
Scalable Persistent Storage for
Erlang: Theory and PracticeErlang: Theory and Practice

Amir Ghaffari Natalia Chechina Phil TrinderAmir Ghaffari, Natalia Chechina , Phil Trinder
May 7, 2013

1

Outline
• Why Persistent Storage?

G l i i l f l bl DBMS• General principles of scalable DBMSs

• NoSQL DBMSs for Erlang

• Reliability of Riak in Practice

• Scalability of Riak in Practice• Scalability of Riak in Practice

• Investigating the scalability of distributed Erlang
• Conclusion & Future work

2

RELEASE projectp j

RELEASE i E j t• RELEASE is an European project
aiming to scale Erlang onto commodity
architectures with 100000 coresarchitectures with 100000 cores.

3

Why Persistent Storage?Why Persistent Storage?

E l li ti d t t th i d t• Erlang application need to store their data
persistently.

• Scalability limits of persistent storage can
limit the scalability of Erlang applicationlimit the scalability of Erlang application.

4

General principles of scalable
DBMSs

Data Fragmentation
1. Decentralized model (e.g. P2P model)
2. Systematic load balancing (make life easier for developer)
3. Location transparency

20kB

e.g. 20k data is fragmented among 10 nodes

0-2K 2k-4K 4k-6K 16k-18K 18k-20K

5

General principles of scalable
DBMSs

ReplicationReplication
1. Decentralized model (e.g. P2P model)
2 Location transparency2. Location transparency
3. Asynchronous replication (write is considered complete as soon as

on node acknowledges it)

X
e.g. Key X is replicated on three nodes

.

.
X

.

.
X

.

.
X

6

General principles of scalable
DBMSDBMSs

CAP theorem: cannotNot achievable because network failures are inevitable

ConsistencyConsistency

CAP theorem: cannot
simultaneously guarantee:

•Partition tolerance: system
continues to operate despite nodes

Not achievable because network failures are inevitable

ConsistencyConsistency AvailabilityAvailability

PartitionPartition

continues to operate despite nodes
can't talk to each other

•Availability: guarantee that every
request receives a responsePartition

Tolerance
Partition

ToleranceACID Systems Eventual
Consistency

request receives a response

•Consistency: all nodes see the
same data at the same time

Solution: Eventual consistency and reconciling conflicts via data versioning
ACID=Atomicity Consistency Isolation Durability

7

ACID=Atomicity, Consistency, Isolation, Durability

NoSQL DBMSs for Erlang
Mnesia CouchDB Riak Cassandra

Fragmentation •Explicit placement •Explicit placement •Implicit placement •Implicit placementg
•Client-server
•Automatic by using
a hash function

•Multi-server
•Lounge is not part of
each CouchDB node

•Peer to peer
•Automatic by using
consistent hash
technique

•Peer to peer
•Automatic by using
consistent hash
technique

Replication •Explicit placement •Explicit placement •Implicit placement •Implicit placementReplication •Explicit placement
•Client-server
•Asynchronous
(Dirty operation)

•Explicit placement
•Multi-server
•Asynchronous

•Implicit placement
•Peer to peer
•Asynchronous

•Implicit placement
•Peer to peer
•Asynchronous

P titi St i t E t l i t E t l i t E t l i tPartition
Tolerant

•Strong consistency •Eventual consistency
•Multi-Version
Concurrency Control
for reconciliation

•Eventual consistency
•Vector clocks for
reconciliation

•Eventual consistency
•Use timestamp to
reconcile

Query •The largest possible •No limitation •Bitcask has memory •No limitationQuery
Processing
&
Backend
Storage

•The largest possible
Mnesia table is 4Gb

•No limitation
•Support Map/Reduce
Queries

•Bitcask has memory
limitation
•LevelDB has no
limitation
•Support Map/Reduce
queries

•No limitation
Support Map/Reduce
queries

q

8

Initial Evaluation Results

GeneralGeneral
Principles

Scalable persistent
storage for SD Erlang

Initial Evaluation

storage for SD Erlang
can be provided by

Dynamo-like DBMSs,
e.g. Riak,Cassandra

Initial Evaluation
• Mnesia
• CouchDB
• Riak
• Cassendra

9

Availability and Scalability of
Riak in Practice

• Basho Bench, a benchmarking tool for Riak
• We use Basho Bench on 348-node Kalkyl cluster
• How does Riak cope with node failure? (Availability)
• How adding more Riak nodes affect the throughput?

