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Abstract. We consider the timed automata model of [3], which allows
the analysis of real-time systems expressed in terms of quantitative tim-
ing constraints. Traditional approaches to real-time system description
express the model purely in terms of nondeterminism; however, we may
wish to express the likelihood of the system making certain transitions.
In this paper, we present a model for real-time systems augmented with
discrete probability distributions. Furthermore, using the algorithm of
[5] with fairness, we develop a model checking method for such models
against temporal logic properties which can refer both to timing proper-
ties and probabilities, such as, “with probability 0.6 or greater, the clock
x remains below 5 until clock y exceeds 2”.

1 Introduction

The proliferation of digital technology embedded into real-life environments has
led to increased interest in computer systems expressed in terms of quantitative
timing constraints. Examples of such real-time systems include communication
protocols, digital circuits with uncertain delay lengths, and media synchroniza-
tion protocols. A number of frameworks exist within which the formal reasoning
and analysis of such systems can be carried out. A formalism that has received
much attention, both in terms of theoretical and practical developments, is that
of timed automata; in particular, the theory of automatically verifying timed
automata against properties of a real-time temporal logic is advanced, and is
supported by a number of tools [6,8].

Traditional approaches to the formal description of real-time systems express
the system model purely in terms of nondeterminism. However, it may be desir-
able to express the relative likelihood of the system exhibiting certain behaviour.
For example, we may wish to model a system for which the likelihood of a certain
event occurring changes with respect to the amount of time elapsed. This notion
is particularly important when considering fault-tolerant systems. Furthermore,
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we may also wish to refer to the likelihood of certain temporal logic properties
being satisfied by the real-time system, and to have a model checking algorithm
for verifying the truth of these assertions. The remit of this paper is to address
these problems.

Therefore, we present a model for real-time systems that are described par-
tially in terms of discrete probability distributions, and an automatic verification
method for this model against a new, probabilistic real-time logic. The system
model is called a probabilistic timed graph, and differs from the timed automata
based model of [2] in the following respects. Firstly, the edge relation of proba-
bilistic timed graphs is both nondeterministic and probabilistic in nature. More
precisely, instead of making a purely nondeterministic choice over the set of cur-
rently enabled edges, we choose amongst the set of enabled discrete probability
distributions, each of which is defined over a finite set of edges. We then make a
probabilistic choice as to which edge to take according to the selected distribu-
tion. As with usual timed automata techniques, the underlying model of time is
assumed to be dense; that is, the time domain is modelled by the reals (IR) or
rationals (Q). However, in contrast to [2], probabilistic timed graphs are defined
over weakly monotonic time, which allows us to express the notion of more than
one system event occurring at a given point in time.

Furthermore, we adapt the specification language commonly used for stating
real-time system requirements, TCTL (Timed Computation Tree Logic) [14],
to cater for probability. A common approach taken in probabilistic temporal
logics is to augment certain formulae with a parameter referring to a bound
on probability which must be satisfied for the formula to be true. For example,
[φ1∃Uφ2]≥p is true if the probability of [φ1∃Uφ2] is at least p. Therefore, we
develop our specification language, PTCTL (Probabilistic Timed Computation
Tree Logic), by adding such probabilistic operators to TCTL. The resulting logic
allows us to express such quality of service properties as, “with probability 0.7,
there will be a response between 5 and 7 time units after a query”.

The denseness of the time domain means that the state space of timed au-
tomata is infinite. Therefore, automatic verification of timed automata is per-
formed by constructing a finite-state quotient of the system model. This quotient
takes the form of a state-labelled transition system which represents all of the
timed automaton’s behaviours, and which can be analyzed using analogues of
traditional model checking techniques. We adopt this method in order to con-
struct a finite quotient of probabilistic timed graphs; naturally, the transitions of
the resulting model are both nondeterministic and probabilistic in nature, and
therefore the model checking methods employed must accommodate this charac-
teristic. The verification algorithms of [5] are used for this purpose. However, they
are defined with respect to PBTL (Probabilistic Branching Time Logic), which
does not allow the expression of dense timing constraints. Hence, we present
a method for translating a given PTCTL formula into a corresponding PBTL
formula. The model checking algorithm of [5] is then used to verify the PBTL
properties over our probabilistic-nondeterministic quotient structure, the results
of which allow us to conclude whether the original probabilistic timed graph



satisfied its PTCTL specification. Furthermore, the verification methods of [5]
allow us to model check fair paths of the quotient construction. In the context of
real-time systems, fair paths correspond to behaviours which allow the progress
of time, a notion which also corresponds to realisable behaviours.

An example of a real-time system which could be subject to these techniques
is the bounded retransmission protocol, which is modelled as a network of purely
nondeterministic timed automata in [9]. Each communication channel is repre-
sented as a timed automaton which features a nondeterministic choice over two
edges, one of which corresponds to the correct transmission of the message, the
other to the message’s loss. Using our framework, the relative likelihood of such
a loss occurring could be represented by replacing this nondeterministic choice
by a probabilistic choice between the two edges; for example, a probabilistic
timed graph could be used to model that a message is lost with probability 0.05
each time a communication channel is used. Similarly, the system requirements
of the bounded retransmission protocol could be expanded to admit reasoning
about the probability of certain system behaviours. For instance, we may require
that, with probability at least 0.99, any data chunk transmitted by the sender
is successfully processed by the receiver within 10 time units.

The model presented in this paper has similarities with other frameworks for
probabilistic real-time systems. In particular, the approach of [10] is also to aug-
ment timed automata with discrete probability distributions; however, these dis-
tributions are obtained by normalization of edge-labelling weights. Furthermore,
the model checking algorithm of [10] is with respect to an action-based logic,
rather than a state-based logic such as PTCTL. A dense time, automata-based
model with discrete and continuous probability distributions is presented in [1],
along with a quotient construction and TCTL model checking method similar to
that of [2]. However, the model of Alur et al. does not permit any nondetermin-
istic choice, and its use of continuous probability distributions, while a highly
expressive modelling mechanism, does not permit the model to be automatically
verified against logics which include bounds on probability. Furthermore, note
that the temporal logic of [11] has syntactic similarities with the logic PTCTL,
although this former logic is interpreted with respect to discrete, not dense time.

The paper proceeds as follows. Section 2 introduces some preliminary con-
cepts and notation relating to execution sequences. Section 3 presents the under-
lying model of our probabilistic timed graphs, which are used to interpret for-
mulae of the logic, PTCTL, introduced in section 4. Probabilistic timed graphs
are defined in section 5 as our model for probabilistic-nondeterministic real-time
systems, and a method for translating them into their underlying probabilistic
timed structure is presented. Section 6 explores the model checking problem for
probabilistic timed graphs, and presents a finite-state quotient construction for
this model, a method for translating a PTCTL formula into a series of equiva-
lent PBTL formulae, and finally a verification method. To conclude, section 7
analyzes the complexity of the model checking technique, and suggests further
directions of research.



