
Symbolic Model Checking for Probabilistic Timed Automata∗

Marta Kwiatkowska1, Gethin Norman1 and Jeremy Sproston2

1 School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, United Kingdom

2 Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy

October 24, 2003

Abstract

Probabilistic timed automata are an extension of timed automata with discrete probability
distributions, and can be used to model timed randomized protocols or fault-tolerant sys-
tems. We present symbolic model checking algorithms for probabilistic timed automata to
verify qualitative properties, corresponding to satisfaction with probability 0 or 1, as well
as quantitative properties, corresponding to satisfaction with arbitrary probability. The
algorithms operate on zones, that is, sets of valuations of the probabilistic timed automa-
ton’s clocks, and therefore avoid an explicit construction of the state space. Our method
considers only those system behaviours which guarantee the divergence of time with prob-
ability 1. The paper completes the symbolic framework for the verification of probabilistic
timed automata against full PTCTL. We formulate new algorithms that can return the
minimal probability with which a probabilistic timed automaton satisfies a property, thus
extending a previously published result concerning the maximum probability.

1 Introduction

Systems exhibiting both timed and probabilistic characteristics are widespread, in application
contexts as diverse as home entertainment, medical equipment and business infrastructures.
For example, timing constraints are often vital to the correctness of embedded digital technol-
ogy, whereas probability exhibits itself commonly in the form of statistical estimates regarding
the environment in which a system is embedded. Similarly, protocol designers often exploit
the combination of time and probability to design correct, efficient protocols, such as the
IEEE1394 FireWire root contention protocol. The diffusion of such systems has led to meth-
ods for obtaining formal correctness guarantees, for instance, adaptations of model checking
[CGP99]. Symbolic model checking refers to model-checking techniques in which implicit rep-
resentations – such as BDDs in the finite-state case [BCM+90] – are used to represent both
the transition relation of the system model and the state sets that are computed during the
execution of the model-checking algorithm.

In this paper, we consider the modelling formalism of probabilistic timed automata [KNSS02],
an extension of timed automata [AD94, HNSY94] with discrete probability distributions.

∗Supported in part by the EPSRC grant GR/N22960, FORWARD and MIUR-FIRB Perf.

Technical Report CSR-03-10, School of Computer Science, University of Birmingham, October 2003.

1



Probabilistic timed automata have been shown as being suitable for the description of timed,
randomized protocols, such as the aforementioned FireWire protocol [KNS03], the backoff
strategy of the IEEE802.11 WLAN protocol [KNS02], and the link-local address selection
protocol of the IPv4 standard [KNPS03]. As a requirement specification language for proba-
bilistic timed automata we consider PTCTL (Probabilistic Timed Computation Tree Logic).
The logic PTCTL combines the probabilistic threshold operator of the probabilistic tem-
poral logic PCTL [HJ94] with the timing constraints of the timed temporal logic TCTL
[ACD93, HNSY94], in order to express properties such as ‘with probability 0.99 or greater,
the system reaches a leader-elected state within 1 second’. Model checking of probabilistic
timed automata against PTCTL was shown to be decidable in [KNSS02] via an adaptation
of the classical region-graph construction [AD94, ACD93].

Unfortunately, the region-graph construction (and the integer-time semantics employed
in [KNS03, KNS02, KNPS03]) can result in huge state spaces if the maximal constant used
in the description of the automaton is large. Instead, the practical success of symbolic, zone-
based techniques for non-probabilistic timed automata [BDL+01, DOTY96], suggests that a
similar symbolic approach may also be employed for the verification of probabilistic timed
automata. This hypothesis was answered affirmatively in [KNS01] for a subset of PTCTL
with thresholds on maximal reachability probabilities. In this paper, we extend that result to
arbitrary PTCTL formulae. In particular, a zone-based method for verification of properties
which refer to the minimum probability of satisfaction is presented for the first time.

The technical contribution of this paper is the introduction of zone-based algorithms, both
for the verification of qualitative PTCTL formulae, which refer to probabilistic thresholds 0
and 1 only, and quantitative PTCTL formulae, which feature thresholds on arbitrary proba-
bilities. Note that the qualitative algorithms do not refer to exact transition probabilities, and
therefore avoid potentially expensive computation of probabilities during the model-checking
process.

We first consider the subset of PTCTL which requires the computation of maximal prob-
abilities. For qualitative formulae, we show that model checking can be performed using ana-
logues from the verification of finite-state probabilistic systems [dA97], while, in the quantita-
tive case, we show that the previously published zone-based approach for calculating maximal
probabilities [KNS01] can be employed. The quantitative algorithm works by constructing a
finite-state system which has sufficient information to compute the maximum probability of
interest using well-established finite-state model checking methods [BdA95].

Secondly, we consider algorithms for the subset of PTCTL which requires the computation
of minimum reachability probabilities, a task which is more involved than computing maxi-
mum probabilities. For example, to compute the minimum probability of reaching a certain
state set F , for any state other than those in F , the probabilistic timed automaton could
exhibit behaviour in which the amount of time elapsed converges before F is reached, or even
in which no time elapses at all. Clearly, such behaviours are pathological, and should be dis-
regarded during model checking. We present both qualitative and quantitative algorithms for
computing minimum reachability probabilities which consider only time-divergent behaviour,
based on the non-probabilistic precedent of [HNSY94]. The algorithms are based on comput-
ing maximum probabilities for the dual formula while restricting attention to time-divergent
behaviours.

Finally, again following the precedent of [HNSY94], we present an algorithm to check that
a probabilistic timed automaton does not contain a state in which it is impossible for time to
diverge with probability 1. The presence of such a state constitutes a modelling error, and

2



would invalidate the correctness of our model checking procedure.

2 Preliminaries

2.1 Distributions and Probabilistic Systems

A (discrete probability) distribution over a finite set Q is a function µ : Q→ [0, 1] such that∑
q∈Q µ(q) = 1. Let support(µ) be the subset of Q such that q ∈ support(µ) if and only if

µ(q) > 0. For a possibly uncountable set Q′, let Dist(Q′) be the set of distributions over finite
subsets of Q′. For any q ∈ Q, the point distribution µq denotes the distribution which assigns
probability 1 to q.

2.2 Discrete Time Markov Chains

Definition 1 A DTMC is a tuple DTMC = (S,P,L) where:

• S is a finite set of states;

• P : S × S → [0, 1] is a transition probability matrix, such that:
∑

s′∈S P(s, s′) = 1 for
all states s ∈ S;

• L : S → 2AP is a labelling function assigning atomic propositions to states.

Each element P(s, s′) of the transition probability matrix gives the probability of making a
transition from state s to state s′. An execution of a DTMC is represented by a path ω, that
is, a non-empty sequence of states s0s1s2 . . . where si ∈ S and P(si, si+1) > 0 for all i > 0.
We denote by ω(i) the ith state of a path ω, |ω| the length of ω and if ω is finite, the last
state by last(ω). We say that a finite path ωfin of length n is a prefix of an infinite path ω if
ωfin(i) = ω(i) for 0 6 i 6 n. The sets of all finite and infinite paths starting in state s are
denoted Path ful (s) and Pathfin(s), respectively.

In reason about the probabilistic behaviour of the DTMC, we need to determine the
probability that certain paths are taken. This is achieved by defining, for each state s ∈ S, a
probability measure Probs over Path ful (s). Below, we give an outline of this construction. For
further details, see [KSK76]. The probability measure is induced by the transition probability
matrix P as follows. First, for any finite path ωfin ∈ Pathfin(s), we define the probability
Ps(ωfin):

Ps(ωfin) def=
{

1 if n = 0
P(ωfin(0), ωfin(1)) · · ·P(ωfin(n− 1), ωfin(n)) otherwise

where n = |ωfin |. Next, we define the cylinder of a finite path ωfin as:

C(ωfin) def= {ω ∈ Path ful (s) |ωfin is a prefix of ω} ,

and let Σs be the smallest σ-algebra on Path ful (s) which contains the cylinders C(ωfin) for
ωfin ∈ Pathfin(s)} and set Probs on Σs to be the unique measure such that

Probs(C(ωfin)) = Ps(ωfin) for all ωfin ∈ Pathfin(s) .

3



2.3 Probabilistic Systems

We next recall probabilistic systems which are essentially equivalent to Markov decision pro-
cesses [Der70] and probabilistic-nondeterministic systems [BdA95].

Definition 2 A probabilistic system, PS, is a tuple (S,Steps,L) where

• S is a set of states;

• Steps ⊆ S × Dist(S) is a probabilistic transition relation;

• L : S → 2AP is a labelling function assigning atomic propositions to states.

A probabilistic transition s
µ−→ s′ is made from a state s by nondeterministically selecting a

distribution µ ∈ Dist(S) such that (s, µ) ∈ Steps, and then making a probabilistic choice of
target state s′ according to µ, such that µ(s′)>0.

We consider two ways in which a probabilistic system’s computation may be represented.
A path, representing a particular resolution of both nondeterminism and probability, is a
non-empty sequence of transitions:

ω = s0
µ0−→ s1

µ1−→ s2
µ2−→ · · · .

We use the same notation for paths as presented in Section 2.2, in particular, the set of infinite
(respectively, finite) paths starting in the state s are denoted by Path ful (s) (respectively,
Pathfin(s)).

In contrast to a path, an adversary represents a particular resolution of nondeterminism
only. Formally, an adversary A is a function mapping every finite path ωfin to a distribution
µ such that (last(ωfin), µ) ∈ Steps. For any adversary A and state s, we let PathAful (s)
(respectively, PathAfin(s)) denotes the subset of Path ful (s) (respectively, Pathfin(s)) which
corresponds to A and, using classical techniques [KSK76], we can define the probability
measure ProbAs over PathAful (s).

For a given adversary A and finite path ω, we define a new adversary Aω as follows:

Aω(ω′) def=
{
A(ω

µ−→ ω′′) if ω′ is of the form last(ω)
µ−→ ω′′

A(ω′) otherwise.

Whenever possible, the adversary Aω acts essentially as A assuming that the path ω has
already taken place.

For a probabilistic system PS = (S,Steps,L) and state s ∈ S, under a given adversary A,
the behaviour from state s can be described with the infinite-state DTMC DTMCA = (SA,PA)
where: SA = Pathfin(s) and for two finite paths ωfin , ω

′
fin ∈ SA:

PA(ωfin , ω
′
fin) =

{
µ(s′) if ω′fin is of the form ωfin

A(ωfin )
−−−−→ s′ and A(ω) = µ

0 otherwise.

There is a one-to-one correspondence between the paths of DTMCA and the set of paths
PathAful (s), and hence using the construction given in Section 2.2 we can define a probability
measure ProbAs over PathAful (s).

4



For a probabilistic system PS = (S,Steps,L), state s ∈ S, set F ⊆ S of target states, and
adversary A ∈ AdvPS, let:

ProbReachA(s, F ) def= ProbAs {ω ∈ PathAful (s) | ∃i ∈ N . ω(i) ∈ F} ,

then the maximal reachability probabilities of reaching the set of states F from s is defined as:

MaxProbReach(s, F ) def= sup
A∈AdvPS

ProbReachA(s, F ) .

