
Learning Models for Ranking Aggregates

Craig Macdonald and Iadh Ounis

School of Computing Science, University of Glasgow,
Glasgow G12 8QQ, UK

{craig.macdonald,iadh.ounis}@glasgow.ac.uk

Abstract. Aggregate ranking tasks are those where documents are not
the final ranking outcome, but instead an intermediary component. For
instance, in expert search, a ranking of candidate persons with relevant
expertise to a query is generated after consideration of a document rank-
ing. Many models exist for aggregate ranking tasks, however obtaining
an effective and robust setting for different aggregate ranking tasks is
difficult to achieve. In this work, we propose a novel learned approach
to aggregate ranking, which combines different document ranking fea-
tures as well as aggregate ranking approaches. We experiment with our
proposed approach using two TREC test collections for expert and blog
search. Our experimental results attest the effectiveness and robustness
of a learned model for aggregate ranking across different settings.

1 Introduction

Identifying expert persons in an organisation, key bloggers for a topic on the
blogosphere and finding related entities on the Web are all examples of aggregate
ranking tasks, where objects - e.g. people - are represented by sets of documents
that must be ranked in response to a query. Various models have been proposed
for aggregate ranking [1–3]. However, while each model might perform well in a
particular setting, it might not adapt well to another aggregate ranking task. For
instance, the Model 2 approach [1] performs well for expert search, but less so
for identifying key bloggers [4]. In this work, we investigate how to learn effective
and robust aggregate ranking models using the learning to rank paradigm [5].

In learning to rank, features are normally defined on the objects being eval-
uated, i.e. document features which are then evaluated directly. However, in
aggregate ranking tasks, the usefulness of document features is difficult to assess
in a learning to rank framework, as relevance assessments are only defined on
the aggregates. We propose a novel methodology for applying learning to rank
to the ranking of document aggregates. In this methodology, features are defined
in terms of three independent variables, namely the document ranking, the rank
at which the document ranking is truncated, and the aggregate ranking strategy
used to convert the document ranking into a ranking of aggregates. We evaluate
the proposed methodology using standard TREC test collections for two aggre-
gate ranking tasks, namely expert and blog search. Our experiments analyse the
impact of each of the independent variables on the effectiveness of the learned
models. The results show that effective and robust learned models for aggregate
ranking can be obtained using our proposed methodology.

To the best of our knowledge, our work is the first framework showing how
to apply learning to rank techniques to aggregate ranking. In particular, we

conduct an in-depth study into learning models for two aggregate ranking task.
The remainder of this paper is structured as follows: Section 2 reviews existing
approaches for ranking aggregates, and discusses their limitations, before intro-
ducing the learning to rank paradigm for information retrieval; Section 3 de-
fines our methodology for learning to rank in aggregate ranking tasks; Section 4
details our research questions and experimental setup, while the experimental
results and analysis follow in Section 5; Finally, Section 6 compares our work to
other recent learned approaches for aggregate ranking, and Section 7 provides
concluding remarks.

2 Aggregate Ranking towards Learning to Rank

2.1 Aggregate Ranking

There are several well-known approaches for aggregate ranking spawned by re-
search in the expert and blog search tasks. Typically, all approaches use profiles
of documents to represent each candidate object. However, they differ in the way
in which the profiles are ranked in response to a query. For instance, Balog et
al. [1] proposed the Model 1 and Model 2 language modelling approaches for ex-
pert search. Similarly, Elsas et al. [3] proposed the “large document” and “small
document” language models in the context of blog search, which correspond to
Models 1 & 2, respectively. Macdonald & Ounis took a different approach to
expert ranking - in their Voting Model [2], a document ranking provides votes to
associated objects (e.g. experts) to be retrieved for the query. Twelve different
voting techniques were proposed that define different ways in which the votes
can be aggregated. In particular, the CombSUM voting technique is similar to
Model 2, but agnostic to the particular document ranking technique applied.
Different voting techniques have since been shown to be effective at finding key
bloggers [6] and related entities from the Web [7].