2 Preliminaries

Labelled paths (or execution sequences) are non-empty finite or infinite se-
quences of the form:

ω = σ0
l0−→ σ1

l1−→ σ2
l2−→ · · ·

where σi are states and li are labels for transitions. We use the following notation
for such paths. Take any path ω. Then the first state of ω is denoted by first(ω). If
ω is finite then the last state of ω is denoted by last(ω). The length of a path, |ω|,
is defined in the usual way: if ω is the finite path ω = σ0

l0−→ σ1
l1−→ · · · ln−1−−−→ σn,

then |ω| = n; if ω is an infinite path, then we let |ω| = ∞. If k ≤ |ω| then
ω(k) denotes the k-th state of ω and step(ω, k) is the label of the k-th step
(that is, ω(k) = σk and step(ω, k) = lk). ω(k) is the k-th prefix of ω; that is, if

k < |ω| then ω(k) = σ0
l0−→ σ1

l1−→ · · · lk−1−−−→ σk, and if k ≥ |ω| then ω(k) = ω. If

ω = σ0
l0−→ σ1

l1−→ · · · ln−1−−−→ σn is a finite path and ω′ = σ′0
l′0−→ σ′1

l′1−→ · · · is a
finite or infinite path with last(ω) = first(ω′), then we let the concatenation of
ω and ω′ be:

ωω′ = σ0
l0−→ σ1

l1−→ σ2 · · ·
ln−1−−−→ σn

l′0−→ σ′1
l′1−→ · · ·

3 Probabilistic Timed Structures

In this section, we introduce an underlying model for probabilistic timed graphs,
called probabilistic timed structures, which are obtained by augmenting the timed
structures of [13] with a probabilistic choice over transitions. More precisely,
instead of a nondeterministic choice over transitions that consist of a real-valued
duration and a next state, as is the case in traditional timed structures, the
transition function of probabilistic timed structures results in a choice over pairs
consisting of a duration and a discrete probability distribution over next states.

Let AP be a set of atomic propositions. A clock x is a real-valued variable
which increases at the same rate as real-time. Let X be a set of clocks, and let
ν : X → IR be a function assigning a real value to each of the clocks in this set.
Such a function is called a clock valuation. For some C ⊆ X we write ν[C 7→ 0]
for the clock valuation that assigns 0 to all clocks in C, and agrees with ν for
all clocks in X \ C (informally, we write ν[x 7→ 0] if C contains the single clock
x). In addition, for some t ∈ IR, ν + t denotes the clock valuation for which all
clocks x in X take the value ν(x) + t.

Definition 1 (State). A state σ is an interpretation of all propositions and a
valuation over the set of clocks: σ assigns to each proposition a in AP a boolean
value (therefore, σ(a) ∈ {true, false}) and to each clock in X a non-negative
real (therefore, σ(x) ∈ IR).

We denote the set of discrete probability distributions over a set S by µ(S).
Therefore, each p ∈ µ(S) is a function p : S → [0, 1] such that

∑
s∈S p(s) = 1.



Definition 2 (Probabilistic Timed Structure). A probabilistic timed struc-
ture M, is a tuple (Σ,Tr ,End) where Σ is a set of states, Tr is a function which
assigns to each state σ ∈ Σ a set Tr(σ) of pairs of the form (t, p) where t ∈ IR
and p ∈ µ(Σ), and End is a set of states from which time is allowed to increase
without bound.

Tr(σ) is the set of transitions that can be nondeterministically chosen in
state σ. Each transition takes the form (t, p), where t represents the duration of
the transition and p is the probability distribution used over the set of successor
states. Therefore, given the nondeterministic choice of (t, p) ∈ Tr(σ) in state σ,
then, after t time units have elapsed, a probabilistic transition is made to state
σ′ with probability p(σ′).

Paths in a probabilistic timed structure arise by resolving both the nonde-
terministic and probabilistic choices. A path of the probabilistic timed structure
M = (Σ,Tr ,End) is a non-empty finite or infinite sequence:

ω = σ0
t0,p0−−−→ σ1

t1,p1−−−→ σ2
t2,p2−−−→ · · ·

where σi ∈ Σ, (ti, pi) ∈ Tr(σi) and pi(σi+1) > 0 for all 0 ≤ i ≤ |ω|.
Sets of labelled paths are denoted in the following way. Pathfin is the set of

finite paths, and Pathfin(σ) is the set of paths in Pathfin such that ω(0) = σ.
Pathful is the set of paths such that ω ∈ Pathful if either ω is infinite, or ω
is finite and last(ω) ∈ End . Pathful(σ) is the set of paths in Pathful such that
ω(0) = σ.

Consider an infinite path ω of M. A position of ω is a pair (i, t′), where i ∈ IN
and t′ ∈ IR such that 0 ≤ t′ ≤ ti. The state at position (i, t′), denoted by σi + t′,
assigns σi(a) to each proposition a in AP, and σi(x) + t′ to each clock x in X .
Given a path ω, i, j ∈ IN and t, t′ ∈ IR such that i ≤ |ω|, t ≤ ti and t′ ≤ tj , then
we say that the position (j, t′) precedes the position (i, t), written (j, t′) ≺ (i, t),
iff j < i, or j = i and t′ < t.

Definition 3 (Duration of a Path). For any path ω of a probabilistic timed
structure M and 0 ≤ i ≤ |ω| we define Dω(i), the elapsed time until the ith
transition, as follows: Dω(0) = 0 and for any 1 ≤ i ≤ |ω|:

Dω(i) =
i−1∑
j=0

tj .

We now introduce adversaries of probabilistic timed structures as functions
which resolve all the nondeterministic choices of the model.

Definition 4 (Adversary of a Probabilistic Timed Structure). An ad-
versary (or scheduler) of a probabilistic timed structure M = (Σ,Tr ,End)
is a function A mapping every finite path ω of M to a pair (t, p) such that
A(ω) ∈ Tr(last(ω)). Let A be the set of all adversaries of M.



For an adversary A of a probabilistic timed structure M = (Σ,Tr ,End)
we define PathA

fin to be the set of finite paths such that step(ω, i) = A(ω(i))
for all 1 ≤ i ≤ |ω|, and PathA

ful to be the set of paths in Pathful such that
step(ω, i) = A(ω(i)) for all i ∈ IN.