2.4 Timed Probabilistic Systems

We now introduce timed probabilistic systems, an extension of probabilistic systems and a
variant of Segala’s probabilistic timed automata [Seg95].

Definition 3 A timed probabilistic system, TPS, is a tuple (S,Steps,L) where:

• S is a set of states;

• Steps ⊆ S×R×Dist(S) is a timed probabilistic transition relation, such that, if (s, t, µ) ∈
Steps and t>0, then µ is a point distribution;

• L : S → 2AP is a labelling function.

The component t of a tuple (s, t, µ) is called a duration. As for probabilistic systems, we can
introduce paths and adversaries for timed probabilistic systems, except transitions are now
labelled by duration-distribution pairs and an adversary maps each finite path to a duration-
distribution pair.

We restrict attention to time-divergent adversaries; a common restriction imposed in real-
time systems so that unrealisable behaviour (i.e. corresponding to time not advancing beyond
a bound) is disregarded during analysis. For any path

ω = s0
t0,µ0−−−→ s1

t1,µ1−−−→ s2
t2,µ2−−−→ · · ·

of a timed probabilistic system, the duration up to the n+1th state of ω, denoted Dω(n+1),
equals

∑n
i=0 ti, and we say that a path ω is divergent if for any t ∈ R, there exists j ∈ N such

that Dω(j)>t.

Definition 4 An adversary A of a timed probabilistic system TPS is divergent if and only if
for each state s of TPS the probability under ProbAs of the divergent paths of PathAful (s) is 1.
Let AdvTPS be the set of divergent adversaries of TPS.

For motivation on why we consider probabilistic divergence, as opposed to the stronger notion
where an adversary is divergent if and only if all its paths are divergent, see [KNSS02]. A
restriction we impose on probabilistic timed systems is that of non-zenoness, which stipulates
that there does not exist a state from which time cannot diverge, as we consider this situation
to be a modelling error.

Definition 5 A probabilistic timed system is non-zeno if and only if there exists a divergent
adversary.

5



3 Probabilistic Timed Automata

In this section we review the definition of probabilistic timed automata [KNSS02], a modelling
framework for real-time systems exhibiting both nondeterministic and stochastic behaviour.
The formalism is derived from classical timed automata [AD94, HNSY94] extended with
discrete probability distributions over edges.

3.1 Clocks and Zones

Let X be a finite set of variables called clocks which take values from the time domain R
(non-negative reals). A point v ∈ R|X | is referred to as a clock valuation. For any clock
x ∈ X , we use v(x) to denote the projection of v on the x-axis. For any v ∈ R|X | and t ∈ R,
we use v+t to denote the clock valuation defined as v(x)+t for all x ∈ X . We use v[X:=0] to
denote the clock valuation obtained from v by resetting all of the clocks in X ⊆ X to 0, and
leaving the values of all other clocks unchanged.

The set of zones of X , written Zones(X ), is defined inductively by the syntax:

ζ ::= x 6 d |c 6 x |x+ c 6 y + d | ¬ζ | ζ ∨ ζ

where x, y ∈ X and c, d ∈ N. We only consider canonical zones ensuring equality between
their syntactic and semantic (subsets of R|X |) representations. This enables us to use the
above syntax interchangeably with set-theoretic operations.

The clock valuation v satisfies the zone ζ, written v.ζ, if and only if ζ resolves to true after
substituting each clock x ∈ X with the corresponding clock value v(x) from v. We require
the following classical operations on zones [HNSY94, Tri98]. For any zones ζ, ζ ′ ∈ Zones(X )
and subset of clocks X ⊆ X , let:

↙ζ′ ζ
def= {v | ∃t > 0. (v + t . ζ ∧ ∀t′ 6 t. (v + t′ . ζ ∨ ζ ′))}

[X := 0]ζ def= {v | v[X := 0] . ζ}
ζ[X := 0] def= {v[X := 0] | v ∈ ζ} .

3.2 Syntax and Semantics of Probabilistic Timed Automata

Definition 6 A probabilistic timed automaton is a tuple (L,X , inv , prob,L) where:

• L is a finite set of locations;

• the function inv : L→ Zones(X ) is the invariant condition;

• the finite set prob ⊆ L× Zones(X )× Dist(2X×L) is the probabilistic edge relation;

• L : L→ 2AP is a labelling function assigning atomic propositions to locations.

A state of a probabilistic timed automaton PTA is a pair (l, v) ∈ L×R|X | such that v . inv(l).
Informally, the behaviour of a probabilistic timed automaton can be understood as follows.
In any state (l, v), there is a nondeterministic choice of either (1) making a discrete transition
or (2) letting time pass. In case (1), a discrete transition can be made according to any
(l, g, p) ∈ prob with source location l which is enabled; that is, zone g is satisfied by the
current clock valuation v. Then the probability of moving to the location l′ and resetting all

6



true x63

x>1

x62
di

sr si

x>2

0.9 0.1
x:=0x:=0

0.95x:=0

x:=00.05

Figure 1: A probabilistic timed automaton modelling a probabilistic protocol.

of the clocks in X to 0 is given by p(X, l′). In case (2), the option of letting time pass is
available only if the invariant condition inv(l) is satisfied while time elapses.

An edge e of PTA is a tuple of the form (l, g, p,X, l′) such that (l, g, p) ∈ prob and
p(X, l′)>0. Let edges denote the set of edges and edges(l, g, p) the set of edges corresponding
to (l, g, p) ∈ prob.

Example. Consider the PTA modelling a simple probabilistic communication protocol given
in Figure 1. The nodes represent the locations: di (sender has data, receiver idle); si (sender
sent data, receiver idle); and sr (sender sent data, receiver received). The automaton starts in
location di in which data has been received by the sender. After between 1 and 2 time units,
the protocol makes a transition either to sr with probability 0.9 (data received), or to si with
probability 0.1 (data lost). In si after 2 to 3 time units, the protocol will attempt to resend
the data, which again can be lost, this time with probability 0.05.

We now give the semantics of probabilistic timed automata defined in terms of timed proba-
bilistic systems.

Definition 7 Let PTA = (L,X , inv , prob,L) be a probabilistic timed automaton. The seman-
tics of PTA is defined as the timed probabilistic system TPSPTA = (S,Steps,L′) where:

• S ⊆ L× R|X | and (l, v) ∈ S if and only if v . inv(l);

• ((l, v), t, µ) ∈ Steps if and only if one of the following conditions holds

time transitions: t>0, µ=µ(l,v+t) and v+t′ . inv(l) for all 06t′6t

discrete transitions: t=0 and there exists (l, g, p) ∈ prob such that v . g and for any
(l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=v[X:=0]

p(X, l′);

• L′(l, v) = L(l) for any (l, v) ∈ S.

We say that PTA is non-zeno if and only if TPSPTA is non-zeno.

7



3.3 Probabilistic Timed Computation Tree Logic (PTCTL)

We now describe the probabilistic timed logic PTCTL which can be used to specify properties
of probabilistic timed automata. PTCTL is a combination of two extensions of the tempo-
ral logic CTL, the timed logic TCTL [ACD93, HNSY94] and the probabilistic logic PCTL
[HJ94]. The logic TCTL employs a set of formula clocks, Z, disjoint from the clocks X of
the probabilistic timed automaton. Formula clocks are assigned values by a formula clock
valuation E ∈ R|Z|. The logic TCTL can express timing constraints and includes the reset
quantifier z.φ, used to reset the formula clock z so that φ is evaluated from a state at which
z = 0. PTCTL is obtained by enhancing TCTL with the probabilistic quantifier P∼λ[·].

Definition 8 The syntax of PTCTL is defined as follows:

φ ::= a
∣∣ ζ ∣∣ ¬φ ∣∣ φ ∨ φ ∣∣ z.φ ∣∣ P∼λ[φ U φ]

where a ∈ AP , ζ ∈ Zones(X ∪ Z), z ∈ Z, ∼∈{6, <,>,>} and λ ∈ [0, 1].

In PTCTL we can express properties such as ‘with probability at least 0.95, the system
clock x does not exceed 3 before 8 time units elapse’, which is represented as the formula
z.P>0.95[(x63) U (z=8)].

We write v, E to denote the composite clock valuation in R|X∪Z| obtained from v ∈ R|X |

and E ∈ R|Z|. Given a state and formula clock valuation pair (l, v), E , zone ζ and duration t,
by abuse of notation we let (l, v), E . ζ denote v, E . ζ, and (l, v)+t denote (l, v+t).

Definition 9 Let TPS = (S,Steps,L′) be the timed probabilistic system associated with the
probabilistic timed automaton PTA. For any state s ∈ S, formula clock valuation E ∈ R|Z|

and PTCTL formula θ, the satisfaction relation s, E |= θ is defined inductively as follows:

s, E |= a ⇔ a ∈ L′(s)
s, E |= ζ ⇔ s, E . ζ
s, E |= φ ∨ ψ ⇔ s, E |= φ or s, E |= ψ
s, E |= ¬φ ⇔ s, E 6|= φ
s, E |= z.φ ⇔ s, E [z := 0] |= φ
s, E |= P∼λ[φ U ψ] ⇔ pAs,E(φ U ψ) ∼ λ for all A ∈ AdvTPS

where pAs,E(φ U ψ) = ProbAs {ω ∈ PathAful (s) |ω, E |= φ U ψ} for any A ∈ AdvTPS, and, for
any path ω ∈ Path ful (s), we have that ω, E |= φ U ψ if and only if there exists i ∈ N and
t 6 Dω(i+1)−Dω(i) such that

• ω(i)+t, E+Dω(i)+t |= ψ;

• if t′ < t, then ω(i)+t′, E+Dω(i)+t′ |= φ ∨ ψ;

• if j < i and t′ 6 Dω(j+1)−Dω(j), then ω(j)+t′, E+Dω(j)+t′ |= φ ∨ ψ.

In the following sections we will also consider the dual of the sub-formula φ U ψ, namely the
release formula ¬φ V ¬ψ, where for any formulae φ, ψ, path ω and formula clock evaluation
E : ω, E |= φ V ψ if and only if for all i ∈ N and t 6 Dω(i+1)−Dω(i), if

• ω(i)+t′, E+Dω(i)+t′ 6|= φ ∧ ψ for all t′ < t and

• ω(j)+t′, E +Dω(j)+t′ 6|= φ ∧ ψ for all t′ 6 Dω(j+1)−Dω(j) and j < i,

8



then ω(i)+t, E+Dω(i)+t |= ψ.
Furthermore, we use use the abbreviation 2φ for the formula false V φ, that is, ω, E |=

2ψ if and only if ω(i)+t, E+Dω(i)+t |= ψ for all i ∈ N and t 6 Dω(i+1)−Dω(i). In the
standard manner, we refer to φ U ψ, φ V ψ and 2ψ as path formulae.

We now present a number of lemmas concerning PTCTL that we will require in the
remainder of the paper.

Lemma 10 Let PTA be a timed probabilistic automaton, TPS = (S,Steps,L′) be the corre-
sponding timed probabilistic system and φ, ψ1 and ψ2 PTCTL formulae. If s, E |= ψ1 implies
s, E |= ψ2 for all state and formula clock valuation pairs s, E ∈ S × RZ , then for any state
and formula clock valuation pair s, E ∈ S × RZ :

• s, E |= P.λ[φ U ψ2] implies s, E |= P.λ[φ U ψ1],

• s, E |= z.ψ1 implies s, E |= z.ψ2.