While these various aggregate ranking approaches may be suitable for vari-
ous tasks or datasets, an effective setting for one aggregate ranking task may not
perform well on another task. For instance, while Balog et al. found Model 2 to
be more effective than Model 1 for expert search [1], the opposite was found to
be true for finding key bloggers [4]. In contrast, Elsas et al. [3] found the small
document model (which corresponds to Model 2 of Balog et al.) to be more
effective than the large document model (c.f. Model 1) for key blog identifica-
tion. By proposing various different voting techniques, Macdonald & Ounis [2]
acknowledged that different voting techniques may be suitable for different tasks
or settings. For example, while the CombMAX voting technique can be effective
for some expert search tasks [8], it was found to be less effective for finding key
blogs [6]. Moreover, the voting techniques can consider any number of top-ranked
documents from the underlying document ranking. However, the most effective
rank cutoff can vary between tasks and collections [8].

Due to these difficulties in finding consistently effective and robust settings
for aggregate ranking approaches, in this work, we propose instead to learn an
aggregate ranking model, which is robust and effective across different tasks and
settings. In particular, the voting techniques of the Voting Model provide var-
ious different aggregate ranking strategies that are effective for different tasks
or collections. We hypothesise that it is possible to learn an appropriate and

effective combination of voting technique strategies using learning to rank tech-
niques. In the remainder of this section, we provide background on learning to
rank techniques, and the challenges incurred in their application to aggregate
ranking. This is followed in Section 3 by our proposed methodology for learning
an effective aggregate ranking model.

2.2 Learning to Rank

Learning to rank describes the application of machine learning techniques to
select weights for different document features in an information retrieval (IR)
system [5]. For instance, learning to rank techniques are often applied by Web
search engines, to combine various document weighting models and other query-
independent features [9]. The various learning to rank approaches in the litera-
ture fall into one of three categories, namely pointwise (learn relevance indepen-
dently of other documents), pairwise (optimise the number of pairs of documents
correctly ranked) and listwise (optimise an information retrieval evaluation mea-
sure that considers the entire ranking list). In this work, we consider two listwise
approaches that directly evaluate with respect to the target IR evaluation mea-
sure, instead of the evaluation approximations that are used by pointwise or
pairwise approaches. Moreover, listwise techniques have been shown to learn
more effective models [5]. To examine the impact of different learning to rank
techniques on the effectiveness of the learned models, we deploy two listwise
techniques, namely Metzler’s Automatic Feature Selection algorithm (AFS) [10],
and AdaRank [11]. Both AFS and AdaRank take a greedy approach to feature
selection, by iteratively selecting the feature that most improves retrieval per-
formance in combination with the previously selected features. Features that are
not beneficial to the retrieval performance on the training set will not be se-
lected. However, while AFS finds the optimal weight for each feature, AdaRank
calculates feature weights based on their boosted performance on the training
queries [11]. In practice, this makes AdaRank considerably faster than AFS. The
general steps to learn a ranking model are as follows [5]:
1. Generate a sample of training documents using an initial retrieval approach.
2. Extract all features for all of the documents in the sample. A feature is a
numerical indicator thought to be of use in a learned model.
3. Learn a ranking model through the application of a learning to rank approach.
4. Apply the learned model on a sample of test documents with the same features.

It is of note that the strategy used to create the sample of documents to
re-rank impacts on the effectiveness of the learned model. In [5], Liu states that
for the LETOR learning to rank datasets, the top 1000 documents are sampled
using BM25 on the content alone. However, Liu notes that while this method
of producing the sample is sufficient, it may not be the best [5]. Indeed, if the
sample has insufficient recall, then the scope for the learning to rank approach
to generate a quality ranking will be hindered. In Section 4, we describe how an
appropriate sample of aggregate objects is created for our learning approach.

A salient point of learning to rank is that the features are defined on the
objects being evaluated, i.e. document features which are then evaluated di-
rectly. However, in aggregate ranking tasks, the usefulness of document features
is difficult to assess in a learning to rank framework, since such features are not
directly defined on the aggregates, and relevance assessments are only defined on

Fig. 1. Eight features obtained from two document ranking models (TF.IDF & BM25),
two rank cutoffs (50 and 100) and two voting techniques (CombSUM & CombMNZ).

the aggregates. To tackle this problem, in the next section, we propose a novel
methodology for applying learning to rank for ranking document aggregates.