With each adversary we associate a sequential Markov chain, which can be
viewed as a set of paths in M. Formally, if A is an adversary of the probabilistic
timed structure M, then MCA = (PathA

fin ,PA) is a Markov chain where:

PA(ω, ω′) =

{
p(σ) if A(ω) = (t, p) and ω′ = ω

t,p−→ σ
0 otherwise

Definition 5 (Divergent Adversary). An adversary A of a probabilistic timed
structure (Σ,Tr ,End) is divergent if and only if for any infinite path ω ∈ PathA

ful

and t ∈ IR, there exists j ∈ IN such that Dω(j) > t. Let Adiv be the set of all
divergent adversaries.

Note that this definition of divergent adversaries corresponds to a common
restriction imposed in the study of real-time systems, namely that of time-
divergence. The traditional interpretation of this requirement is that runs of the
real-time system that are not time-divergent can be disregarded during analysis,
because they do not represent realisable behaviour; in our case, consideration of
the class of divergent adversaries means that nondeterministic choice is resolved
in such a way as to result only in time-divergent paths.

For any probabilistic timed structure, let FPath be the smallest σ-algebra on
Pathful which contains the sets:

{ω |ω ∈ Pathful and ω′ is a prefix of ω}

for all ω′ ∈ Pathfin .
We now define a measure Prob on the σ-algebra FPath , by first defining the

following function on the set of finite paths Pathfin .

Definition 6. Let Probfin : Pathfin → [0, 1] be the mapping inductively defined
on the length of paths in Pathfin as follows. If |ω| = 0, then Probfin(ω) = 1.

Now consider any path ω such that |ω| = n + 1. If ω(n) = ω′ let:

Probfin(ω) = Probfin(ω′) ·PA(ω′, ω)

where A is any adversary such that A(ω′) = (t, p) and ω = ω′
t,p−→ σ.

Definition 7. The measure Prob on FPath is the unique measure such that:

Prob({ω |ω ∈ Pathful and ω′ is a prefix of ω}) = Probfin(ω′).



4 Probabilistic Timed Computation Tree Logic

We now describe the probabilistic real-time logic PTCTL (Probabilistic Timed
Computation Tree Logic) which can be used to specify properties of probabilistic
timed systems. PTCTL synthesizes elements from two extensions of the branch-
ing temporal logic CTL, namely the real-time temporal logic TCTL [14] and
the essentially equivalent, probabilistic temporal logics pCTL and PBTL [7,5].
In particular, the temporal operator U (“until”) and the path quantifiers ∀ and
∃ (“for all” and “there exists”, respectively) are taken from CTL, the freeze
quantifier z.φ and the facility to refer directly to clock values are taken from
TCTL, and the probabilistic operators [φ1∃Uφ2]wλ and [φ1∀Uφ2]wλ are taken
from PBTL. Note that the freeze quantifier z.φ is used to reset the clock z, so
that φ is evaluated from a state at which z = 0. Using our new logic, we can
express properties such as, “with probability 0.6 or greater, the value of the
system clock x does not exceed 3 before 5 time units have elapsed”, which is
represented as the PTCTL formula z.[(x ≤ 3)∀U(z = 5)]≥0.6.

As with TCTL, PTCTL employs a set of clock variables in order to express
timing properties; for this purpose, we introduce a set of formula clocks, Z, which
is disjoint from X . Such clocks are assigned values by a formula clock valuation
E : Z → IR, which uses the notation for clock valuations in the standard way.

Definition 8 (Atomic Formulae). Let C be a set of clocks. A set of atomic
formulae AFC is defined inductively by the syntax:

ϕ ::= c ≤ k | k ≤ c | ¬ϕ |ϕ ∨ ϕ

where c ∈ C and k ∈ IN. Atomic formulae of the form c ≤ k or k ≤ c are called
minimal atomic formulae.

Definition 9 (Syntax of PTCTL). The syntax of PTCTL is defined as fol-
lows:

φ ::= true | a | ϕ | φ ∧ φ | ¬φ | z.φ | [φ ∃ U φ]wλ | [φ ∀ U φ]wλ

where a ∈ AP is an atomic proposition, ϕ ∈ AFX∪Z is an atomic formula,
z ∈ Z, λ ∈ [0, 1], and w is either ≥ or >.

Note that the values of system clocks in X and formula clocks in Z can
be obtained from a state and a formula clock valuation, respectively. Then, if
ϕ ∈ AFX∪Z , and given a state σ and a formula clock valuation E , we denote
by ϕ[σ, E ] the boolean value obtained by replacing each occurrence of a system
clock x ∈ X in ϕ by σ(x), and each occurrence of a formula clock z ∈ Z in ϕ by
E(z).

Definition 10 (Satisfaction Relation for PTCTL). Given a probabilistic
timed structure M and a set A of adversaries of M, then for any state σ of
M, formula clock valuation E, and PTCTL formula φ, the satisfaction relation
σ, E |=A φ is defined inductively as follows:



σ, E |=A true for all σ and E
σ, E |=A a ⇔ σ(a) = true
σ, E |=A ϕ ⇔ ϕ[σ, E ] = true
σ, E |=A φ1 ∧ φ2 ⇔ σ, E |=A φ1 and σ, E |=A φ2

σ, E |=A ¬φ ⇔ σ, E 6|=A φ
σ, E |=A z.φ ⇔ σ, E [z 7→ 0] |=A φ

σ, E |=A [φ1 ∃ U φ2]wλ ⇔ Prob({ω |ω ∈ PathA
ful(σ) & ω, E |=A φ1 U φ2}) w λ

for some A ∈ A
σ, E |=A [φ1 ∀ U φ2]wλ ⇔ Prob({ω |ω ∈ PathA

ful(σ) & ω, E |=A φ1 U φ2}) w λ
for all A ∈ A

ω, E |=A φ1 U φ2 ⇔ there exists i ∈ IN, and 0 ≤ t ≤ ti such that
ω(i) + t, E +Dω(i) + t |=A φ2, and for all j ∈ IN
and t′ ∈ IR such that t′ ≤ tj and (j, t′) ≺ (i, t),
ω(j) + t′, E +Dω(j) + t′ |=A φ1 ∨ φ2

5 Probabilistic Timed Graphs

This section introduces probabilistic timed graphs as a modelling framework for
real-time systems with probability. This formalism is derived from timed graphs
[2], a variant of timed automata for which model checking of TCTL properties
can be performed. Here, we extend timed graphs with discrete probability dis-
tributions over edges, so that the choice of the next location of the graph is
now probabilistic, in addition to nondeterministic, in nature. Furthermore, we
incorporate invariant conditions [14] into the probabilistic timed graph in order
to enforce upper bounds on the time at which certain probabilistic choices are
made.