Proof. The proof follows from the semantics of PTCTL (see Definition 9). ut

Lemma 11 Let PTA be a probabilistic timed automata, PS = (S,Steps,L′) be the correspond-
ing timed probabilistic system and φ and ψ are PTCTL formulae. If s, E |= ψ implies s, E |= φ
for all state and formula clock valuation pairs s, E ∈ S × R|Z|, then for any (infinite) path ω
of TPS and formula clock valuation E:

ω, E |= φ U ψ if and only if ω, E 6|= ¬ψ U ¬φ .

Proof. Let PTA be a probabilistic timed automaton, TPS = (S,Steps,L′) be the correspond-
ing timed probabilistic system and φ and ψ be PTCTL formulae such that s, E |= ψ implies
s, E |= φ for all state and formula clock valuation pairs s, E ∈ S ×R|Z|. For the ‘if’ direction,
consider any infinite path of TPS and formula clock valuation E such that ω, E |= φ U ψ. By
Definition 9, there exists an i > 0 and t 6 Dω(i+1)−Dω(i) such that:

• ω(i)+t, E+Dω(i)+t |= ψ;

• if t′ < t, then ω(i)+t′, E+Dω(i)+t′ |= φ ∨ ψ;

• if j < i and t′ 6 Dω(j+1)−Dω(j), then ω(j)+t′, E +Dω(j)+t′ |= φ ∨ ψ.

Therefore, using the fact that s, E |= ψ implies s, E |= φ for all s, E ∈ S × R|Z|, there exists
an i > 0 and t 6 Dω(i+1)−Dω(i) such that:

• ω(i)+t, E+Dω(i)+t 6|= ¬ψ ∨ ¬φ;

• if t′ < t, then ω(i)+t′, E+Dω(i)+t′ 6|= ¬φ;

• if j < i and t′ 6 Dω(j+1)−Dω(j), then ω(j)+t′, E +Dω(j)+t′ 6|= ¬φ.

and hence ω, E 6|= ¬ψ U ¬φ. Since this was for any path ω of TPS the ‘if’ direction holds.
The ‘only if’ direction follows similarly, using the identity ¬¬θ ≡ θ and since, from the

hypothesis, s, E |= ¬φ implies s, E |= ¬ψ for all s, E ∈ S × R|Z|. ut

The lemma below use the measure construction for probabilistic systems given in Section 2.3
and recall that, the states of the DTMC corresponding to an adversary A and state s are the
finite paths of A that start in state s. Furthermore, it follows from this construction that a
finite path (state in the DTMC) satisfies a formula when the last state of the path satisfies
the formula.

9



Lemma 12 Let PTA be a probabilistic timed automaton and TPS = (S,Steps,L′) be the
corresponding timed probabilistic system. For any PTCTL formulae φ and ψ, adversary
A ∈ AdvTPS and state and formula clock valuation pair s, E ∈ S × R|Z|:

pAs,E(ψ U (φ ∧ ψ) ∨ pA>1(2(¬φ∧ψ))) = pAs,E(φ V ψ)

where for any ω, E ∈ PathAfin(s)× E |Z| :

ω, E |= pA>1(2(¬φ∧ψ)) if and only if pAω

last(ω),E(2(¬φ∧ψ)) = 1 .

Proof. Consider any probabilistic timed automata PTA with associated timed probabilistic
system TPS = (S,Steps,L′), adversary A ∈ AdvTPS and PTCTL formulae φ and ψ. First,
for any finite path ω of PathAfin and formula clock valuation E , if ω, E |= pA>1(2(¬φ∧ψ)), then
ω′, E |= 2(¬φ∧ψ) for all (infinite) paths ω′ ∈ PathAω

ful (last(ω)). Therefore, for any finite path
ω of PathAfin and formula clock valuation E :

ω, E ∈ pA>1(2(¬φ∧ψ)) ⇒ ω′, E 6|= ¬φ U ¬ψ for all ω′ ∈ PathAω
ful (last(ω))) . (1)

Now by Definition 9, for any (infinite) path ω′ of TPS and formula clock valuation E ∈ R|Z|:

ω′, E |= ¬φ U ¬ψ ⇔ ω′, E |= (¬φ ∨ ¬ψ) U ¬ψ
⇔ ω′, E |=

(
(¬φ ∨ ¬ψ) ∧ ¬pA>1(2(¬φ∧ψ))

)
U ¬ψ by (1).

Therefore, by the duality φ U ψ ≡ ¬(¬φ V ¬ψ) and the definition of Aω (sse Section 2.3), it
follows that for any state and formula clock valuation pair s, E ∈ S × R|Z|:

pAs,E(φ V ψ) = 1− pAs,E(((¬φ ∨ ¬ψ) ∧ ¬pA>1(2(¬φ∧ψ))) U ¬ψ)

= 1− pAs,E(¬((φ ∧ ψ) ∨ pA>1(2(¬φ∧ψ))) U ¬ψ) (2)

where the last step follows from the following derivation:

((¬φ ∨ ¬ψ) ∧ ¬pA>1(2(¬φ∧ψ))) ≡ (¬(φ ∧ ψ) ∧ ¬pA>1(2(¬φ∧ψ)))

≡ ¬((φ ∧ ψ) ∨ pA>1(2(¬φ∧ψ))) .

Finally, since for any finite path ω and formula clock valuation E we have ω, E |= ¬ψ implies
ω, E |= ¬((φ∧ψ)∨pA>1(2(¬φ∧ψ))), applying Lemma 11 to (2) we have that for any state and
formula clock valuation pair s, E ∈ S × R|Z|:

pAs,E(φ V ψ) = 1− (1− pAs,E(ψ U (φ ∧ ψ) ∨ pA>1(2(¬φ∧ψ))))

= pAs,E(ψ U (φ ∧ ψ) ∨ pA>1(2(¬φ∧ψ)))

as required. ut

10



algorithm PTCTLModelCheck(PTA, θ)

output: set of symbolic states [[θ]] such that
[[a]] := {(l, inv(l)) | l ∈ L and l ∈ L(a)};
[[ζ]] := {(l, inv(l) ∧ ζ) | l ∈ L};
[[¬φ]] := {(l, inv(l) ∧ ¬

∨
(l,ζ)∈[[φ]] ζ) | l ∈ L};

[[φ ∨ ψ]] := [[φ]] ∨ [[ψ]];
[[z.φ]] := {(l, [{z}:=0]ζ) | (l, ζ) ∈ [[φ]]};
[[P∼λ[φ U ψ]]] := Until([[φ]], [[ψ]],∼ λ);

Figure 2: Symbolic PTCTL model checking algorithm

4 Symbolic PTCTL Model Checking

In this section, we show how a probabilistic timed automaton may be model checked against
PTCTL formulae. In order to represent the state sets computed during the model checking
process, we use the concept of symbolic state: a symbolic state is a pair (l, ζ) comprising a
location and a zone over X∪Z. The set of state and formula clock valuation pairs corre-
sponding to a symbolic state (l, ζ) is {(l, v), E | v, E . ζ}, while the state set corresponding
to a set of symbolic states is the union of those corresponding to each individual symbolic
state. In the manner standard for model checking, we progress up the parse tree of a PTCTL
formula, from the leaves to the root, recursively calling the algorithm PTCTLModelCheck,
shown in Figure 2, to compute the set of symbolic states which satisfy each subformula. Han-
dling observables and Boolean operations is classical, and we therefore reduce our problem
to computing Until([[φ1]], [[φ2]],∼λ), which arises when we check probabilistically quantified
formula.

Our technique depends on the following, which is a direct consequence of the semantics
of PTCTL (Definition 9):

{s, E | s, E |= P∼λ[φ U ψ]} =
{
{s, E | pmax

s,E (φ U ψ) ∼ λ} if ∼∈ {<,6}
{s, E | pmin

s,E (φ U ψ) ∼ λ} if ∼∈ {>, >} (3)

where for any PTCTL path formula ϕ:

pmax
s,E (ϕ) def= supA∈AdvTPS

pAs,E(ϕ) and pmin
s,E (ϕ) def= infA∈AdvTPS

pAs,E(ϕ) .

We begin by introducing operations on symbolic states. In Section 4.2, we review algorithms
for calculating maximum probabilities, while in Section 4.3 we present new algorithms for
calculating minimum probabilities. In each case we include specialised algorithms for qual-
itative formulae (λ ∈ {0, 1}), as, for such formulae, verification can be performed through
only an analysis of the underlying graph [HSP83, Pnu83]. Then in Section 4.4 we show how
to ensure that the probabilistic timed automaton is non-zeno and, finally, in Section 4.5, we
apply our approach to the example given in Figure 1.

Note that the cases P>0[·] and P61[·] are trivially satisfied by all states, while the cases
P<0[·] and P>1[·] are trivially not satisfied by any state, and therefore we omit these cases in
our analysis.

11



algorithm pre0(V)

Y := [[false]]
for e ∈ edges
Y := Y ∨ dpre(e, V)

end
return Y

algorithm pre1(U, V)

Y := [[false]]
for (l, g, p) ∈ prob
Y0 := [[true]]
Y1 := [[false]]
for e ∈ edges(l, g, p)
Y0 := dpre(e, U) ∧ Y0

Y1 := dpre(e, V) ∨ Y1

end
Y := (Y0 ∧ Y1) ∨ Y

end
return Y

Figure 3: The functions pre0 and pre1

4.1 Operations on Symbolic States

In this section we extend the time predecessor and discrete predecessor functions tpre and
dpre of [HNSY94, Tri98] to probabilistic timed automata. For any sets of symbolic states
U, V ⊆ L×Zones(X∪Z), clock x ∈ X ∪ Z and edge (l, g, p,X, l′):

x.U
def= {(l, [{x}:=0]ζ lU) | l ∈ L}

tpreU(V)
def= {(l,↙ζl

U∧inv(l) (ζ lV ∧ inv(l)) | l ∈ L}
dpre((l, g, p,X, l′), U) def= {(l, g ∧ ([X := 0]ζ l

′
U ))} .

where ζ lU =
∨
{ζ | (l, ζ) ∈ U}, i.e ζ lU is the zone such that v, E . ζ lU if and only if (l, v), E ∈ u

for some u ∈ U. Furthermore, we define the conjunction and disjunction of sets of symbolic
states as follows:

U ∧ V
def= {(l, ζ lU ∧ ζ lV) | l ∈ L} and U ∨ V

def= {(l, ζ lU ∨ ζ lV) | l ∈ L} .

Finally, let [[false]] = ∅ and [[true]] = {(l, inv(l)) | l ∈ L}, the sets of symbolic states repre-
senting the empty and full state sets respectively.

4.2 Computing Maximum Probabilities

In this section we review the methods for calculating the set of states satisfying a formula of
the form P.λ[φ U ψ] which, from (3), reduces to the computation of pmax

s,E (φ U ψ) for all state
and formula clock valuation pairs s, E . Note that, since we consider only non-zeno automata,
when calculating these sets we can ignore the restriction to divergent adversaries. This is
similar to verifying the same type of properties against (finite state) probabilistic systems
with fairness constraints [BK98] and verifying (non-probabilistic) non-zeno timed automata
against formulae of the form φ ∃U ψ (‘there exists a divergent path which satisfies φ U ψ’)
[HNSY94].

