
Scheduling Queries Across Replicas

Ana Freire1, Craig Macdonald2, Nicola Tonellotto3, Iadh Ounis2, Fidel Cacheda1

1 University of A Coruña, Campus de Elviña s/n, 15017 A Coruña, Spain
2 University of Glasgow, G12 8QQ Glasgow, UK

3 National Research Council of Italy, Via G. Moruzzi 1, 56124 Pisa, Italy

{ana.freire, fidel.cacheda}@udc.es1, {craig.macdonald, iadh.ounis}@glasgow.ac.uk2,
{nicola.tonellotto}@isti.cnr.it3

ABSTRACT
For increased efficiency, an information retrieval system can
split its index into multiple shards, and then replicate these
shards across many query servers. For each new query, an
appropriate replica for each shard must be selected, such
that the query is answered as quickly as possible. Typi-
cally, the replica with the lowest number of queued queries
is selected. However, not every query takes the same time
to execute, particularly if a dynamic pruning strategy is
applied by each query server. Hence, the replica’s queue
length is an inaccurate indicator of the workload of a replica,
and can result in inefficient usage of the replicas. In this
work, we propose that improved replica selection can be ob-
tained by using query efficiency prediction to measure the
expected workload of a replica. Experiments are conducted
using 2.2k queries, over various numbers of shards and repli-
cas for the large GOV2 collection. Our results show that
query waiting and completion times can be markedly re-
duced, showing that accurate response time predictions can
improve scheduling accuracy and attesting the benefit of the
proposed scheduling algorithm.

Categories & Subject Descriptors: H.3.3 [Information
Storage & Retrieval]: Information Search & Retrieval

General Terms: Performance, Experimentation

Keywords: Query Scheduling, Simulation

1. INTRODUCTION
A distributed information retrieval (IR) system consists of

several query servers, each of them storing the index shard
for a subset of the documents in the corpus. New queries
arrive at the broker, which routes them to each shard, be-
fore collating and merging the results for presentation to the
user. The efficiency of each query server can be improved
by deploying a dynamic pruning strategy, such as Wand [1],
which aims to avoid the scoring of postings for documents
that cannot make the top K retrieved set.

While multiple shards increase efficiency compared to a
monolithic (“single shard”) retrieval system, the throughput
of a distributed retrieval system can be further enhanced
by replicating shards, so that one of multiple query servers
can provide the results for a single shard [6]. The problem
tackled in this work is how a broker should select (schedule)
the most suitable replica of a given shard in order to reduce
the queue waiting time. For example, the replica with the
minimum number of queued queries can be selected.

Copyright is held by the author/owner(s).
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
ACM 978-1-4503-1472-5/12/08.

However, the response time for different queries can vary
widely, particularly if dynamic pruning is employed [5]. Hence,
the accurate choice of replica is made more difficult, as
the number of queries queued by a given query server does
not accurately predict the processing backlog of the server.
A recently proposed technique for query efficiency predic-
tion [5] offers a plausible manner to estimate the work-
load of a replica. Hence, we hypothesise that query ef-
ficiency prediction [4] can permit accurate query schedul-
ing in a distributed/replicated IR system. Indeed, to the
best of our knowledge, this work contributes the first study
to applying query efficiency predictors for scheduling in a
distributed/replicated IR system. Using a simulated dis-
tributed/ replicated search environment, based on actual
query response times, we experiment to determine how dif-
ferent scheduling algorithms can be deployed for replica se-
lection. Our results show that by using query efficiency pre-
diction, we can improve the selection of replicated query
servers, and hence the average query completion times are
reduced. For instance, using predicted response time to se-
lect between 4 replicas of a 2 shard index results in a 42%
reduction in mean completion time compared to selecting
replicas by considering only the length of their queues.

2. SIMULATING REPLICATION
In comparing different scheduling algorithms, we exper-

iment with a various numbers of shards and replicas. To
facilitate such experiments without exhaustive hardware re-
sources, we build a simulation framework that supports dif-
ferent distributed settings. Indeed, Cacheda et al. [2] showed
that a simulation framework could accurately model the effi-
ciency of a real distributed IR system, including the network
delays, the queue waiting and processing time for queries
and the time for merging the results. Following this, we im-
plement a simulation framework1, extended to encapsulate
the presence of multiple shards each with multiple replicas
as well as several scheduling algorithms for selecting repli-
cas. The constants for network delays follow [2], in order to
achieve a proven realistic simulation environment.

The baseline scheduling algorithms implemented for se-
lecting replicas are: Random (the replica is chosen ran-
domly); Round Robin (modulo the number of replicas, if
replica i was selected for this query, replica i + 1 is used for
the next query); Queue Length (the replica with the fewest
queries waiting to be processed is selected). In addition to
these baselines, we propose Predicted, where the replica with
the current shortest queue in terms of predicted response
times is selected. We use query efficiency predictions [5]

1Built using JavaSim: http://javasim.codehaus.org/



Replicas
Random Round Robin Queue Length Prediction Oracle

ACT AWT ACT AWT ACT AWT ACT AWT ACT AWT
2 Shards

2 9617 9382 10061 9826 8897 8662 613 362 610 359
4 902 667 409 174 434 199 253 3 253 3
8 410 175 263 28 428 193 250 0 250 0

5 Shards
2 375 237 241 103 247 109 158 4 159 5
4 265 126 155 16 231 93 154 0 154 0
8 192 54 140 2 231 93 154 0 154 0

10 Shards
2 168 69 120 22 145 47 114 1 114 1
4 139 41 101 3 144 46 114 0 114 0
8 123 25 98 0 144 46 114 0 114 0

Table 1: ACTs and AWTs (in milliseconds) for dif-
ferent settings and scheduling algorithms.

for estimating the response time of a query. Moreover, as
the predicted response time is dependent on statistics of the
query terms on that index shard, our framework accounts for
the time to calculate the prediction at the selected replica
and transmit it back to the broker, such that the expected
workload of the replica can be updated.