Definition 11 (Probabilistic Timed Graph). A probabilistic timed graph is
a tuple G = (S, L, sinit ,X , inv , prob, 〈τs〉s∈S) where

– a finite set S of nodes,
– a function L : S −→ 2AP assigning to each node of the graph the set of

atomic propositions that are true in that node,
– a start node sinit ∈ S,
– a finite set X of clocks,
– a function inv : S −→ AFX assigning to each node an invariant condition,
– a function prob : S → Pf n(µ(S × 2X )) assigning to each node a (finite non-

empty) set of discrete probability distributions on S × 2X ,
– a family of functions 〈τs〉s∈S where for any s ∈ S: τs : prob(s) −→ AFX

assigns to each ps ∈ prob(s) an enabling condition.

For simplicity, the invariant and enabling conditions are subject to the fol-
lowing assumption: if, in some state in the execution of G, allowing any amount
of time to elapse would violate the invariant condition of the current node, then
the enabling condition of at least one probability distribution is satisfied. 1

1 Another solution is to identify an additional discrete probability distribution pinv
s ∈

µ(S × 2X ) with each s ∈ S, which becomes enabled in s at the points for which
progression of any amount of time would violate the node’s invariant inv(s).



The system starts in node sinit with all of its clocks initialized to 0. The
values of all the clocks increase uniformly with time. At any point in time, if the
system is in node s and the invariant condition will not be violated by letting
time advance, then the system can either (a) remain in its current node and
let time advance, or (b) make a state transition if there exists a distribution
ps ∈ prob(s) whose corresponding enabling condition τs(ps) is satisfied by the
current values of the clocks. Alternatively, if the invariant condition will be vio-
lated by letting time advance then the system must make a state transition. State
transitions are instantaneous and consist of the following two steps performed
in succession: firstly, the system makes a nondeterministic choice between the
set of distributions ps ∈ prob(s) whose corresponding enabling condition τs(ps)
is satisfied by the current values of the clocks. 2 Secondly, supposing that the
probability distribution ps is chosen, the system then makes a probabilistic tran-
sition according to ps; that is, for any s′ ∈ S and C ⊆ X , the probability the
system will make a state transition to node s′, and reset all the clocks in C to
0, is given by ps(s′, C).

x = y = 0
s1

x ≤ 1 ∧ y ≤ 1

y > 0 ∧ x := 0

Figure 1. The probabilistic timed graph G1.

y > 0

(x = 1 ∨ y = 1)

∧(x := 0 ∧ y := 0)

s2

x ≤ 1 ∧ y ≤ 1

0.3

0.7

1

Example. An example of a probabilistic timed graph is given in Figure 1.
Control of G1 initially resides in node s1, with the system clocks, x and y, each
set to 0. Node s1 has two outgoing edges, both of which have the same enabling
condition, (y > 0), and are defined with respect to the probability distribution
ps1 , as denoted by the dashed arc connecting the edges at their source. The
bold numerals labelling the edges refer to the probabilities of the edges being
taken, while assignment labels such as x := 0 refer to clock resets. Therefore, the
diagram states that when the value of y exceeds 0 and a nondeterministic choice
has been made to take an edge according to ps1 , with probability 0.3 control
returns to s1 with the value of x reset to 0, and with probability 0.7 control
switches to node s2. More formally, ps1(s1, {x}) = 0.3 and ps1(s2, ∅) = 0.7. Also
note that the invariant condition of s1, which is shown within the body of the
node, states that the probabilistic timed graph cannot allow time to pass if doing

2 In the case in which we have the special probability distribution, pinv
s , then this

distribution must be taken at this point.



so would take the value of either x or y above 1; in such a case, a probabilistic
choice over the outgoing edges would be forced. The behaviour of the system
when control resides in s2 takes a similar form.

Obtaining a Probabilistic Timed Structure from a Probabilistic Timed
Graph. This section will now show that the behaviour of a probabilistic timed
graph can be formally stated in terms of a probabilistic timed structure. First,
the following notation must be introduced. A system clock valuation for the set
of clocks X is a function ν : X −→ IR. Let Γ (X ) denote the set of all system clock
valuations for all the clocks of X . The standard notation for clock valuations, as
introduced in section 3, is used for system clock valuations ν.

Let ϕ ∈ AFX and ν ∈ Γ (X ). Then ϕ[ν] is the boolean value obtained by
replacing each occurrence of a clock x ∈ X in ϕ by ν(x). If ϕ[ν] = true then we
say that ν satisfies ϕ.

Definition 12 (State of a Probabilistic Timed Graph). A state of G is a
tuple 〈s, ν〉, where s ∈ S and ν ∈ Γ (X ) such that ν satisfies inv(s).

To uniquely identify each node of the probabilistic timed graph, we let as be
an atomic proposition that is true only in node s. Formally, we extend the set
of atomic propositions to AP′ = AP ∪ {as | s ∈ S}, and the labelling function
to L′ : S → 2AP′ , where L′(s) = L(s) ∪ {as} for all s ∈ S.

We now define a probabilistic timed structure to formally define the be-
haviour of a probabilistic timed graph. Note that this definition also allows us
to interpret PTCTL formulae with atomic propositions from AP′ over a proba-
bilistic timed graph.

Definition 13. For any probabilistic timed graph G, letMG = (ΣG,TrG,EndG)
be the probabilistic timed structure defined as follows:

– ΣG is the set of states of G. For a given state of G, 〈s, ν〉, then the corre-
sponding state of MG obtained by letting 〈s, ν〉(a) = true, if a ∈ L′(s), for
all a ∈ AP′, and false otherwise, and letting 〈s, ν〉(x) = ν(x) for all x ∈ X .

– Take any 〈s, ν〉 ∈ ΣG. Then (t, p) ∈ TrG(〈s, ν〉), where t ∈ IR and p ∈
µ(S × Γ (X )), if and only if there exists ps ∈ prob(s) such that
1. the clock valuation ν + t satisfies τs(ps),
2. (ν + t′) satisfies the invariant condition inv(s) for all 0 ≤ t′ ≤ t,
3. for any 〈s′, ν′〉:

p(〈s′, ν′〉) =
∑

C⊆X &
(ν+t)[C 7→0]=ν′

ps(s′, C) .

– EndG comprises of states 〈s, ν〉, for which, for any t ∈ IR, ν + t satisfies
inv(s).

It is now possible to define the setAG of adversaries ofMG using Definition 4.