3 Learning to Rank Aggregates

In aggregate search tasks, the goal is to rank objects such as people, entities or
blogs, where each aggregate object is defined as a set of documents. However,
as mentioned above, a key complication of learning to rank aggregates is that
many features (e.g. uni- and bi-gram weighting models, PageRank, to name a
few) are defined at the level of documents, rather than at the level of aggregate
objects. However, when using learning to rank, the features must be defined at
the same level as the relevance assessments, i.e. at the aggregate level.

To take such document features into account, it could be intuitive to use a
learned document ranking as input to an aggregate ranking strategy. However,
two factors combine to make such an approach not viable. Firstly, in aggregate
ranking tasks, the relevance assessments are defined at the aggregate level, there-
fore there is no easy way to learn an effective ranking. Secondly, even when there
are document level relevance assessments for the same queries as the aggregate
ranking task (e.g. TREC 2007 and 2008 Enterprise tracks, for the document
search and expert search tasks [12, 13]), it has been shown that increasing the
quality of the document ranking does not always result in increasing the effec-
tiveness of the resulting ranking of candidate experts [14]. Moreover, Macdonald
& Ounis [15] showed that when perfect document rankings (e.g. MAP 1.0) are
applied, the resulting candidate rankings were further degraded. Such counter-
intuitive results can be explained in that the document relevance assessments
measure different properties of the document ranking than those desirable for
an effective ranking of candidates [14], and suggest that the direct learning of
document ranking features for use to rank aggregates is not a viable strategy.

Instead of trying to directly learn a document ranking, we propose to work
with features directly defined at the level of the aggregate objects. Firstly, a
sample of aggregate objects to be re-ranked is defined, using a single effective
aggregate ranking strategy (c.f. BM25 used by LETOR [5]). Then, we propose
that each possible aggregate ranking strategy is a feature, defined on the objects
in the sample. In particular, in this work, as mentioned in Section 2.1, we apply
different instantiations of the Voting Model. Indeed, the Voting Model defines
many aggregate ranking strategies as voting techniques, each of which can use

various document rankings with different rank cutoffs. Hence, each different vot-
ing technique that is applied to the same document ranking represents a different
feature. Similarly, if the document ranking is changed, or truncated at a different
rank cutoff, then a new feature is defined. Figure 1 shows an example feature
set, where two document ranking models (TF.IDF and BM25), truncated at
two rank cutoffs (50 and 100) are combined with two voting techniques from [2]
(CombSUM and CombMNZ), to make a total of eight features. From Figure 1,
it is clear that a single feature represents a path through the different levels of
the tree, where the document ranking model, the cutoff and the voting technique
are three independent variables of the feature. More formally, a single feature f

for an object O for query Q is defined as:

f(O, Q, DM, θ, V T) = V T (O, Tr(DM(Q), θ)) (1)

where V T (O, Tr(DM(Q), θ)) is the score for object O according to a particular
voting technique, operating on a ranking of documents returned by a ranking
model DM for query Q. Tr(DM(Q), θ) truncates document ranking DM(Q)
to the top θ ranked documents. In this formulation of aggregate learning, there
are three levels. Each level corresponds to one of the independent variables in
Equation (1), namely DM , θ or V T , and the particular values for each variable
define the exact feature generated. For example, in Figure 1, eight features are
generated by DM = {DPH, BM25}, θ = {50, 100}, and two voting techniques
V T = {CombSUM, CombMNZ}.

Once many features have been extracted for the sampled candidates, a learn-
ing to rank technique can be applied. The outcome of the learning to rank tech-
nique is a weighted linear combination of features, such that a new aggregate
ranking strategy is created, consisting of an ensemble of various voting techniques
using different document rankings and cutoffs. Moreover, as with learning to rank
applied on documents, the success of a learned approach depends on the number
and usefulness of the features. As will be shown in the next section, we vary the
three independent variables, to generate a large number of features for learning
to rank aggregates. In this regard, the Voting Model is particularly suitable, as
it defines many voting techniques for the independent variable V T . Moreover, it
is agnostic to the choice of the document ranking DM and the ranking cutoff θ.
In essence, this allows a combinatorial approach to feature generation by varying
the instantiations of each independent variable.

Finally, in this work, our experiments only use features based on query-
dependent document ranking models. However, query-independent features could
also be handled within our proposed methodology, by defining them on a sample
of documents selected by a query-dependent document ranking model. e.g. using
PageRank as a document ranking, but defined on documents ranked by BM25.