(Scalability)(Scalability)
• There are two kinds of nodes in a cluster:

• Traffic generators• Traffic generators
• Riak nodes

10

Node Organisation g

We use one traffic generator per 3 Riak nodes

11

g p

Traffic Generator

12

Riak AvailabilityRiak Availability

Time-line shows Riak cluster losing nodes

13

Riak Availability

How Riak deals with failures

14

ObservationObservation

• Number of failures (37)
• Number of successful operations (approximately
3 41 illi)3.41 million)

•When failed nodes come back up, the throughputp g p
has grown which means Riak has a good
elasticity.

15

Riak ScalabilityRiak Scalability

Benchmark on 348-node Kalkyl cluster at Uppsala University

16

FailureFailure

17

What is the Bottleneck?What is the Bottleneck?

18

CPU Usage

Profiling DISKProfiling DISK

19

DISK Usage

Profiling RAMProfiling RAM

20

Memory Usage

Profiling-Network (Generator)Profiling Network (Generator)

21

Network Traffic of Generator Nodes

Profiling-Network (Riak)Profiling Network (Riak)

22

Network Traffic of Riak Nodes

Bottleneck for Riak ScalabilityBottleneck for Riak Scalability
The results of profiling CPU, RAM,p g , ,
Disk, and Network reveal that they
can't be bottleneck for Riak scalability.y

Is Riak scalability limits due to limits iny
distributed Erlang? To find it, we need
to measure the scalability ofy
distributed Erlang.

23

DEbench
• We design DEbench for measuring the scalability of

distributed Erlang

• Based on Basho Bench

• Measures the Throughput and Latency of Distributed

E l dErlang commands

24

Distributed Erlang Commands

•Spawn: a peer to peer commandSpawn: a peer to peer command

•register_name : global name tables located on every node

•unregister_name : global name tables located on every node

•whereis name : a lookup in the local tablewhereis_name : a lookup in the local table

Register
Unregister
Register
Unregister

Erlang VM Erlang VM Erlang VM Erlang VM

Global
name table

Global
name table

Global
name table

Global
name table

25

DEbench P2P NodesDEbench P2P Nodes

Physical host
1

Physical host
2

26

Scalability of Distributed ErlangScalability of Distributed Erlang
0.5% Global operation0.5% Global operation

•Throughput peaks at 50 nodesg
•Little improvement beyond 40 nodes

27

Frequency of Global OperationFrequency of Global Operation

Frequently Max Throughput

1% 30 nodes

0.5% 50 nodes

0.33% 70 nodes

0% 1600 nodes

28

What is the Bottleneck?What is the Bottleneck?

29

Latency for register and unregister for 2% global update

What is the Bottleneck?What is the Bottleneck?

Latency of spawn

30

Latency of spawn

What is the Bottleneck?What is the Bottleneck?

31

Latency of whereis_name

Conclusion and Future workConclusion and Future work
•Our benchmark confirms that Riak is highly available and fault-Our benchmark confirms that Riak is highly available and fault
tolerant.

•We have discovered the scalability limits of Riak is ~60 nodesy

•Global operation limits the scalability of distributed Erlang.

•We are trying to find the Riak global operationsWe are trying to find the Riak global operations.

•In RELEASE, we are working to scale up Distributed Erlang by

grouping nodes in smaller partitionsgrouping nodes in smaller partitions.

32

33

