Erlang.

*\We are trying to find the Riak global operations.

In RELEASE, we are working to scale up Distributed Erlang by

grouping nodes in smaller partitions.

#RELEASE .

Thank you!

©IRELEASE