4 Experimental Setup

In the proposed methodology for learning aggregate models using many features,
each feature is generated by different instantiations of the DM , θ and V T in-
dependent variables. In our experiments, we investigate the importance of each
independent variable, by varying one while holding all other variables constant,
to create groups of features. We then ascertain the importance of each of these
feature groups, by addressing the following research questions:

Table 1. Tasks and test collections used.

EX:07 EX:08 BD:07 BD:08

Corpus CERC Blogs06
Number of Documents 370K 3M

Number of Candidates 3.4K 100K
Mean Profile Size 68.2 31.94

Number of Topics 50 55 45 50

(1). Does using more than one voting technique benefit retrieval performance?
(2). Does using more than one document cutoff benefit retrieval performance?
(3). Does using more than one document ranking benefit retrieval performance?
(4). Finally, what are the most important features for each of the investigated
retrieval tasks?

The remainder of this section defines the experimental setup to address these
research questions. In particular, Section 4.1 details the selected test collections
and the adopted training regime, while Section 4.2 details the generated features.

4.1 Tasks and Training

We address the above research questions using two aggregate ranking search
tasks, namely expert search and blog distillation. In the expert search task, can-
didate experts within an enterprise organisation are aggregate objects that must
be ranked in response to a query. In particular, the expertise of each candidate
is represented by a profile of intranet documents containing their name or email
address. We use the TREC Enterprise track 2007 and 2008 expert search task
test collections [12, 13] - denoted EX:07 and EX:08, respectively. Both tasks are
based on the CERC corpus of intranet documents. In the blog distillation task,
key blog(ger)s that have a recurring interest in a query topic should be identified.
In this task, each blog is an aggregate, consisting of all of the blog’s postings. In
particular, we use the TREC Blog track 2007 and 2008 blog distillation test col-
lections [16, 17], denoted BD:07 and BD:08, respectively, both of which use the
Blogs06 corpus. Statistics of the used test collections are presented in Table 1.

We deploy the two listwise learning to rank techniques described in Sec-
tion 2.2, namely AFS and AdaRank. Moreover, applying a learning to rank
technique requires enough training data to successfully learn the weights of the
features, as well as sufficient test data to adequately evaluate the learned mod-
els. The selected test collections are the only aggregate ranking test collections
currently available with more than 50 topics, sufficient for both training and
testing. In contrast, the LETOR datasets for evaluating learning to rank ap-
proaches [5] do not address aggregate ranking tasks. While the TREC 2009 Blog
track faceted blog distillation task and the TREC 2009 Entity track related en-
tity finding task are also aggregate ranking tasks, they do not have enough topics
(39 and 20, respectively) for successfully applying learning to rank techniques.

In our experiments, we apply an appropriate training regime whereby results
are reported on different topics from the training topics, but within the same
corpus. Hence, a clear separation between training and testing topics is enforced.
For instance, we train on EX:07 topics and test on EX:08, and vice versa. Note

Table 2. Applied instantiations of each independent variable. A total of 540 aggregate
level features are generated.

Variable # Description

DM 6

DPH document weighting model [18] on either content or anchor text, with
and without query term proximity [19].
Collection enrichment using Wikipedia as per [20], applied on either content
or anchor text.

θ 9 Ranking cutoffs: θ = {50, 100, 250, 500, 1000, 2000, 3000, 4000, 5000}.

V T 10

CombSUM, CombMNZ, CombMAX, expCombSUM, expCombMNZ from
the Voting Model, as per [2, 6].
CombSUMNorm1D, CombMNZNorm1D, CombMAXNorm1D,
expCombSUMNorm1D, expCombMNZNorm1D adds profile length
normalisation [8].

that this training regime makes our results perfectly comparable to the par-
ticipating systems of the EX:08 and BD:08 TREC tasks only. However, for the
EX:07 and BD:07 topics, we are using training data that was not available to the
TREC participants of that year. Mean Average Precision (MAP) is used as both
the training measure during learning, and the measure reported in the results.