Finally, as the selection of replicas is based on predicted
response times, we additionally implement an Oracle schedul-
ing algorithm, which knows the actual response time of a
query before it is executed, but still accounts for the cal-
culating the predicted response time. In this way, Oracle
represents a best-case scenario for Predicted scheduling.

3. EXPERIMENTAL SETUP
We hypothesise that using predicted response times can

increase overall efficiency compared to other scheduling algo-
rithms. To address this hypothesis, we conduct experiments
by indexing TREC GOV2 corpus using Terrier2, applying
Porter’s English stemmer and removing standard stopwords.
We experiment with three different index configurations: 2,
5 and 10 shards. For retrieval on each query server, we use
a set of 2200 queries of the TREC 2005 Terabyte track Effi-
ciency task. We sample real arrival times of a set of queries
from an Excite query log and assign them to our TREC
queries (query arrival rates vary from 20 to 180 per second).
We use the Wand dynamic pruning strategy [1] to retrieve
K = 1000 documents, scored by the DPH Divergence from
Randomness document weighting model. Timings are made
using an Intel Xeon 2.66GHz.

To obtain the response time predictions, we follow Tonel-
lotto et al. [5], by calculating various term-level statistics,
such as the IDF, maximum score, number of postings, num-
ber of postings with scores > 95% maximum score. These
are then aggregated across terms by sum, max, min, mean,
median, stddev, variance and range functions, to form a to-
tal of 113 features (14 statistics * 8 aggregations + query
length). Predicted response times are obtained by gradient
boosted regression trees [3], trained on a separate subset of
2500 Efficiency task queries. Finally, to compare the five
scheduling algorithms, we use two measures: average wait-
ing time (AWT) and average completion time (ACT) over
all the queries, in milliseconds (ms). Note that the average
completion time is inclusive of the average waiting time.

4. EXPERIMENTAL RESULTS
From Table 1, we note that increasing both the numbers

of shards and the number of replicas reduces both ACTs and

2http://terrier.org

AWTs. Indeed, in general, 2 shards with only 2 replicas is
insufficient for a low completion time for this query work-
load, as queries can spend 8 seconds waiting for an available
query server. For 5 or more shards, more than 4 replicas
is sufficient for eliminating any contention for query servers
(i.e. AWTs close to 0).

Next, comparing the scheduling algorithms, we note that
Random obtains the highest ACTs and AWTs, because it
can choose replicas that are busy, whist other replicas for
that shard are idle. Queue Length is superior to Round
Robin under high contention (i.e. 2 shards, 2 replicas). In
other settings, Round Robin appears to better balance load
than Queue Length. However, across different numbers of
shards and replicas, Prediction always achieves the smallest
AWT. For instance, with 4 replicas of the 2 shard index,
Prediction can reduce AWT to 3ms, compared to 199ms for
Queue Length and 174ms for Round Robin. Under settings
with very little contention (e.g. 10 shards, 4 or 8 replicas),
Round Robin has slightly lower ACTs than Prediction and
even Oracle, due to the expense of predicting the response
time (typically 6-40ms, depending on query length). Finally,
Prediction obtains ACTs and AWTs that are almost iden-
tical to the best-case Oracle algorithm, based on actual re-
sponse times. Overall, we find that using predicted response
times to select the suitable replica for each query results in
improved efficiency.

5. CONCLUSIONS
We proposed that using the predicted response time (ob-

tained using query efficiency prediction) could enhance replica
selection within a distributed/replicated IR system, com-
pared to other scheduling algorithms. Indeed, experiments
using the GOV2 corpus showed that the proposed Prediction
algorithm could attain marked reductions in the query wait-
ing times, across different number of shards and replicas. In
future work we will investigate if query response times within
a shard are correlated, and hence if the number of replicas
required for a given shard can be predicted in advance.

6. ACKNOWLEDGEMENTS
Ana Freire acknowledges the support from the Spanish

Government (Project TIN2009-14203). Craig Macdonald
and Iadh Ounis acknowledge the support of EC-funded project
SMART (FP7-287583).

7. REFERENCES
[1] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and

J. Zien. Efficient query evaluation using a two-level retrieval
process. In Proc. CIKM 2003.

[2] F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis.
Performance analysis of distributed information retrieval
architectures using an improved network simulation model.
Information Processing and Management, 43:204–224, 2007.

[3] J. H. Friedman. Greedy function approximation: A gradient
boosting machine. Annals of Statistics, 29:1189–1232, 2000.

[4] C. Macdonald, N. Tonellotto, and I. Ounis. Learning to
Predict Response Times for Online Query Scheduling. In
Proc. SIGIR 2012.

[5] N. Tonellotto, C. Macdonald, and I. Ounis. Query efficiency
prediction for dynamic pruning. In Proc. LSDS-IR 2011.

[6] F. Cacheda, V. Carneiro, V. Plachouras and I. Ounis.
Performance Comparison of Clustered and Replicated
Information Retrieval Systems. In Proc. ECIR 2007.