6 Model Checking Probabilistic Timed Graphs

Note that, because all clocks are real-valued, the state space of a probabilistic
timed graph is infinite. However, it was noted in [3] that the space of clock
valuations of a timed graph can be partitioned into a finite set of clock regions,
each containing a finite or infinite number of valuations which, as noted by
[2], satisfy the same TCTL formulae. Combination of this partitioning with the
transition systems of a timed graph induces a structure called a region graph,
which can be used for model checking. This section will show that a similar
construction can be used for model checking probabilistic timed graphs against
PTCTL formulae.

Equivalence of Clock Valuations.

Definition 14. For any x ∈ X let kx be the largest constant the system clock x
is compared to in any of the invariant or enabling conditions.

Furthermore, for any ν ∈ Γ (X ) and x ∈ X , x is relevant for ν if ν(x) ≤ kx.

Definition 15. For any t ∈ IR, |-t-| denotes its integral part. Then, for any
t, t′ ∈ IR, t and t′ agree on their integral parts if and only if:

1. |-t-| = |-t
′
-|,

2. both t and t′ are integers or neither is an integer.

Definition 16 (Clock equivalence). For clock valuations ν and ν′ in Γ (X ),
ν ∼= ν′ if and only if the following conditions are satisfied:

1. ∀x ∈ X either ν(x) and ν′(x) agree on their integral parts, or x is not
relevant for both ν and ν′,

2. ∀x, x′ ∈ X that are relevant for ν, then ν(x)− ν(x′) and ν′(x)− ν′(x′) agree
on their integral parts.

Lemma 1. Let ν, ν′ ∈ Γ (X ) such that ν ∼= ν′. Then the following conditions
hold:

(a) ν[C 7→ 0] ∼= ν′[C 7→ 0] for all C ⊆ X ,
(b) for any x ∈ X , x is relevant for ν if and only if x is relevant for ν′,
(c) for any atomic formula ϕ ∈ AFX , ν satisfies ϕ if and only if ν′ satisfies ϕ.

Proof. The proof follows from the definition of ∼=. ut

Let [ν] denote the equivalence class to which ν belongs, and we refer to
elements such as 〈s, [ν]〉 as regions.

We now extend the concept of clock equivalence to formula clocks. Let (ν, E) :
X ∪Z → IR be the clock valuation that assigns a real value to each of the system
and formula clocks, and let Γ ∗(X ∪ Z) be the set of all such valuations for G.
For a (ν, E) ∈ Γ ∗(X ∪ Z), and C ⊆ X ∪ Z, we use the notation (ν, E)[C 7→ 0]



in the usual way. For some t ∈ IR, (ν + t, E + t) denotes the clock valuation for
which all clocks c in X ∪ Z take the value (ν, E)(c) + t.

The equivalence relation for such a valuation is defined with respect to a
particular PTCTL formula φ. For each formula clock z ∈ Z, we let kz be the
largest constant that z is compared to in the atomic formulae of φ, and extend
the notion of relevance of Definition 15 to formula clocks in the natural way.
Let E ′ be the restriction of E over the clocks of Z that are referred to in φ. We
can then extend the equivalence relation from ∼= to ∼=∗ simply by taking (ν, E ′)
instead of ν and X ∪ Z instead of X ; the definition of equivalence classes of
the form [ν, E ′] then follows in an obvious manner. Furthermore, Lemma 1 holds
for ∼=∗. Because our construction of the equivalence classes will always be with
respect to a particular φ, we henceforth write E for E ′. An element of the form
〈s, [ν, E ]〉 is called an augmented region.

Let α be an equivalence class of the form [ν, E ]. Then α[C 7→ 0] denotes the
equivalence class obtained from α by setting all of the clocks in C to 0, and let
clock c ∈ X ∪ Z be relevant for α if (ν, E)(c) ≤ kc, where (ν, E) is some clock
valuation such that (ν, E) ∈ α.

The Region Graph. We now define an edge relation over the augmented
regions to obtain the region graph. The non-probabilistic region construction of
[2] results in a state-labelled transition system, which can be model checked using
well-established methods. However, in our case the region graph takes the form of
a concurrent probabilistic system [5] (and is also equivalent to the probabilistic-
nondeterministic systems of [7]), for which there exist model checking techniques
for temporal logics with probability bounds.

First, we require some preliminary definitions.

Definition 17 (Satisfaction of formulae). Let α be an equivalence class of
Γ ∗(X ∪ Z) and ϕ ∈ AFX∪Z be an atomic formula. Then α satisfies ϕ if and
only if, for any (ν, E) ∈ α, the value of ϕ after substituting each occurrence of
x ∈ X with ν(x), and each occurrence of z ∈ Z with E(z), is true. (Note that
the value of ϕ will be the same for all (ν, E) ∈ α, by Lemma 1(c).)

Definition 18 (Successor Region). Let α and β be distinct equivalence classes
of Γ ∗(X ∪Z). The equivalence class β is said to be the successor of α if and only
if, for each (ν, E) ∈ α, there exists a positive t ∈ IR such that (ν + t, E + t) ∈ β,
and (ν + t′, E + t′) ∈ α ∪ β for all t′ ≤ t. We then denote the equivalence class
β by succ(α).

The successor relation can be extended to augmented regions in the following
way: 〈s′, β〉 is the successor region of 〈s, α〉 if s′ = s and β = succ(α).

Definition 19 (End Class). Let α be an equivalence class of Γ ∗(X ∪Z). The
class α is an end class if and only if for all c ∈ X ∪ Z, c is not relevant for α.
Furthermore, for any s ∈ S, 〈s, α〉 is an end region.

We now define a region graph which captures both the probabilistic transi-
tions in G and the movement to new regions due to the passage of time.



Definition 20 (Region Graph). The region graph R(G, φ) is defined to be
the graph (V ∗,Steps∗,End∗). The vertex set V ∗ is the set of augmented regions,
and the set End∗ ⊆ V ∗ comprises of the set of end regions. The edge function
Steps∗ : V ∗ −→ Pf n(µ(V ∗)) includes two types of transitions: 3

passage of time: if α is not an end class and the invariant condition inv(s) is
satisfied by succ(α), then ps,α

succ ∈ Steps∗(〈s, α〉) where for any 〈s′, β〉 ∈ V ∗:

ps,α
succ(〈s′, β〉) =

{
1 if 〈s′, β〉 = 〈s, succ(α)〉
0 otherwise.

state transitions of G: ps,α
ps

∈ Steps∗(〈s, α〉) if there exists ps ∈ prob(s) and
α satisfies the enabling condition τs(ps) such that for any s′ ∈ S and equiv-
alence class β:

ps,α
ps

(〈s′, β〉) =
∑

C⊆X &
[C 7→0]α=β

ps(s′, C).