4.2 Feature Generation

For both the expert search and blog distillation tasks, we use various instances
for the variables DM , θ and V T to generate different features. In general, to
permit an impartial cross-comparison of selected features across expert search
and blog distillation tasks as per research question (4), we adopt a uniform set-
ting between both tasks, in that only techniques that are applicable to both
tasks are applied. Table 2 details the instantiations of the DM , θ and V T in-
dependent variables. In particular, the DPH document weighting model [18] is
applied, with and without proximity [19] or collection enrichment [20], on either
document content or the corresponding anchor text of the incoming hyperlinks.
Nine different document ranking cutoffs are applied, along with ten different vot-
ing techniques from the Voting Model [2]. Five of these voting techniques apply
profile length normalisation, which often increases effectiveness by preventing
aggregate objects with many associated documents from being over emphasised
in the final ranking [8]. The product of all of the above possible instantiations
of variables DM , θ and V T is a total of 6 × 9 × 10 = 540 features that can be
considered by the two learning to rank techniques used in our experiments.

Lastly, we consider the generation of the sample of objects to re-rank. As
discussed in Section 2.2, for the LETOR datasets, Liu suggests that selecting
the top 1000 ranked BM25 documents produces a sample of sufficient recall [5].
Similarly, in this work, our sample consists of the top 200 aggregate objects
ranked by the CombSUM voting technique [2], using a DPH document ranking
cutoff at rank 1000. In particular, DPH represents an effective parameter-free
document weighting model [18], while CombSUM was shown to be effective for
both expert search and blog distillation [2, 8], and is similar to the Model 2
language modelling approach [1]. By using a sample with depth 200, we have a
good recall from which to re-rank objects, as the testing evaluation is limited to
rank 100 as per the TREC setting of the expert search and blog distillation tasks.

Table 3. MAP performances of various feature sets, trained using two learning to
rank techniques. Significant differences from C 1000 CombSUM are denoted with ≫
(p < 0.01), > (0.01 ≤ p ≤ 0.05) and = (p > 0.05). * * * denotes when all features from
Table 2 are applied. The best learned model for each task is emphasised.

DM θ V T
#

EX:07 EX:08 BD:07 BD:08
Features

AFS

1 C 1000 CombSUM 1 0.2651 0.2532 0.2468 0.1909
2 C 1000 ∗ 10 0.4184≫ 0.4128≫ 0.2870≫ 0.2493≫
3 C ∗ CombSUM 9 0.3978≫ 0.3180> 0.2514= 0.2067=
4 C ∗ ∗ 90 0.4134≫ 0.4043≫ 0.3148≫ 0.2422≫
5 ∗ 1000 CombSUM 6 0.2776= 0.2578= 0.2705≫ 0.2022>

6 ∗ 1000 ∗ 60 0.4153≫ 0.4103≫ 0.3264≫ 0.2547≫
7 ∗ ∗ CombSUM 54 0.4076≫ 0.3133> 0.2653= 0.2170≫
8 ∗ ∗ ∗ 540 0.4107≫ 0.4041≫ 0.3480≫ 0.2710≫

AdaRank

9 C 1000 CombSUM 1 0.2651 0.2532 0.2468 0.1909
10 C 1000 ∗ 10 0.4141≫ 0.4211≫ 0.2925≫ 0.2338≫
11 C ∗ CombSUM 9 0.3802≫ 0.3670≫ 0.2439= 0.1893=
12 C ∗ ∗ 90 0.4199≫ 0.3857≫ 0.3189≫ 0.2493≫
13 ∗ 1000 CombSUM 6 0.2896> 0.2581= 0.2698≫ 0.2044≫
14 ∗ 1000 ∗ 60 0.4010≫ 0.4035≫ 0.3204≫ 0.2327≫
15 ∗ ∗ CombSUM 54 0.3823≫ 0.3688≫ 0.2700> 0.2075≫
16 ∗ ∗ ∗ 540 0.3973≫ 0.3791≫ 0.2817= 0.2284≫

5 Experimental Results

In this section, we experiment to address each of the research questions described
in Section 4 in turn. In particular, in Sections 5.1, 5.2, and 5.3, we investigate
the impact of each specific feature group on the learning process, i.e. by varying
V T , θ, and DM one at a time, while holding the other two variables constant.
Each section analyses the results of Table 3. In this table, the independent vari-
ables DM , θ and V T are varied in turn - each can take a single instantiation,
namely DPH on content (denoted C), 1000 and CombSUM, respectively, or all
of the listed variable instantiations in Table 2 (denoted *). For example, C 1000
CombSUM (rows 1 & 9) denotes our baseline approach that created the sam-
ple of aggregate objects to re-rank (c.f. BM25 used by Liu for LETOR [5]). We
test for significant differences from the baseline using the Wilcoxon Signed Rank
test, denoted by ≫ (p < 0.01), > (0.01 ≤ p ≤ 0.05) and = (p > 0.05). Finally,
Section 5.4 analyses the most important features for each task, while additional
discussion follows in Section 5.5.