12



algorithm MaxU>0(U, V)

Z := [[false]]
repeat
Y := Z
Z := V ∨ (U ∧ pre0(Y))
Z := Z ∨ tpreU∨V(Y)

until Z = Y
return Z

algorithm MaxU>1(U, V)

Z0 := [[true]]
repeat
Y0 := Z0
Z1 := [[false]]
repeat
Y1 := Z1
Z1 := V ∨ (U ∧ pre1(Y0, Y1))
Z1 := Z1 ∨ tpreU∨V(Y0 ∧ Y1)

until Z1 = Y1
Z0 := Z1

until Z0 = Y0
return Z0

Figure 4: MaxU>0 and MaxU>1 algorithms

We first recall the results for computing maximum qualitative probabilities of finite state
probabilistic systems, which requires the introduction of the following functions. For a prob-
abilistic system PS = (S,Steps,L′) and X,Y ⊆ S let:

pre0(X) = {s ∈ S | ∃(s, p)∈Steps.∃s′∈X.p(s′)>0}
pre1(Y,X) = {s ∈ S | ∃(s, p)∈Steps. (∀s′∈S. (p(s′)>0 → s′∈Y ) ∧ ∃s′∈X. p(s′)>0)} .

Intuitively, s ∈ pre0(X) if one can go from s to X with positive probability and s ∈ pre1(Y,X)
if one can go from s to X with positive probability and with probability 1 reach Y . Using
these functions we have the following proposition1.

Proposition 13 [dA97] If PS = (S,Steps,L) is a finite state probabilistic system and φ, ψ
are PCTL formulae, then

• {s ∈ S | pmax
s (φ U φ)>0} equals the fixpoint µX.(ψ ∨ (φ ∧ pre0(X)));

• {s ∈ S | pmax
s (φ U ψ)>1} equals the double fixpoint νY.µX.(ψ ∨ (φ ∧ pre1(Y,X))).

We adapt this approach to probabilistic timed automata. First, using the function dpre, the
analogues of pre0 and pre1 for the discrete transitions of a PTA are given in Figure 3. It
therefore remains to consider the time transitions of a PTA. For such transitions, we must
take into account the state and formula clock valuation pairs that are passed through as
time elapses. More precisely, for PTCTL, when using the time predecessor function we must
ensure that we remain in the set of symbolic states satisfying φ∨ψ, that is, take the time
predecessor tpre[[φ]]∨[[ψ]](·). Following this observation, Figure 4 presents the algorithms for
computing {s, E | pmax

s,E (φ U ψ)>0} and {s, E | pmax
s,E (φ U ψ)>1}.

In the case of computing quantitative maximum probabilities we use the approach de-
scribed in [KNS01]. The algorithm is given in Figure 5. The key observation is that to

1See [BdA95] for the definitions of PCTL, pmax
s (φ U ψ) and pmin

s (φ U ψ).

13



preserve the probabilistic branching one must take the conjunctions of symbolic states gener-
ated by edges from the same distribution. Lines 1–4 deal with the initialisation of Z, which is
set equal to the set of time predecessors of V, and the set of edges E(l,g,p) associated with each
probabilistic edge (l, g, p) ∈ prob. Lines 5–20 generate a finite-state graph, the nodes of which
are symbolic states, obtained by iterating timed and discrete predecessor operations (line 8),
and taking conjunctions (lines 12–17). The edges of the graph are partitioned into the sets
E(l,g,p) for (l, g, p) ∈ prob, with the intuition that (z, (X, l′), z′) ∈ E(l,g,p) corresponds to a
transition from any state in z to some state in z′ when the outcome (X, l′) of the probabilistic
edge (l, g, p) is chosen. The graph edges are added in lines 11 and 15. The termination of lines
5–20 is guaranteed (see [KNS01]). Line 21 describes the manner in which the probabilistic
edges of the probabilistic timed automaton are used in combination with the computed edge
sets to construct the probabilistic transition relation Steps. Finally, in line 22, model check-
ing is performed on the resulting finite-state probabilistic system PS to obtain the maximum
probability of reaching tpreU∨V(V) for each z ∈ Z. Note that we write z 6= ∅ if and only if z
encodes at least one state and formula clock valuation pair. The following proposition states
the correctness of this algorithm.

Proposition 14 For any probabilistic timed automaton PTA, corresponding timed probabilis-
tic system TPS = (S,Steps,L′) and PTCTL formula P.λ[φ U ψ], if PS = (Z,Steps) is the
probabilistic system generated by MaxU([[φ]], [[ψ]],& λ) then for any s, E ∈ S × R|Z|:

• pmax
s,E (φ U ψ)>0 if and only if s, E ∈ tpre[[φ∨ψ]](Z);

• if pmax
s,E (φ U ψ)>0, then pmax

s,E (φ U ψ) equals

max
{
MaxProbReach(z, tpre[[φ∨ψ]][[ψ]])

∣∣∣ z ∈ Z and s, E ∈ tpre[[φ∨ψ]](z)
}
.

Proof. See Appendix A. ut

Combining the above results we set Until([[φ]], [[ψ]],. λ) equal to:

• [[true]] \MaxU>0([[φ]], [[ψ]]) if .=6 and λ = 0;

• [[true]] \MaxU>1([[φ]], [[ψ]]) if .=< and λ = 1;

• [[true]] \MaxU([[φ]], [[ψ]], 6& λ) otherwise.

As in the case of finite state probabilistic model checking, we can use the qualitative algorithms
as precomputation algorithms when computing quantitative probabilities. In particular, we
can set Until([[φ]], [[ψ]],. λ), for λ ∈ (0, 1), equal to:

[[true]] \MaxU(MaxU>0([[φ]], [[ψ]]) \MaxU>1([[φ]], [[ψ]]),MaxU>1([[φ]], [[ψ]]), 6& λ) .

4.3 Computing Minimum Probabilities

We now consider the problem of verifying formulae of the form P&λ[φ U ψ] which, using (3),
reduces to computing pmin

s,E (φ U ψ) for all state and formula clock valuation pairs s, E . As
in the cases for (non-probabilistic) timed automata and (finite-state) probabilistic systems
with fairness constraints, when considering properties which have universal quantification
over paths/adversaries the standard algorithm can no longer be applied. For example, for

14



algorithm MaxU(U, V,& λ)

1. Z := tpreU∨V(V)
2. for (l, g, p) ∈ prob
3. E(l,g,p) := ∅
4. end for
5. repeat
6. Y := Z
7. for y ∈ Y ∧ (l, g, p) ∈ prob ∧ e = (l, g, p,X, l′) ∈ edges(l, g, p)
8. z := U ∧ dpre(e, tpreU∨V(y))
9. if (z 6= ∅) ∧ (z 6∈ tpreU∨V(V))
10. Z := Z ∪ {z}
11. E(l,g,p) := E(l,g,p) ∪ {(z, (X, l′), y)}
12. for (z̄, (X̄, l̄′), ȳ) ∈ E(l,g,p)

13. if (z ∧ z̄ 6= ∅) ∧ ((X̄, l̄′) 6= (X, l′)) ∧ (z ∧ z̄ 6∈ tpreU∨V(V))
14. Z := Z ∪ {z ∧ z̄}
15. E(l,g,p) := E(l,g,p) ∪ {(z ∧ z̄, (X, l′), ȳ), (z ∧ z̄, (X̄, l̄′), y)}
16. end if
17. end for
18. end if
19. end for
20. until Z = Y
21. construct PS = (Z,Steps) where (z, ρ) ∈ Steps if and only if

there exists (l, g, p) ∈ prob and E ⊆ E(l,g,p) such that
• (z′, e, z′′) ∈ E ⇒ z′ = z
• (z, e, z′) 6= (z, e′, z′′) ∈ E ⇒ e 6= e′

• E is maximal
• ρ(z′) =

∑
{| p(X, l′) | (z, (X, l′), z′) ∈ E |} ∀z′ ∈ Z

22. return
∨
{tpreU∨V(z) | z ∈ Z ∧MaxProbReach(z, tpreU∨V(V)) & λ}

Figure 5: Algorithm MaxUntil(·, ·,& λ)

any formula clock z ∈ Z, under divergent adversaries the minimum probability of reaching
z>1 is 1; however, if we remove the restriction to time divergent adversaries the minimum
probability is 0.

The techniques we introduce here are based on those for non-probabilistic timed automata
[HNSY94], which we now recall. In [HNSY94], it is shown that verifying φ ∀U ψ (‘all divergent
paths satisfy φ U ψ’) reduces to computing the fixpoint:

µX.(ψ ∨ ¬z.((¬X) ∃U (¬(φ ∨X) ∨ (z>c))) (4)

for any c ∈ N greater than 0. The important point is that the universal quantification over
paths has been replaced by a existential quantification, allowing one to ignore the restriction
to time divergence in the verification procedure.

For the analysis of probabilistic timed automata it is convenient to consider, instead of

15



until, the dual, release, formula φ ∃V ψ (‘there exists a divergent path satisfying φ V ψ’).
Using (4), it follows that verifying the formula φ ∃V ψ can be performed by computing the
fixpoint:

νX.(ψ ∧ z.(X ∃U ((φ ∧X) ∨ (z>c)))) . (5)

Now, from the semantics of PTCTL and the duality φ U ψ ≡ ¬(¬φ V ¬ψ), we have, for any
state s of TPSPTA and formula clock valuation E :

pmin
s,E (φ U ψ) = inf

A∈AdvTPS

pAs,E(¬(¬φ V ¬ψ))

= inf
A∈AdvTPS

1− pAs,E(¬φ V ¬ψ)

= 1− sup
A∈AdvTPS

pAs,E(¬φ V ¬ψ)

= 1− pmax
s,E (¬φ V ¬ψ) .

Therefore, to verify P&λ[φ U ψ], it suffices to calculate pmax
s,E (¬φ V ¬ψ) for all state and for-

mula clock valuation pairs. In the case when λ=1, by replacing the ∃ operator with ¬P<1[·]
in (5), we arrive at the following proposition.

Proposition 15 For any positive c ∈ N and PTCTL formulae φ, ψ, if z ∈ Z does not
appear in either φ or ψ, then the set {s, E | pmax

s,E (φ V ψ)>1} is given by the fixpoint νX.(ψ ∧
z.¬P<1[X U ((X ∧ φ) ∨ z>c)]).

Proof. Consider any positive c ∈ N, PTCTL formulae φ, ψ, and z ∈ Z such that z does not
appear in either φ or ψ. To ease notation we let:

pmax
>1 (φ V ψ) = {s, E | pmax

s,E (φ V ψ) > 1} ,

and prove the proposition by showing:

1. the set pmax
>1 (φ V ψ) is a fixpoint of G1(·, c);

2. if G1(Y, c) = Y , then Y ⊆ pmax
>1 (φ V ψ)

where G1(X, c) = ψ ∧ z.¬P<1[X U ((X ∧ φ) ∨ z>c)]. First, since, for any X ⊆ S × R|Z|,
X ⊇ [[z.¬P<1[X U ((X ∧ φ) ∨ z>c)]]] it follows that: X ⊇ G1(X, c) for all X ⊆ S × R|Z|.
Therefore, to prove that pmax

>1 (φ V ψ) is a fixpoint it is sufficient to show that:

G1

(
pmax

>1 (φ V ψ), c
)
⊇ pmax

>1 (φ V ψ) .