Definition 21 (Path on the Region Graph). Given an augmented region
〈s, α〉, a 〈s, α〉-path is a finite or infinite path of the form:

ω∗ = 〈s0, α0〉
ps0,α0

−−−−→ 〈s1, α1〉
ps1,α1

−−−−→ 〈s2, α2〉
ps2,α2

−−−−→ · · ·

where 〈s0, α0〉 = 〈s, α〉, si ∈ S, αi is an equivalence class of Γ ∗(X ∪ Z) and
psi,αi ∈ Steps∗(〈si, αi〉) such that psi,αi(〈si+1, αi+1〉) > 0.

We define adversaries on the region graph R(G, φ) as follows:

Definition 22 (Adversaries on the Region Graph). An adversary A∗ on
the region graph is a function A∗ mapping every finite path ω∗ of R(G, Φ) to a
distribution p such that p ∈ Steps∗(last(ω∗)).

We can then define the sets of paths Path∗fin and Path∗ful , and those associated
with an adversary, PathA∗

fin and PathA∗

ful , as before. Note that end regions take
the role of end states in the definition of the finite paths of Path∗ful and PathA∗

ful .
With each adversary A∗ we can associate a Markov chain. If A∗ is an ad-

versary of the region graph R(G, φ), then MCA∗
= (PathA∗

fin ,PA∗
) is a Markov

chain where, for the augmented regions 〈s, α〉, 〈s′, α′〉, and last(ω∗) = 〈s, α〉:

PA∗
(ω∗, ω′∗) =

{
ps,α(〈s′, α′〉) if A∗(ω∗) = ps,α and ω′∗ = ω∗

ps,α

−−→ 〈s′, α′〉
0 otherwise

Definition 23 (Divergent Adversaries on the Region Graph). An adver-
sary A∗ is divergent if and only if for all infinite paths ω∗ ∈ PathA∗

ful , there exist
infinitely many n ∈ IN such that one of the following holds:
3 If the model includes the distributions pinv

s then we need to add an extra condition
in the definition.



1. ω∗(n) is an end region,
2. ω∗(n + 1) is the successor region of ω∗(n).

Let A∗div be the set of divergent adversaries on the region graph.

Such divergent adversaries on the region graph R(G, φ) correspond to an
infinite number of adversaries on the underlying probabilistic timed structure
MG, some of which will be divergent in the sense of Definition 5. Conversely, for
any divergent adversary ofMG, there exists a corresponding divergent adversary
on R(G, φ). We observe that the notion of divergent paths of R(G, φ) induced by
adversaries in A∗div differs from that of fair paths of the region graph as presented
in [2] because of our assumption of weakly monotonic time.

As in, for example, [5,7], we define the function Prob∗ as the unique measure
on the σ-algebra F∗Path .

Model Checking. A method for model checking probabilistic timed graphs
against PTCTL formulae will now be presented. This approach takes the form
of three steps: construction of the region graph as a finite state representation of
the probabilistic timed graph in question, obtaining a formula of an extension of
the probabilistic logic PBTL, and then resolving this new formula on the region
graph.

First, we turn our attention to the structure over which the PBTL formula
will be resolved. Formulae of PBTL are interpreted over ‘PBTL-structures’,
which are concurrent probabilistic systems extended with a vertex labelling func-
tion. As our region graph R(G, φ) is a concurrent probabilistic system, adding
an appropriately defined labelling function will convert it into a PBTL-structure
which we will call a labelled region graph. We define AFφ as the set of minimal
atomic formulae appearing in the given PTCTL formula φ. For every atomic
formula in ϕ ∈ AFφ, we extend the set AP with the atomic proposition aϕ. We
denote the resulting set of atomic propositions by AP∗.

Definition 24 (Labelled Region Graph). For a given region graph R(G, φ),
we define its associated labelled region graph by (R(G, φ), L∗), where the vertex
labelling function, L∗ : V ∗ → 2AP∗ , is defined by the following. For a given
〈s, [ν, E ]〉, we let:

L∗(〈s, [ν, E ]〉) = {a ∈ L(s)} ∪ {aϕ | [ν, E ] satisfies ϕ, ϕ ∈ AFφ}

Next, we present an adjusted syntax of PBTL. Note that we omit PBTL’s
‘bounded until’ operator, because an equivalent, dense time concept can be de-
fined by nesting a PTCTL until operator within a freeze quantifier, and its ‘next
step’ operator, which has no analogue in the case of dense real-time. However,
we extend PBTL with a freeze quantifier expression.

Definition 25 (Syntax of PBTL). The syntax of PBTL is defined as follows:
Φ ::= true | a | Φ ∧ Φ | ¬Φ | z.Φ | [Φ ∃ U Φ]wλ | [Φ ∀ U Φ]wλ

where a ∈ AP∗ is an atomic proposition, z ∈ Z, λ ∈ [0, 1], and w is either ≥ or
>.



Definition 26 (Satisfaction Relation for PBTL). Given a labelled region
graph (R(G, φ), L∗) and a set A∗ of adversaries on R(G, φ), then for any aug-
mented region 〈s, [ν, E ]〉 of R(G, φ), and PBTL formula Φ, the satisfaction rela-
tion 〈s, [ν, E ]〉 |=A∗ Φ is defined inductively as follows:

〈s, [ν, E ]〉 |=A∗ true for all 〈s, [ν, E ]〉
〈s, [ν, E ]〉 |=A∗ a ⇔ a ∈ L∗(〈s, [ν, E ]〉)
〈s, [ν, E ]〉 |=A∗ Φ1 ∧ Φ2 ⇔ 〈s, [ν, E ]〉 |=A∗ Φ1 and 〈s, [ν, E ]〉 |=A∗ Φ2

〈s, [ν, E ]〉 |=A∗ ¬Φ ⇔ 〈s, [ν, E ]〉 6|=A∗ Φ
〈s, [ν, E ]〉 |=A∗ z.Φ ⇔ 〈s, [ν, E [z 7→ 0]]〉 |=A∗ Φ

〈s, [ν, E ]〉 |=A∗ [Φ1 ∃ U Φ2]wλ ⇔ Prob∗({ω |ω ∈ PathA∗

ful (〈s, [ν, E ]〉) &
ω |=A∗ Φ1 U Φ2}) w λ for some A∗ ∈ A∗

〈s, [ν, E ]〉 |=A∗ [Φ1 ∀ U Φ2]wλ ⇔ Prob∗({ω |ω ∈ PathA∗

ful (〈s, [ν, E ]〉) &
ω |=A∗ Φ1 U Φ2}) w λ for all A∗ ∈ A∗

ω |=A∗ Φ1 U Φ2 ⇔ there exists i ∈ IN, such that ω(i) |=A∗ Φ2,
and for all j ∈ IN such that 0 ≤ j < i and
ω(j) |=A∗ Φ1