5.1 Feature Group: Voting Techniques

Firstly, we examine the impact of the research question (1), namely whether
applying more than a single voting technique increases the effectiveness of the
learned aggregate ranking model. To analyse the influence of adding additional
voting techniques on the effectiveness of the learned model, we compare C 1000
CombSUM (rows 1 & 9) with C 1000 * (rows 2 & 10) in Table 3. We observe up

to 70% relative improvements over the baseline. Indeed, these improvements are
statistically significant for both learning to rank techniques, and for all topic sets.
We conclude that building a ranking model with multiple voting techniques can
massively benefit retrieval performance. Moreover, if we examine other settings,
e.g. where multiple cutoffs or multiple ranking feature groups have already been
applied, we see further improvements (see each setting in rows 3 vs 4, 5 vs 6, 7 vs
8, 11 vs 12, 13 vs 14, or 15 vs 16). Overall, these positive results show that apply-
ing multiple voting techniques and learning a suitable combination results in an
effective model that robustly generalises to other topic sets on the same corpus.

5.2 Feature Group: Ranking Cutoffs

Next, we investigate research question (2), addressing whether adding more doc-
ument ranking cutoffs increases retrieval effectiveness. Comparing C 1000 Comb-
SUM (rows 1 & 9) with C * CombSUM (rows 3 & 11), we observe significant
increases for the expert search task. However, on the blog distillation task, only
AFS can identify models that improve over the baseline sample. This suggests
that having multiple cutoffs are very useful for expert search, where there are
highly on-topic documents retrieved early in the system ranking that bring valu-
able expertise evidence. On the other hand, for blog distillation, adding addi-
tional cutoffs brings less benefit, suggesting that for this task, the top ranked
documents are, in general, less useful. We conclude that the multiple cutoffs
feature group is useful for the expert search task only.

We also examine the impact of the multiple cutoffs feature group when the
multiple document rankings or multiple voting techniques feature groups have
already been applied. In these cases, we note that, in general, adding the multiple
cutoffs feature group is beneficial for improving the effectiveness of the multiple
document ranking feature group alone (rows 5 vs 7 and 13 vs 15). However when
multiple voting techniques have been applied, multiple document ranking cutoffs
have little or no positive impact on retrieval performance (rows 2 vs 4, 6 vs 8,
10 vs 12 and 14 vs 16). This suggests that the sources of evidence from multiple
voting techniques and document ranking cutoffs are correlated. However, in a
learning to rank setting, this is not a disadvantage, as the learning process will
only select one of two similar features.

5.3 Feature Group: Document Rankings

We now examine the impact on effectiveness of using features based on multiple
document rankings, as per the research question (3). Comparing with C 1000
CombSUM (rows 1 vs 5 and 9 vs 13), we note improvements for all settings.
However, these are only statistically significant in 5 out of 8 settings. Overall,
we conclude that while adding the multiple document rankings feature group
does positively impact retrieval effectiveness, it does not have as large an effect
as the multiple cutoffs or multiple voting techniques feature groups (e.g. rows 1
vs 5, compared to 1 vs 2, and 1 vs 3).

Nevertheless, the effectiveness of multiple document rankings can be im-
proved by further adding the multiple cutoffs or multiple voting techniques fea-
ture groups. In fact, the best settings for the BD:07 and BD:08 tasks can be found
when applying the 540 features of * * * (see row 8 for AFS - we compare AFS and

Table 4. Strongest four features in C * *, and the number of features selected by AFS
(out of 90).