Now, by definition of φ V ψ (see Section 3.3) we have that:

• For any s, E ∈ S ×R|Z|, if s, E |= φ∧ψ, then ω, E |= φ V ψ for all paths ω ∈ Path ful (s),
and hence s, E |= φ∧ψ implies s, E ∈ pmax

>1 (φ V ψ). It follows that s, E |= (φ∧ψ)∨ z>c
implies s, E |=

(
pmax

>1 (φ V ψ) ∧ φ
)
∨ z>c and therefore, using Lemma 10, for any s, E ∈

S × R|Z|:

s, E |= z.¬P<1

[
pmax

>1 (φ V ψ) U ((φ ∧ ψ) ∨ z>c)
]

⇒ s, E |= z.¬P<1

[
pmax

>1 (φ V ψ) U
((
pmax

>1 (φ V ψ) ∧ φ
)
∨ z>c

) ]
. (6)

16



• For any s, E ∈ S ×R|Z| and ω ∈ Path ful (s), if ω, E |= φ V ψ, then s, E |= ψ, and hence:

s, E ∈ pmax
>1 (φ V ψ) ⇒ s, E |= ψ . (7)

• As the satisfaction of PTCTL is with respect to divergent adversaries, for any s, E ∈
pmax

>1 (φ V ψ), there exists an adversary A such that, from s, E with probability 1, one
remains in pmax

>1 (φ V ψ) until either a state satisfying φ ∧ ψ is reached or more than
c time units pass. Therefore, since the clock z does not appear in φ or ψ, for any
s, E ∈ S × R|Z|:

s, E ∈ pmax
>1 (φ V ψ) ⇒ s, E [z := 0] |= ¬P<1

[
pmax

>1 (φ V ψ) U ((φ ∧ ψ) ∨ z>c)
]
. (8)

By definition of G1:

G1(pmax
>1 (φ V ψ), c) = ψ ∧ z.¬P<1

[
pmax

>1 (φ V ψ) U
((
φ ∧ pmax

>1 (φ V ψ)
)
∨ z>c

) ]
⊇ ψ ∧ z.¬P<1

[
pmax

>1 (φ V ψ) U ((φ ∧ ψ) ∨ z>c)
]

by (6)
⊇ ψ ∧ pmax

>1 (φ V ψ) by (8) and Definition 9
= pmax

>1 (φ V ψ) by (7)

and hence pmax
>1 (φ V ψ) is a fixpoint of G1(X, c).

To complete the proof it remains to show that, if G1(Y, c) = Y , then Y ⊆ pmax
>1 (φ V ψ)

which we prove by contradiction. Therefore, suppose that there exists a of states Y such that
G1(Y, c) = Y and pmax

>1 (φ V ψ) ⊂ Y . Now for any s, E ∈ Y \ pmax
>1 (φ V ψ), and adversary A,

under A starting from s, E the probability of satisfying φ V ψ is less than 1, and therefore
the probability of satisfying the dual formula ¬φ U ¬ψ is greater than 0. It then follows that
there exists a path ω ∈ PathAful (s) such that ω, E |= ¬φ U ¬ψ, and since z does not appear
in either φ or ψ, ω, E [z := 0] |= ¬φ U ¬ψ. Hence, there exists some duration tA such that at
some point along this path ¬ψ ∧ (z = tA) is true and at all preceding points ¬φ∨¬ψ is true.

However, since s, E ∈ Y , and therefore s, E ∈ G1(Y, c) it follows that there exists an
adversary such that with probability 1 from s, E [z := 0] one remains in Y while z 6 c unless
a state in Y which satisfies φ is reached. Since the above holds for any s′, E ′ ∈ Y and z does
not appear in φ or ψ, iterating the above result, we have that for any n ∈ N we can construct
an adversary A′ such that, for any n ∈ N, under A′ from s, E one remains in Y while z 6 n · c
unless a state in Y which satisfies φ is reached. Furthermore, since Y = G1(Y, c) it follows
that Y ⊆ ψ, and hence under A′, for any n ∈ N, with probability 1, from s, E one remains
in states satisfying ψ while z 6 n · c unless a state satisfying φ ∧ ψ is reached. From above,
there exists some duration tA′ and path ω′ ∈ PathA

′
ful (s) such that at some point along this

path ¬ψ ∧ (z = tA) is true and at all preceding points ¬φ∨¬ψ is true. However, considering
any n such that n · c > tA (which exists since c > 0) leads to a contradiction. ut

The algorithm for calculating the set {s, E | pmax
s,E (φ V ψ)>1} follows from Proposition 15

and is given in Figure 6. Note that we cannot use the same approach for calculating the set
{s, E | pmax

s,E (φ V ψ)>0}, i.e. in (5) replace ∃ with ¬P60[·]. This is because the greatest fixpoint
in this case yields the set of state and formula clock valuation pairs for which, under some
divergent adversary, there exists a path which satisfies φ V ψ, which does not imply that the
probability of satisfying φ V ψ is greater than zero.

Instead, we employ the following proposition, which together with Proposition 15 provides
us with a method for verifying P&λ[φ U ψ] when λ ∈ [0, 1).

17



algorithm MaxV>1(c, U, V)

Z:=[[true]]
repeat
Y:=Z
Z:=V ∧ z.MaxU>1(Y, (U∧Y) ∨ [[z>c]])

until Z = Y
return Z

algorithm NonZeno

Z:=[[true]]
repeat
Y:=Z
Z:=z.MaxU>1([[true]], Y∧ [[z=1]])

until Z = Y
return Z0

Figure 6: MaxV>1(c, U, V) and NonZeno algorithms

Proposition 16 For any probabilistic timed automata PTA, corresponding timed probabilistic
system TPS = (S,Steps,L′), s ∈ S, formula clock valuation E ∈ R|Z| and PTCTL formulae
φ, ψ:

pmax
s,E (φ V ψ) = pmax

s,E (ψ U ¬P<1[φ V ψ]) .

Proof. Consider any PTCTL formulae φ and ψ and let Amax be an adversary such that for
any s, E ∈ S × R|Z|:

pAmax
s,E (ψ U (ψ ∧ φ) ∨ ¬P<1[2(¬φ∧ψ)]) = pmax

s,E (ψ U (ψ ∧ ψ) ∨ ¬P<1[2(¬φ∧ψ)])

and if one reaches any s′, E ′ satisfying ¬P<1[2(¬φ∧ψ)], then Amax behaves like the adversary
A for which:

pAs′,E ′(2 (¬φ ∧ ψ)) = pmax
s,E (2(¬φ ∧ ψ)) = 1

since s′, E ′ |= ¬P<1[2(¬φ∧ψ)]. Note that, this adversary is well defined (and divergent) since
for any adversary A, once a state satisfying ¬P<1[2(¬φ∧ψ)] is reached, the behaviour of A has
no influence on the probability of satisfaction of the formula ψ U (ψ ∧ ψ) ∨ ¬P<1[2(¬φ∧ψ)].
Furthermore, for any s′, E ′ such that pmax

s,E (2(¬φ ∧ ψ)) = 1, the fact that there exists an
adversary A such that pAs,E(2(¬φ ∧ ψ)) = 1 follows from Proposition 15.

Now, since for any s, E ∈ S × R|Z| and A ∈ AdvTPS we have pAs,E(2 (¬φ∧ψ)) = 1 if and
only if ω, E |= 2 (¬φ∧ψ) for all ω ∈ PathAful (t), it follows from the construction of Amax that,
for any s, E ∈ S × R|Z| and path ω ∈ PathAmax

ful (s), if ω, E |= ψ U (φ ∧ ψ) ∨ ¬P<1[2(¬φ∧ψ)],
then ω, E |= φ V ψ. Therefore, for all s, E ∈ S × R|Z|:

pAmax
s,E (ψ U (φ ∧ ψ) ∨ ¬P<1[2(¬φ∧ψ)]) 6 pAmax

s,E (φ V ψ) ,

and hence, by the definition of Amax, it follows that

pmax
s,E (ψ U (φ ∧ ψ) ∨ ¬P<1[2(¬φ∧ψ)]) 6 pmax

s,E (φ V ψ) ∀s, E ∈ S × R|Z|. (9)

On the other hand, from Lemma 12 and the fact that for any s, E ∈ S × R|Z| and adversary
A: pAs,E(2(¬φ∧ψ)) = 1 implies s, E |= ¬P<1[2(¬φ∧ψ)] we have for any adversary A and
s, E ∈ S×R|Z|: pAs,E(ψ U (ψ∧ψ)∨¬P<1[2(¬φ∧ψ)]) > pAs,E(φ V ψ), and hence it follows that:

pmax
s,E (ψ U (φ ∧ ψ) ∨ ¬P<1[2(¬φ∧ψ)]) > pmax

s,E (φ V ψ) ∀s, E ∈ S × R|Z|. (10)

18



Combining (9) and (10) we have:

pmax
s,E (ψ U (φ ∧ ψ) ∨ ¬P<1[2(¬φ∧ψ)]) = pmax

s,E (φ V ψ) ∀s, E ∈ S × R|Z|. (11)

Now using (11) we have s, E |= ¬P<1[ψ U (φ ∧ ψ) ∨ ¬P<1[2(¬φ∧ψ)]] if and only if s, E |=
¬P<1[φ V ψ], and since for any formulae θ1, θ2 and s, E ∈ S × R|Z|:

pmax
s,E (θ1 U θ2) = pmax

s,E (θ1 U ¬P<1[θ1 U θ2]) ,

using (11) again, we have:

pmax
s,E (ψ U ¬P<1[φ V ψ]) = pmax

s,E (φ V ψ) .

as required. ut

Combining the above results, we set Until([[φ]], [[ψ]],& λ) to:

• [[true]] \MaxV>1(c, [[¬φ]], [[¬ψ]]) if & = > and λ=0;

• [[true]] \MaxU>0([[¬ψ]],MaxV>1(c, [[¬φ]], [[¬ψ]])) if & = > and λ=1;

• [[true]] \MaxU([[¬ψ]],MaxV>1(c, [[¬φ]], [[¬ψ]]),> 1−λ) if & = > and λ ∈ (0, 1);

• [[true]] \MaxU([[¬ψ]],MaxV>1(c, [[¬φ]], [[¬ψ]]), > 1−λ) if & = > and λ ∈ (0, 1).

4.4 Checking Non-Zenoness

We now consider how to check that the probabilistic timed automaton under study is non-
zeno. In the non-probabilistic case checking non-zenoness corresponds to finding the greatest
fixpoint νX.(z.(true ∃U ((z=1)∧X))). For probabilistic timed automata, we can replace
∃ with ¬P<1[·], i.e replace ‘there exists a path that reaches (z=1) ∧ X’ with ‘there exists
an adversary which reaches (z=1) ∧ X with probability 1’. Following this approach, the
algorithm for calculating the set of non-zeno states is given in Figure 6. A probabilistic timed
automata is then non-zeno if and only if the algorithm NonZeno returns the set of symbolic
states [[true]]. Formally, we have the following proposition.