Furthermore, a PBTL formula, Φ, can be derived from a PTCTL formula, φ,
by applying the following rules inductively:

Subformula of φi Subformula of Φi

true true
a a
ϕ aϕ

φ1 ∧ φ2 Φ1 ∧ Φ2

¬φ ¬Φ
z.φ z.Φ

[φ1 ∃ U φ2]wλ [Φ1 ∃ U Φ2]wλ

[φ1 ∀ U φ2]wλ [Φ1 ∀ U Φ2]wλ

Figure 2 presents the region construction of the probabilistic timed graph of
Figure 1. As before, the probabilistic transitions are linked with an arc at their
source vertex. In order for the reader to easily comprehend the behaviour of the
region graph, each vertex has been labelled with a constraint that is satisfied by
all of the clock valuations within that augmented region. Consider the following
PTCTL formula:

φ1 = [(y = 0)∃U [(x > 0)∃U(y = 0)]≥0.7]≥1.

φ1 can be interpreted over this graph by first converting it into the equivalent
PBTL formula:

Φ1 = [a(y=0)∃U [a(x>0)∃Ua(y=0)]≥0.7]≥1.

Φ1 is satisfied by this region graph, and therefore we conclude that the prob-
abilistic timed graph G1 satisfies φ1. Note that the following PTCTL formula,
φ2, is not satisfied by the region graph:

φ2 = [(y = 0)∃U [(x > 0)∃U(y = 0)]>0.7]≥1
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Figure 2. The region graph of the probabilistic timed graph G1.

Proposition 1. (Correctness of the model checking procedure) Given
the probabilistic timed graph G, state 〈s, ν〉 of MG and formula clock valuation
E satisfies the PTCTL formula φ if and only if vertex 〈s, [ν, E ]〉 of (R(G, φ), L∗)
satisfies the PBTL formula Φ, where Φ is derived from φ.

Proof. Before considering any temporal or probabilistic operators, we must
be convinced that subformulae comprising only of atomic propositions, atomic
formulae, boolean connectives and freeze quantifiers are resolved satisfactorily.
We proceed to show this by induction on the structure of φ.

If φ = true, then φ will be true for all states of MG and all formula clock val-
uations. Here φ derives Φ = true, which is true for all vertices in (R(G, φ), L∗).

If φ = a, where a ∈ AP, then it is true for state 〈s, ν〉 of MG and all
formula clock valuations if and only if 〈s, ν〉(a) = true. We also know that
〈s, ν〉(a) = true if and only if a ∈ L(s). By Definition 24, a ∈ L∗(〈s, [ν, E ]〉) if
a ∈ L(s), so Φ = a is true for the vertex 〈s, [ν, E ]〉.

If φ = ϕ, where ϕ is a minimal atomic formula, then the state 〈s, ν〉 of
MG and formula clock valuation E satisfies ϕ if ϕ[σ, E ] = true. Then, from
Definition 24, aϕ ∈ L∗(〈s, [ν, E ]〉). Because Φ = aϕ, and Φ is derived from φ,
both φ and Φ resolve to true in 〈s, ν〉, E and 〈s, [ν, E ]〉 respectively.

The cases of the boolean connectives, ¬ and ∧, are self-evident.
If φ = z.φ1, then, for a given state 〈s, ν〉 and formula clock valuation E that

satisfies φ, we know that the augmented region 〈s, [ν, E ]〉 will also satisfy z.Φ1,
by observing the following argument. By Definition 10

〈s, ν〉, E |=AG
div

z.φ ⇔ 〈s, ν〉, E [z 7→ 0] |=AG
div

φ

⇔ 〈s, [ν, E [z 7→ 0]]〉 |=A∗
div

Φ by induction
⇔ 〈s, [ν, E ]〉 |=A∗

div
z.Φ by Definition 26



Now we show that 〈s, ν〉, E |=AG
div

[φ1 ∃U φ2]wλ, if and only if 〈s, [ν, E ]〉 |=A∗
div

[Φ1 ∃ U Φ2]wλ. Our presentation is split into three sections:
1. showing that, for a path ω of MG, a corresponding path of (R(G, φ), L∗),

[ω], can be constructed. Furthermore, both of these paths have the same
corresponding notion of divergence; that is, ω is divergent if and only if [ω]
is divergent. It also follows that, given path ω∗ of the region graph, we can
construct ω such that [ω] = ω∗.

2. showing that the two paths ω and [ω] are associated with the same probability
value.

3. showing ω, E |=AG
div

φ1Uφ2 if and only if [ω] |=A∗
div

Φ1UΦ2, where the initial
augmented state of [ω] comprises of E .
1. Consider the following property, which shall henceforth be referred to as

the sequence property. Take a particular node of G, s ∈ S, and a clock valuation
(ν, E), and consider the sequence of equivalence classes, [ν + d1, E + d1], ..., [ν +
dk, E+dk], where each equivalence class satisfies inv(s), for all 1 ≤ i ≤ k, di ∈ IR,
and for all 1 ≤ l < k, succ([ν+dl, E+dl]) = [ν+dl+1, E+dl+1]. Then, for the time
value d ∈ IR, where d1 ≤ d ≤ dk, we know that (ν + d, E + d) ∼=∗ (ν + dj , E + dj),
for some 1 ≤ j ≤ k. We can then write (ν + d, E + d) ∈ [ν + dj , E + dj ].

The sequence property allows us to state the following. Consider the path ω
of MG, such that:

ω = 〈s0, ν0〉
t0,p0−−−→ 〈s1, ν1〉

t1,p1−−−→ · · ·
Take a particular i ≥ 0. From 〈si, νi〉, and letting ti time units elapse, we may
cross into a number of equivalence classes before making the next edge transition.
We let mi be this number. Let vi0 = 〈si, [νi, E + Dω(i)]〉, and vij = 〈si, [νi +
dj , E + Dω(i) + dj ]〉 for some 1 ≤ j ≤ mi, and dj ∈ IR. Then we can construct
the finite path [ωi] of the region graph, such that:

[ωi] = vi0
p

vi0
succ−−−→ vi1

p
vi1
succ−−−→ · · · vimi

p
vimi
psi−−−→ v(i+1)0 .