EX:07 EX:08 BD:07 BD:08

C 50 CombMNZ-Norm1D C 2000 expCombMNZ-Norm1D C 250 expCombMNZ-Norm1D C 5000 CombSUM-Norm1D
C 50 expCombMNZ C 100 expCombSUM C 100 expCombMNZ-Norm1D C 4000 expCombSUM

C 2000 CombSUM-Norm1D C 100 expCombMNZ-Norm1D C 100 CombSUM C 1000 CombMAX
C 1000 expCombMNZ C 4000 expCombSUM C 1000 CombMAX C 500 CombMAX

(12) (19) (19) (14)

AdaRank performances in Section 5.5 below). We conclude that some aspects of
the extra document rankings (collection enrichment, proximity or anchor text)
do bring some useful additional evidence, particularly for blog distillation.

5.4 Task Analysis

We now address research question (4), by analysing the most important features
identified when training for each task. Table 4 reports the top 4 features by
weight as identified by AFS in the C * * feature set of 90 features, as well as the
total number of features selected (out of 90). From this table1, we observe that
12-19 features were typically chosen - this suggests the similarity of many of the
features derived from the C document ranking (i.e. DPH). Of the first ranked
chosen features, all apply voting techniques with profile length normalisation,
suggesting that this is an important attribute of effective voting techniques.
However, it is of note that the chosen voting techniques and cutoffs vary for
different corpora and tasks. This attests the usefulness of our approach to learn
effective models for different aggregate ranking corpora and tasks, since the var-
ious effective features for each task can be automatically selected and weighted.

5.5 Discussion

Having examined each of the feature groups in turn, we now analyse the com-
bination of all feature groups. Looking across all feature groups, we note that
once multiple voting techniques have been applied, applying multiple cutoffs or
multiple document rankings has in general no marked benefit in retrieval perfor-
mance across all search tasks. However, the multiple voting techniques feature
group is robust across all tasks and learning to rank techniques (i.e. 27 significant
increases out of 28 across all even numbered rows in Table 3). Indeed, for blog
distillation, * * * learned by AFS exhibits the highest performance, suggesting
that by allowing the learner to choose from all 540 features, an effective and
robust model can be learned. It is also of note that we performed additional
experiments using 5-fold cross validation across all ∼100 topics for each task
(These results are omitted for reasons of brevity). While the obtained retrieval
performances were naturally improved by more training, promisingly, all of the
experimental conclusions were unchanged.

Comparing the learning to rank techniques, we note that higher quality re-
sults are generally found by AdaRank on expert search, however, on blog distil-
lation, AFS is more successful. This contrasts with the results obtained on the

1 For space reasons, we only report the best features from C * *. However, all of the
conclusions are equally applicable to the most important features in * * *.

training topics, where AFS always identifies a model that is significantly better
than that by AdaRank. We leave a study on the attributes of features sets that
make each learning to rank technique amenable to different tasks to future work.

Finally, we compare our results to the TREC best runs for each task. In par-
ticular, for both EX:08 and BD:08, we note that our best results are comparable
to the top ranked group. For the expert search task, the highest performing
TREC run deployed models encompassing the proximity of candidate name oc-
currences to the query terms. However, as this source of evidence is specific
to the expert search task, we chose not to deploy it to facilitate the inter-task
cross-comparison of research question (4). Nevertheless, even without this expert
search-specific evidence, our learned approach exhibits comparable results.

Overall, the experimental results allow us to conclude that our methodology
for learning aggregate ranking models is effective and robust across two aggre-
gate search tasks and four topic sets. Using a thorough analysis, we identified
that the most effective features originated from the V T independent variable.
However, both DM and θ also bring valuable additional sources of evidence that
can successfully be integrated into the learned model.

6 Related Work

Learned approaches for aggregate ranking tasks such as expert search have seen
very little published work. In this section, we review the very recent existing lit-
erature, comparing and contrasting with our own approach. In particular, in [21],
Cummins et al. used genetic programming to learn a formula for the weights of
document associations within the candidate profiles. This is orthogonal to our
approach, where features and weights are defined and learned at the aggregate
level. While the genetic programming approach appears promising, our results
on the expert search tasks are 15-19% higher than the best results obtained by
their learned approach, showing the superiority of our proposed approach.

Fang et al. [22] recently introduced a discriminative approach for expert
search. In this approach, the importance of candidate features and association
features are automatically learned from the training data. However, the mathe-
matical machinery to the discriminative approach is complex, requiring partial
derivatives to be empirically evaluated via nonlinear optimisations (the authors
in [22] used a BFGS Quasi-Newton optimisation). In contrast, by defining all fea-
tures at the aggregate level, our approach can easily use existing learning to rank
approaches without complex derivations, while also being agnostic to various ag-
gregation strategies (e.g. voting techniques), rather than the two used in [22].