Proposition 17 A probabilistic timed automaton PTA is non-zeno if and only if {(l, inv(l) | l ∈
L} equals the fixpoint νX.(z.¬P<1[true U ((z=1) ∧X)]).

Proof. Consider any probabilistic timed automata PTA and suppose that PSPTA = (S,Steps,L)
is the corresponding timed probabilistic system. To ease notation we let:

Snz =
{
s ∈ S

∣∣ProbAs {ω ∈ PathAful (s) |ω is divergent} = 1 for some adversary A
}
.

We prove the proposition by showing that:

1. the set Snz is a fixpoint of Gnz(·);

2. if Gnz(Y ) = Y , then Y ⊆ Snz

19



(di, 16x62∧z>6) (di, 16x62∧z>3) (di, 16x62)

(si, 26x63)(si, 26x63∧z>3)(si, 26x63∧z>6)

(si, x63∧z>x+ 3)(sr, z>6) (di, x62∧z>x+ 4)

0.1
0.9 0.1

0.95 0.05
0.05

0.1

target set (tpre[[¬ψ]]∧Z(Z))

Figure 7: Probabilistic system PS generated by the algorithm MaxU

where Gnz(X) = z.¬P>1[true U (z=1) ∧ X]. First, Snz ⊆ Gnz(Snz), and therefore to prove
Snz is a fixpoint of Gnz it remains to show that Snz ⊇ Gnz(Snz). Considering any s ∈ Gnz(Snz),
by definition of Gnz there exists an adversary A under which, with probability 1, from s one
reaches a state in Snz after 1 time unit. Therefore considering the adversary which behaves
as A except that when a state in Snz is reached, and in such a case the adversary lets time
diverge with probability 1 (such choices exists by the definition of Snz). It follows that, under
this adversary, time diverges from s with probability 1, and hence s ∈ Snz as required.

It therefore remains to show that, if Gnz(Y ) = Y , then Y ⊆ Snz which we prove by
contradiction. Therefore, suppose that there exists Y such that Gnz(Y ) = Y and Y ⊃ Snz.
Now, by definition of Snz, if s ∈ Y \ Snz there does not exist an adversary for which time
diverges from s with probability 1. However, since Gnz(Y ) = Y , there exists an adversary for
which with probability 1 one reaches a state in Y after 1 time unit. Iterating this fact, we
have that for any n ∈ N, there exists an adversary which with probability 1 reaches a state
in Y after n time units. Therefore s ∈ Snz which is a contradiction. ut

Similarly to [HNSY94], the algorithm can be used to convert a ‘zeno’ probabilistic timed
automaton into a non-zeno automaton by strengthening invariants. More precisely, supposing
NonZeno returns Z, we can construct a new invariant condition by letting invnz(l) = ζ lZ for
each location l of the automaton under study.

4.5 Example

We now return to the PTA in Figure 1 and verify the property z.P>λ[φ U ψ], where φ = true
and ψ = (sr∧ z<6), which involves computing the set of states for which minimal probability
of a message being correctly delivered before 6 time units have elapsed is greater than λ.
In particular, we consider this minimum probability when starting from the location di with
the clock x equal to 0. In particular, we consider the minimum probability of correctly
delivering before 6 time units have elapsed starting from the location di with the clock x
equal to 0. In this example, we do not distinguish between the name of a location and the
atomic proposition with which it is labelled. According to our methodology, the set of states
satisfying P>λ[φ U ψ] is given by the following set of symbolic states:

[[true]] \MaxU([[¬ψ]],MaxV>1(c, [[¬φ]], [[¬ψ]]),> 1−λ) .

20



Next, applying MaxU([[¬ψ]], Z,> 1−λ) returns the probabilistic system PS given in Figure 7
(for details on the computations performed by MaxU see Appendix D), from which we find
that, using Proposition 14, starting from di with x equal to 0, the maximum probability of
satisfying ¬ψ U (¬P<1[¬φ V ¬ψ]) is 0.005 (corresponding to the maximum probability for
(di, 16x62) in PS). Therefore, using Proposition 16, starting from di with x equal to 0, the
minimum probability of correctly delivering before 6 time units have elapsed is 1−0.005 =
0.995.

5 Conclusions

We have presented the theoretical foundations for the symbolic model-checking of probabilistic
timed automata and PTCTL. For quantitative formulas, our algorithm is expensive, as, in
the worst case, the MaxU algorithm constructs a powerset of the region graph, which itself
is exponential in the largest constant used in zones and number of clocks. However, we
expect this case to arise rarely in practice. Note that we do not construct a partition of the
state space, but rather a set of overlapping symbolic states to avoid potentially expensive
disjunction operations on zones within MaxU. Future work will address the implementation
of the presented algorithms, and adaptations to probabilistic polyhedral hybrid automata and
symbolic probabilistic systems [KNS01].

Finally, observe that many of the results are relevant to other verification methods for
probabilistic timed automata, for example algorithms based on a quantitative predecessor
operation [dA03]; in particular, the key result on nesting a qualitative operator inside a
quantitative operator to deal with time divergence when computing minimum probabilities
also holds in this context.

References

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real time. Infor-
mation and Computation, 104(1):2–34, 1993.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[BCM+90] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang. Symbolic model check-
ing: 1020 states and beyond. In Proc. 5th Annual IEEE Symposium on Logic in
Computer Science (LICS’90), pages 428–439. IEEE, 1990.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In P. Thiagarajan, editor, Proc. 15th Conference on Foundations of
Software Technology and Theoretical Computer Science, volume 1026 of Lecture
Notes in Comuter Science, pages 499–513, 1995.

[BDL+01] G. Behrmann, A. David, K. Larsen, O. Möller, P. Pettersson, and W. Yi. Uppaal
- present and future. In Proceedings of the 40th IEEE Conference on Decision and
Control (CDC’2001), volume 3, pages 2881–2886. IEEE Computer Society Press,
2001.

21



[BK98] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11(3):125–155, 1998.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[dA97] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997.

[dA03] L. de Alfaro. Quantitative verification and control via the mu-calculus. In Proc.
14th International Conference on Concurrency Theory (CONCUR 2003), volume
2761 of Lecture Notes in Comuter Science, pages 103–127. Springer-Verlag, 2003.

[Der70] C. Derman. Finite-State Markovian Decision Processes. New York: Academic
Press, 1970.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In R. Alur
and E. Sontag T. Henzinger, editors, Hybrid Systems III: Verification and Control,
volume 1066 of Lecture Notes in Comuter Science, pages 208–219. Springer-Verlag,
1996.

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(4):512–535, 1994.

[HNSY94] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111(2):193–244, 1994.

[HSP83] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent pro-
grams. ACM Transactions on Programming Languages and Systems, 5(3):356–
380, 1983.

[KNPS03] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis
of probabilistic timed automata using digital clocks. In K. Larsen and P. Niebert,
editors, Proc. Formal Modeling and Analysis of Timed Systems (FORMATS’03),
Lecture Notes in Comuter Science. Springer-Verlag, 2003. To appear.

[KNS01] M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic computation of maxi-
mal probabilistic reachability. In K. Larsen and M. Nielsen, editors, Proc. 13th
International Conference on Concurrency Theory (CONCUR’01), volume 2154 of
Lecture Notes in Comuter Science, pages 169–183. Springer-Verlag, 2001.

[KNS02] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of the
IEEE 802.11 wireless local area network protocol. In H. Hermanns and R. Segala,
editors, Proc. 2nd Joint International Workshop on Process Algebra and Proba-
bilistic Methods, Performance Modeling and Verification (PAPM/PROBMIV’02),
volume 2399 of Lecture Notes in Comuter Science, pages 169–187. Springer-Verlag,
2002.

[KNS03] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of
deadline properties in the IEEE 1394 FireWire root contention protocol. Formal
Aspects of Computing, 14:295–318, 2003.

22



[KNSS02] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101–150, 2002.

[KSK76] J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer-Verlag,
2nd edition, 1976.

[Pnu83] A. Pnueli. On the extremely fair treatment of probabilstic algorithms. In Proc.
15th Annual ACM Symposium on Theory of Computing, pages 278–290, 1983.

[Seg95] R. Segala. Modelling and Verification of Randomized Distributed Real Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

[Tri98] S. Tripakis. L’Analyse Formelle des Systèmes Temporisés en Pratique. PhD thesis,
Université Joseph Fourier, 1998.

23



A Proof of Proposition 14

Before we give the proof we require a number of definitions and lemmas. First, for any
adversary A of a probabilistic timed automaton PTA we introduce the sequence of functions
(UA

n )n∈N. Intuitively, for s, E ∈ S×R|Z|, the value UA
n (φ, ψ, s, E) equals the probability of

reaching from s, E , under the adversary A, a state which satisfies ψ in at most n discrete
transitions, while passing through only φ states. Since adversaries can choose on the basis of
history, we define UA

n over paths, then restrict to the case of states (paths of length 0).

Definition 18 Let PTA be a probabilistic timed automaton and TPS the corresponding timed
probabilistic system. For any PTCTL formulae φ, ψ, adversary A ∈ AdvTPS, E ∈ R|Z| and
finite path ω ∈ PathAfin where last(ω) = (l, v) and A(ω) = (t, µ):

• if t > 0, µ = µ(l,v+t) and there exists t′ 6 t such that (l, v+t′), E+t′ |= ψ and
(l, v+t′′), E+t′′ |= φ ∨ ψ for all t′′ 6 t′, then UA

0 (φ, ψ, (l, v), E) = 1;

• else if t = 0 and (l, v), E |= ψ, then UA
0 (φ, ψ, ω, E) = 1;

• otherwise, UA
0 (φ, ψ, ω, E) = 0.

and for any n > 0:

• if t > 0, µ = µ(l,v+t) and there exists t′ 6 t such that (l, v+t′), E+t′ |= ψ and
(l, v+t′′), E+t′′ |= φ ∨ ψ for all t′′ 6 t′, then UA

n+1(φ, ψ, ω, E) = 1;

• else if t > 0, µ = µ(l,v+t) and (l, v+t′), E + t′ |= φ ∧ ¬ψ for all t′ 6 t, then

UA
n+1(φ, ψ, ω, E) = UA

n (φ, ψ, ω
t,µ−−→ (l, v+t), E+t)

• else if t = 0 and (l, v), E |= φ ∧ ¬ψ, then

UA
n+1(φ, ψ, ω, E) =

∑
(l′,v′)∈Q

µ(l′, v′) ·UA
n (φ, ψ, ω

t,p−→ (l′, v′), E)

• otherwise, let UA
n+1(φ, ψ, ω, E) = 0.

Lemma 19 For any probabilistic timed automaton PTA, corresponding timed probabilistic
system PS, A ∈ AdvTPS, s, E ∈ S×R|Z| and PTCTL formulae φ and ψ: the sequence
〈UA

n (φ, ψ, s, E)〉n∈N is an increasing in [0, 1] and converges to pAs,E(φ U ψ).

Next, for any adversary B of a probabilistic system PS, we define a sequence of functions
(RB

n )n∈N, where RB
n (F, s) equals the probability, of reaching, from s under the adversary B,

a state in F in at most n steps.

Definition 20 Let PS = (S,Steps,L′) be a probabilistic system PS. For any subset of states
F , adversary B ∈ AdvPS and π ∈ PathBfin , if last(π) = s and B(π) = ρ, let:

RB
0 (F, π) =

{
1 if s ∈ F
0 otherwise

and for any n > 0:

RB
n+1(F, π) =

 1 if s ∈ F∑
s′∈S

ρ(s′) ·RB
n (F, π

ρ−→ s′) otherwise.

24



Lemma 21 For any probabilistic system PS = (S,Steps,L), adversary B ∈ AdvPS, state
s ∈ S and subset of states F ⊆ S: 〈RB

n (F, s)〉n∈N is an increasing sequence in [0, 1] which
converges to MaxProbReach(s, F ).

We are now in a position to prove Proposition 14 which states:

For any probabilistic timed automaton PTA and PTCTL formula P.λ[φ U ψ], if PS = (Z,Steps)
is the probabilistic system generated by MaxU([[φ]], [[ψ]],& λ) then for any s, E ∈ S × R|Z|:

• pmax
s,E (φ U ψ)>0 if and only if s, E ∈ tpre[[φ∨ψ]](Z);

• if pmax
s,E (φ U ψ)>0, then pmax

s,E (φ U ψ) equals

max
{
MaxProbReach(z, tpre[[φ∨ψ]][[ψ]])

∣∣∣ z ∈ Z and s, E ∈ tpre[[φ∨ψ]](z)
}
.

Proof of Proposition 14. We split the proof into proving a sequence of properties: (a),
(b), (c) and (d). First consider the following:

(a) If (z, (X, l′), z′) ∈ E(l,g,p) and (l, v), E ∈ z, then (l, v), E |= φ ∨ ψ, v . inv(l), v . g, and
(l′, v[X:=0]), E ∈ tpre[[φ∨ψ]](z′).

The result follows from the definition of dpre and tpre. Next we prove that the following
condition holds.

(b) For any s, E ∈ S×R|Z|, pmax
s,E (φ U ψ) > 0 if and only if s, E ∈ tpre[[φ∨ψ]](Z).

The proof follows by induction on the shortest path to reach a state satisfying ψ passing
through only φ states.

The main step in the proof involves showing the following correspondence between the values
of UA

n for A ∈ AdvTPS and RB
n for B ∈ AdvPSZ for all n ∈ N.

(c) For any B ∈ AdvPSZ , z ∈ Z and (l, v), E ∈ tpre[[φ∨ψ]](z), there exists A ∈ AdvTPS such
that: UA

2n(φ, ψ, (l, v), E) > RB
n (tpre[[φ∨ψ]][[ψ]], z).

(d) For any A ∈ AdvTPS and (l, v), E ∈ S×R|Z|, if pmax
(l,v),E(φ U ψ) > 0, then z ∈ Z and B ∈

AdvPSZ such that (l, v), E ∈ tpre[[φ∨ψ]](z) and RB
n (tpre[[φ∨ψ]][[ψ]], z) > UA

n (φ, ψ, (l, v), E).

It follows from (b), Lemma 19 and Lemma 21 that to prove Proposition 14 it is sufficient to
show that (c) and (d) hold. We now prove (c) and (d) by induction on n ∈ N.

Proof of (c). Consider any B ∈ AdvPSZ , z ∈ Z and (l, v), E ∈ tpre[[φ∨ψ]](z). If n = 0, then by
Definition 20 we have the following two cases to consider.

• If RB
0 (tpre[[φ∨ψ]][[ψ]], z) = 1, then z ∈ tpre[[φ∨ψ]][[ψ]] and by definition of tpre there exists

t ∈ R such that (l, v+t), E+t |= ψ and (l, v+t′), E+t′ |= φ ∨ ψ for all t′ 6 t′, therefore
letting A be the adversary such that A(l, v) = (t, δ(l,v+t)), it follows that:

UA
2·0(φ, ψ, (l, v), E) = UA

0 (φ, ψ, (l, v), E) = 1 = RB
0 (tpre[[φ∨ψ]][[ψ]], z) .

25



• If RB
0 (tpre[[φ∨ψ]][[ψ]], z) = 0, then choosing any A ∈ AdvTPS we have:

UA
2·0(φ, ψ, (l, v), E) = UA

0 (φ, ψ, (l, v), E) > 0 = RB
0 (tpre[[φ∨ψ]][[ψ]], z) .

Next, suppose that (c) holds for some n ∈ N and consider UA
2(n+1)(φ, ψ, (l, v), E). If z ∈

tpre[[φ∨ψ]]([[ψ]]) the result follows as in the case for n = 0. We are therefore left to consider the
case when z 6∈ tpre[[φ∨ψ]]([[ψ]]).

By construction, B(z) = ρ for some (z, ρ) ∈ Steps, and from the construction of PSZ, there
exists (l, g, p) ∈ prob and set of edges Eρ ⊆ E(l,g,p) such that for any z′ ∈ Z:

ρ(z′) =
∑

(z,(X,l′),z′)∈Eρ

p(X, l′).

If B′ is the adversary such that RB′
n (tpre[[φ∨ψ]][[ψ]], z′) = RB

n (tpre[[φ∨ψ]][[ψ]], z
ρ−→ z′), then from

Definition 20 and the construction of ρ we have:

RB
n+1(tpre[[φ∨ψ]][[ψ]], z) =

∑
z′∈Z

ρ(z′) ·RB′
n (tpre[[φ∨ψ]][[ψ]], z′)

=
∑

(z,(X,l′),z′)∈Eρ

p(X, l′) ·RB
n+1(tpre[[φ∨ψ]][[ψ]], z′) . (12)

Since (l, v), E ∈ tpre[[φ∨ψ]](z), it follows that there exists t ∈ R such that (l, v+t), E+t ∈ z
and ((l, v), (t, δ(l,v+t))) ∈ prob. Now, for any (z, (X, l′), z′) ∈ Eρ using (a) we have that
(l′, (v+t)[X:=0]), E+t ∈ tpre[[φ∨ψ]](z′). Therefore, by induction, for any e = (z, (X, l′), z′) ∈ Eρ
there exists Ae ∈ AdvTPS such that:

UAe
2n (φ, ψ, (l′, (v+t)[X:=0]), E + t) > RB′

n (tpre[[φ∨ψ]][[ψ]], z′) . (13)

Let A ∈ AdvTPS be the adversary such that

• A(l, v) = (t, δ(l,v+t));

• A

(
(l, v)

t,δ(l,v+t)−−−−−→ (l, v+t)
)

= (0, µp) where for any (l′, v′) ∈ S:

µp(l′, v′) =
∑

X⊆X &
v′=(v+t)[X:=0]

p(X, l′);

• for any e = (z, (X, l′), z′) ∈ Eρ:

A

(
(l, v)

t,δ(l,v+t)−−−−−→ (l, v+t[X:=0])
0,µ−−→ (l′, (v+t)[X:=0])

)
= Ae(l′, (v+t)[X:=0]) .

26



Note that, the existence of the above distributions follows from Definition 7. It then follows
from Definition 18 and the construction of A that:

UA
2(n+1)(φ, ψ, (l, v), E) =

∑
(X,l′)∈edges(p)

p(X, l′) ·UA(X,l′)
2n (φ, ψ, (l′, (v+t)[X:=0]), E+t)

>
∑

(z,(X,l′),z′)∈Eρ

p(X, l′) ·UA(X,l′)
2n (φ, ψ, (l′, (v+t)[X:=0]), E+t) by definition of Eρ

>
∑

(z,(X,l′),z′)∈Eρ

p(X, l′) ·RB
n (tpre[[φ∨ψ]][[ψ]], z′) by (13)

= RB
n+1(tpre[[φ∨ψ]][[ψ]], z) by (12)

and since z and B are arbitrary, (c) holds by induction.

Proof of (d). Consider any A ∈ AdvTPS and (l, v), E ∈ S×R|Z| such that pmax
(l,v),E(φ U ψ) > 0.

If n = 0, then by Definition 18 we have the following two cases to consider.

• If UA
0 (φ, ψ, (l, v), E) = 1, then there exists t ∈ R such that (l, v+t), E+t |= ψ and

(l, v+t′), E+t′ |= φ ∨ ψ for all t′ 6 t. By definition of tpre it follows that (l, v), E ∈
tpre[[φ∨ψ]][[ψ]], and hence

RB
0 (tpre[[φ∨ψ]][[ψ]], z) = 1 = UA

0 (φ, ψ, (l, v), E) .

• If UA
0 (φ, ψ, (l, v), E) = 0, then the result follows by choosing any B ∈ AdvPSZ and z ∈ Z

such that (l, v), E ∈ tpre[[φ∨ψ]](z) (the existence of z follows from (b)).

Now suppose that (d) holds from some n ∈ N. If UA
n+1(φ, ψ, (l, v), E) = 0, then the re-

sult follows as in the case when n = 0. It therefore remains to consider the case when
UA
n+1(φ, ψ, (l, v), E) > 0 and from Definition 18 we have the following cases to consider.

• If A(l, v) = (t, δ(l,v+t)) such that (l, v+t), E+t |= ψ and (l, v+t′), E+t′ |= φ ∨ ψ for all
t′ 6 t the result follows similarly to when n = 0.

• If A(l, v) = (t, δ(l,v+t)) such that (l, v+t′), E+t′ |= φ ∧ ¬ψ for all t′ 6 t, then

UA
n+1(φ, ψ, (l, v), E) = UA

n (φ, ψ, (l, v+t), E+t) .

and the result follows by induction and Lemma 21.

• If A(l, v) = (0, µ), then by Definition 18 we have:

UA
n+1(φ, ψ, (l, v), E) =

∑
(l′,v′)∈S

µ(l′, v′) ·UA
n (φ, ψ, (l, v)

t,p−→ (l′, v′), E)

and (l, v), E |= φ∧ψ. Now, from Definition 7, there exists (l, g, p) ∈ prob such that v . g
and for any (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=v[X:=0]

p(X, l′) .