7 Conclusions

In this work, we proposed a novel yet natural approach to learn rankings for ag-
gregate search tasks such as expert search and blog distillation. In this approach,
each feature is defined at the aggregate object level (e.g. persons or blogs), and
generated by instantiations of three independent variables, namely the document
ranking weighting model, its rank cutoff, and the voting technique. From these
features, we showed that effective and robust ensemble models can be learned
using existing learning to rank techniques. Moreover, our experimental results

showed that the inclusion of multiple voting techniques - each with different ways
of ranking aggregates - results in the most marked and significant increases in re-
trieval performance. In the future, we will continue to develop novel and effective
features within our learning methodology for aggregate ranking.

References

1. Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enter-
prise corpora. In: Proceedings of SIGIR 2006, 43–50.

2. Macdonald, C., Ounis, I.: Voting for candidates: Adapting data fusion techniques
for an expert search task. In: Proceedings of CIKM 2006, 387–396.

3. Elsas, J.L., Arguello, J., Callan, J., Carbonell, J.G.: Retrieval and feedback models
for blog feed search. In: Proceedings of SIGIR 2008, 347–354.

4. Balog, K., de Rijke, M., Weerkamp, W.: Bloggers as experts: feed distillation using
expert retrieval models. In: Proceedings of SIGIR 2008, 753–754.

5. Liu, T.Y.: Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval 3(3) (2009) 225–331

6. Macdonald, C., Ounis, I.: Key blog distillation: ranking aggregates. In: Proceedings
of CIKM 2008, 1043–1052.

7. Santos, R.L.T., Macdonald, C., Ounis, I.: Voting for related entities. In: Proceed-
ings of RIAO 2010.

8. Macdonald, C.: The Voting Model for People Search. PhD thesis, Univ. of Glasgow
(2009)

9. Pederson, J.: The Machine Learned Ranking Story. http://jopedersen.com/Pre-
sentations/The MLR Story.pdf (2008)

10. Metzler, D.A.: Automatic feature selection in the Markov random field model for
information retrieval. In: Proceedings of CIKM 2007, 253–262.

11. Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In:
Proceedings of SIGIR 2007, 391–398

12. Bailey, P., Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the TREC-2007
Enterprise track. In: Proceedings of TREC 2007.

13. Balog, K., Soboroff, I., Thomas, P., Bailey, P., Craswell, N., de Vries, A.P.:
Overview of the TREC 2008 Enterprise track. In: Proceedings of TREC 2008.

14. Macdonald, C., Ounis, I.: The influence of the document ranking in expert search.
In: Proceedings of CIKM 2009, 1983–1986.

15. Macdonald, C., Ounis, I.: On perfect document rankings for expert search. In:
Proceedings of SIGIR 2009, 740–741.

16. Macdonald, C., Ounis, I., Soboroff, I.: Overview of the TREC-2007 Blog track. In:
Proceedings of TREC 2007.

17. Ounis, I., Macdonald, C., Soboroff, I.: Overview of the TREC-2008 Blog track. In:
Proceedings of TREC 2008.

18. Amati, G., Ambrosi, E., Bianchi, M., Gaibisso, C., Gambosi, G.: FUB, IASI-CNR
and Univ. of Tor Vergata at TREC 2007 Blog track. In: Proceedings of TREC 2007.

19. Peng, J., Macdonald, C., He, B., Plachouras, V., Ounis, I.: Incorporating term
dependency in the DFR framework. In: Proceedings of SIGIR 2007, 843–844.

20. Peng, J., He, B., Ounis, I.: Predicting the usefulness of collection enrichment for
enterprise search. In: Proceedings of ICTIR 2009, 366-370.

21. Cummins, R., Lalmas, M., O’Riordan, C.: Learned aggregation functions for
expert search. In: Proceedings of ECAI 2010, 535–540.

22. Fang, Y., Si, L., Mathur, A.P.: Discriminative models of integrating document
evidence and document-candidate associations for expert search. In: Proceedings
of SIGIR 2010, 683–690.