27



LettingA(l′,X) be the adversary such thatA(l′,X)(l′, v[X:=0]) = A((l, v)
0,µ−−→ (l′, v[X:=0])),

it follows from above that:

UA
n+1(φ, ψ, (l, v), E) =

∑
(X,l′)∈support(p)

p(X, l′) ·UA(l′,X)

n (φ, ψ, (l′, v[X:=0]), E) (14)

Now consider any (l′, X) ∈ support(p) such that UA(l′,X)

n (l′, v[X:=0]), E) > 0, then by
definition (l, g, p,X, l′) ∈ edges and by induction and Lemma 19 there exists (l′, ζ ′l′,X) ∈ Z

and adversary B(l′,X) such that

RB(l′,X)

n (tpre[[φ∨ψ]][[ψ]], (l′, ζ ′l′,X)) > UA(l′,X)

n (φ, ψ, (l′, v[X:=0]), E) (15)

and (l′, v[X:=0]), E ∈ tpre[[φ∨ψ]](l′, ζ ′l′,X). Letting:

(l, ζl′,X) = dpre((l, g, p,X, l′), tpre[[φ∨ψ]](l
′, ζ ′l′,X)),

since (l, v), E |= φ ∧ ψ, it follows that ((l, ζl′,X), (X, l′), (l′, ζ ′l′,X)) ∈ E(l,g,p), (l, ζl′,X) ∈ Z
and (l, v), E ∈ (l, ζl′,X). Therefore, from the construction of PS setting z equal to:(

l,∧{ζl′,X | (l′, X) ∈ support(p) and pmax
(l′,v[X:=0]),E(φ U ψ) > 0}

)
we have z ∈ Z and (l, v) ∈ z. Furthermore, by construction of PS there exists (z, ρ) ∈
Steps such that for any z′ ∈ Z:

ρ(z′) >
∑

(l′,X)∈support(p), ζ′=ζl′,X

&UA′
n (φ,ψ,(l′,v[X:=0]),E)>0

p(X, l′). (16)

Now, setting B to be the adversary of PS such that B(z) = ρ and B(z
ρ−→ (l′, ζ ′l′,X)) =

B(l′,X)(l′, ζ ′l′,X), by Definition 20 we have:

RB
n+1(tpre[[φ∨ψ]][[ψ]], z) =

∑
z′∈Z

ρ(z′) ·RB
n (tpre[[φ∨ψ]][[ψ]], z

ρ−→ z′)

>
∑

(l′,X)∈support(p)&

UA′
n (l′,v[X:=0]),E)>0

p(s,X) ·RB
n (tpre[[φ∨ψ]][[ψ]], z

ρ−→ (l′, ζ ′l′,X)) by (16)

=
∑

(l′,X)∈support(p) &

UA′
n (l′,v[X:=0]),E)>0

p(s,X) ·RB(l′,X)

n (tpre[[φ∨ψ]][[ψ]], (l′, ζ ′l′,X)) by construction

>
∑

(l′,X)∈support(p)&

UA′
n (l′,v[X:=0]),E)>0

p(s,X) ·UA(l′,X)

n (φ, ψ, (l′, v[X:=0]), E) by (15)

=
∑

(l′,X)∈support(p)

p(s,X) ·UA(l′,X)

n (φ, ψ, (l, v[X:=0]), E) rearranging

= UA
n+1(φ, ψ, (l, v), E) by (14).

Since these are all the cases to consider (d) holds by induction as required. ut

28



B MaxV>1(c, [[false]], [[si∨di∨z>6]])

Z := [[true]]
repeat

Y := Z

Z := [[si∨di∨z>6]] ∧ y.MaxU>1(Y, ([[false]] ∧ Y)∨[[y>c]])
= [[si∨di∨z>6]] ∧ y.MaxU>1([[true]], [[y>c]])
= [[si∨di∨z>6]]

Y := Z

Z := [[si∨di∨z>6]] ∧ y.MaxU>1(Y, ([[false]] ∧ Y)∨[[y>c]])
= [[si∨di∨z>6]] ∧ y.MaxU>1(Y, [[y>c]])
= [[si∨di∨z>6]] ∧ y.{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6), (si, x63∧(z>x+3∨x<3−c)), (di, x62∧(z>x+4∨x<2−c))}

Y := Z

Z := [[si∨di∨z>6]] ∧ y.MaxU>1(Y, ([[false]] ∧ Y)∨[[y>c]])
= [[si∨di∨z>6]] ∧ y.MaxU>1(Y, [[y>c]])
= [[si∨di∨z>6]] ∧ y.{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>c∨y>x+2·c−3)), (di, x62∧(z>x+4∨y>c∨y>x+2·c−2))}
= {(sr, z>6), (si, x63∧(z>x+3∨x<3−2·c)), (di, x62 ∧ (z>x+4∨x<2−2·c))}

repeating n− 2 times such that n·c > 3 and (n−1)·c < 3 (which exists as c> 0)

Y := Z

Z := [[si∨di∨z>6]] ∧ y.MaxU>1(Y, ([[false]] ∧ Y)∨[[y>c]])
= [[si∨di∨z>6]] ∧ y.MaxU>1(Y, [[y>c]])
= [[si∨di∨z>6]] ∧ y.{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>c∨y>x+n·c−3)), (di, x62∧(z>x+4∨y>c∨y>x+n·c−2))}
= {(sr, z>6), (si, x63∧(z>x+3∨x<3−n·c)), (di, x62∧(z>x+4∨x<2−n·c))}
= {(sr, z>6), (si, x63∧z>x+3), (di, x62∧z>x+4)}

endrepeat

29



C MaxU>1([[si∨di∨z>6]], [[y>c]])

Z0 := [[true]]
repeat
Y0 := Z0
Z1 := [[false]]
repeat

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]] ∧ [[false]])
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨[[false]] = [[y>c]]

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]]∧{(si, 26x63∧y>c), (di, 16x62∧y>c)})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+(c−3)), (di, x62∧y>x+(c−2))}

= {(sr, z>6∨y>c), (si, x63∧y>x+(c−3)), (di, x62∧y>x+(c−2))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63 ∧ (y>c−3∨z>6)), (di, 16x62 ∧ (y>c−3∨z>6))})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+(c−3)), (di, x62∧y>x+(c−2))}

= {(sr, z>6∨y>c), (si, (26x63 ∧ (y>c−3∨z>6))∨(x63 ∧ y>x+(c−3)),
(di, (16x62 ∧ (y>c−3∨z>6))∨(x62 ∧ y>x+(c−2))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63 ∧ (y>c−3∨z>6)), (di, 16x62 ∧ (y>c−3∨z>6))})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−6∨z>x+3), (di, x62 ∧ (y>x+c−5∨z>x+4))}
= {(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−6∨z>x+3), (di, x62 ∧ (y>x+c−5∨z>x+4))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63 ∧ (y>c−6∨z>3)), (di, 16x62 ∧ (y>c−6∨z>3))})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−6∨z>x+3), (di, x62 ∧ (y>x+c−5∨z>x+4))}
= {(sr, z>6∨y>c), (si, (26x63 ∧ (y>c−6∨z>3)))∨(x63 ∧ (y>x+c−6∨z>x+3))),

(di, (16x62 ∧ (y>c−6∨z>3))∨(x62 ∧ (y>x+c−5∨z>x+4)))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63 ∧ (y>c−6∨z>3)), (di, 16x62 ∧ (y>c−6∨z>3))})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−9∨z>x), (di, x62 ∧ (y>x+c−8∨z>x+1))}
= {(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−9∨z>x), (di, x62 ∧ (y>x+c−8∨z>x+1))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63), (di, 16x62)})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−9∨z>x), (di, x62 ∧ (y>x+c−8∨z>x+1))}
= {(sr, z>6∨y>c), (si, (26x63)∨(x63 ∧ (y>x+c−9∨z>x))), (di, (16x62)∨(x62 ∧ (y>x+c−8∨z>x+1)))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63), (di, 16x62)})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨{(sr, z>6∨y>c), (si, x63), (di, x62)}

= {(sr, z>6∨y>c), (si, x63), (di, x62)}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63), (di, 16x62)})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨{(sr, z>6∨y>c), (si, x63), (di, x62)}

= {(sr, z>6∨y>c), (si, x63), (di, x62)}
endrepeat

30



Z0 := {(sr, z>6∨y>c), (si, x63), (di, x62)}
Y0 := Z0
Z1 := [[false]]
repeat

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]] ∧ [[false]])
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨[[false]] = [[y>c]]

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧y>c)∨(di, 16x62∧y>c)}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}

= {(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}

= {(sr, z>6∨y>c), (si, (26x63∧z>6)∨(x63∧y>x+c−3)), (di, (16x62∧z>6)∨(x62∧y>x+c−2))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}

end repeat

Z0 := {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}
Y0 := Z0
Z1 := [[false]]
repeat

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]] ∧ [[false]])
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨[[false]] = [[y>c]]

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧y>c)∨(di, 16x62∧y>c)}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}

= {(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}

= {(sr, z>6∨y>c), (si, (26x63∧z>6)∨(x63∧y>x+c−3)), (di, (16x62∧z>6)∨(x62∧y>x+c−2))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}

end repeat

Z0 := Z1

end repeat

31



D MaxU([[si∨z>6]], {(sr, z>6), (si, x63 ∧ z>x+3), (di, x62 ∧ z>x+4)})

Z := {(sr, z>6), (si, x63 ∧ z>x+3), (di, x62 ∧ z>x+4)}
repeat

Y := Z

begin for
z = (sr, z>6) [two edges (from si and di) taking predecessors]

y1 = (si, 26x63 ∧ z>6)
y2 = (di, 16x62 ∧ z>6)

z = (si, x63 ∧ z>x+3) [two edges (from si and di) taking predecessors]
y3 = (si, 26x63 ∧ z>3)
y4 = (di, 16x62 ∧ z>3)

z = (di, x63 ∧ z>x+4)
[no edges]

end for
Z := {(sr, z>6),

(si, x63 ∧ z>x+3), (si, 26x63 ∧ z>6), (si, 26x63 ∧ z>3),
(di, x62 ∧ z>x+4), (di, 16x62 ∧ z>6), (di, 16x62 ∧ z>3)}

Y := Z

begin for
z = (si, 26x63 ∧ z>6) [subset of target states]
z = (si, 26x63 ∧ z>3) [two edges (from si and di) taking predecessors]

y1 = (si, 26x63)
y2 = (di, 16x62)

z = (di, 16x62 ∧ z>6) [no edges]
z = (di, 16x62 ∧ z>3) [no edges]

end for
Z := {(sr, z>6),

(si, x63 ∧ z>x+3), (si, 26x63 ∧ z>6), (si, 26x63 ∧ z>3), (si, 26x63),
(di, x62 ∧ z>x+4), (di, 16x62 ∧ z>6), (di, 16x62 ∧ z>3), (di, 16x62)}

Y := Z

begin for
z = (si, 26x63)

[two edges (from si and di) taking predecessors]
y1 = (si, 26x63)
y2 = (di, 16x62)

z = (di, 16x62) [no edges]
end for
Z := {(sr, z>6),

(si, x63 ∧ z>x+3), (si, 26x63 ∧ z>6), (si, 26x63 ∧ z>3), (si, 26x63),
(di, x62 ∧ z>x+4), (di, 16x62 ∧ z>6), (di, 16x62 ∧ z>3), (di, 16x62)}

end repeat

32


	Introduction
	Preliminaries
	Distributions and Probabilistic Systems
	Discrete Time Markov Chains
	Probabilistic Systems
	Timed Probabilistic Systems

	Probabilistic Timed Automata
	Clocks and Zones
	Syntax and Semantics of Probabilistic Timed Automata
	Probabilistic Timed Computation Tree Logic (PTCTL)

	Symbolic PTCTL Model Checking
	Operations on Symbolic States
	Computing Maximum Probabilities
	Computing Minimum Probabilities
	Checking Non-Zenoness
	Example

	Conclusions
	Proof of Proposition 14
	MaxV 1(c,  [  [ false ]  ] ,  [  [ si  di  z6 ]  ])
	MaxU 1( [  [ si  di  z6 ]  ] ,  [  [ y>c ]  ])
	MaxU( [  [ si  z 6 ]  ], {(sr , z  6) , (si , x  3 z  x + 3) , ( di , x  2 z  x + 4 )})