Let [ω] = [ω0][ω1] · · · be the concatenation of all such segments.
This construction also works in the opposite direction. Let 〈s, α1〉 → · · · →

〈s, αn〉 be a path through the region graph such that all of its edges correspond to

ps,αi
succ transitions. Now suppose that 〈s, αn〉

ps,α
ps−−→ 〈s′, α′〉. Then, assuming that

we have a partially constructed, finite path ω of MG such that |ω| = i, and
(νi, E + Dω(i)) ∈ αi, then it follows that ω can be extended by the transition

〈si, νi〉
(ti,pi)−−−−→ 〈si+1, νi+1〉, where ti ∈ IR and pi is derived from ps in the usual

way. Therefore, we have a method for constructing infinite or finite paths of MG

from paths of (R(G, φ), L∗). We note that such paths may be finite if the region
graph reaches an end class from which no transitions are enabled, and that paths
induced by divergent adversaries of the region graph will guarantee the existence
of corresponding time-divergent paths of MG. Then it follows that, given ω∗ of
(R(G, φ), L∗), we can construct ω of MG such that [ω] = ω∗.

2. Now we must show that the probability value associated with the paths ω

and [ω] are the same. Consider the segment of ω, ωi = 〈si, νi〉
ti,pi−−−→ 〈si+1, νi+1〉,

and the segment of [ω]:



[ωi] = vi0
p

vi0
succ−−−→ vi1

p
vi1
succ−−−→ · · · vimi

p
vimi
psi−−−→ v(i+1)0 .

We wish to show that Probfin(ωi) = Prob∗fin([ωi]). Consider the transition vij
p

vij
succ−−−→

vi(j+1), for 1 ≤ j < mi. Then, from the sequence property and the above con-
struction of [ω], we know that vi(j+1) is a time successor of vij , and therefore
p

vij
succ = 1. Therefore, our problem reduces to showing that:

Probfin(〈si, νi〉
ti,pi−−−→ 〈si+1, νi+1〉) = Prob∗fin(vimi

p
vimi
psi−−−→ v(i+1)0) .

By the definitions of Prob and Prob∗, this reduces to showing that:

pi(〈si+1, νi+1〉) = p
vimi
psi

(〈si, [νi+1, E +Dω(i + 1)]〉) .

Firstly, we note that νi+ti ∈ [νi+dmi ]. Because all of the system clock valuations
in [νi + dmi ] will enable the same probability distributions, we know that the
same distributions are enabled in 〈si, νi+ti〉 and vimi

= 〈si, [νi+dmi
, E+Dω(i)+

dmi
]〉. Furthermore, the move from 〈si, νi + ti〉 to 〈si+1, νi+1〉 in MG, and from

vimi
to v(i+1)0 in R(G, φ), will correspond to the choice of the same probability

distribution of G. We denote this distribution by psi . Recall from Definition 13
that:

pi(〈si+1, νi+1〉) =
∑

C⊆X &
(νi+ti)[C 7→0]=νi+1

psi
(si+1, C) ,

and from the definition of the region graph:
psi,α

psi
(〈si+1, β〉) =

∑
C⊆X &

α[C 7→0]=β

psi
(si+1, C) ,

where α = [νi + dmi , E + Dω(i) + dmi ] and β = [νi+1, E + Dω(i + 1) + di+1].
We know that, for any C ⊆ X , (νi + ti)[C 7→ 0] ∈ [νi + dmi

][C 7→ 0], and,
trivially, that νi+1 ∈ [νi+1], and so the combinations of C ⊆ X used in both
summations above will be the same. Therefore, the same probability values will
be summed in the case of MG and that of R(G, φ), and we can conclude that
pi(〈si+1, νi+1〉) = psi,α

psi
(〈si+1, β〉). We can repeat such a process for all i ∈ IN and,

by the definitions of Prob and Prob∗, show that the probability value associated
with the paths ω and [ω] are the same.

3. Next we prove ω, E |=AG
div

φ1Uφ2 if and only if [ω] |=A∗
div

Φ1UΦ2. If ω(i) =
〈si, νi〉 for all i ∈ IN, then ω, E |=AG

div
φ1Uφ2

⇔ ∃i ∈ IN and 0 ≤ t ≤ ti such that ω(i) + t, E +Dω(i) + t |=AG
div

φ2

and ∀j ∈ IN and t′ ∈ IR such that t′ ≤ tj & (j, t′) ≺ (i, t),
ω(j) + t′, E +Dω(j) + t′ |=AG

div
φ1 ∨ φ2

by Definition 10
⇔ ∃i ∈ IN and 0 ≤ t ≤ ti such that 〈si, [νi + t, E +Dω(i) + t]〉 |=A∗

div
Φ2

and ∀j ∈ IN and t′ ∈ IR such that t′ ≤ tj & (j, t′) ≺ (i, t),
〈sj , [νj + t′, E +Dω(j) + t′]〉 |=A∗

div
Φ1 ∨ Φ2

by induction
⇔ ∃i′ ∈ IN such that [ω](i′) |=A∗

div
Φ2 and [ω](j′) |=A∗

div
Φ1 ∨ Φ2 ∀j′ ≤ i′

by construction of [ω]
⇔ [ω] |=A∗

div
Φ1UΦ2 by Definition 26



It follows by the definition of adversaries, both on probabilistic timed struc-
tures and the region graph, and the construction of 1, that for all A ∈ AG

div ,
there exists an adversary [A] ∈ A∗div such that, for some E ,

Path [A]
ful (〈s, [ν, E ]〉) = {[ω] | ω ∈ PathA

ful(〈s, ν〉)}.

Conversely, given a path in the region graph, we can construct a path of MG

(see [2]). Using this construction, we can show that, for all adversaries A∗ ∈ A∗div
of the region graph, there exists an adversary A ∈ AG

div such that [A] = A∗.
From 2, we know that the probability values associated with ω and [ω] are

the same. Then we can conclude that:

Prob∗{ω∗ | ω∗ ∈ PathA∗

ful } = Prob{ω | ω ∈ PathA
ful}

for some A ∈ AG
div . ut

Using the transformation presented above, we can obtain a PBTL formula,
Φ, from the PTCTL formula, φ. Now we can use the model checking algorithm
of [5] in order to verify whether the PBTL formula Φ holds in an initial state of
the region graph, 〈sinit , [ν0, E ]〉, where, for all x ∈ X , (ν0, E)(x) = 0 and E is an
arbitrary formula clock valuation.

7 Conclusions

We conclude with a brief analysis of the complexity of our method. The time
complexity of PBTL model checking is polynomial in the size of the system
(measured by the number of states and transitions) and linear in the size of
the formula [5] (see also the recent improvement [4]). Since the translation from
PTCTL to the extended PBTL has no effect on the size of the formula, it follows
that the model checking for PTCTL against probabilistic timed systems will be
polynomial in the size of the region graph and linear in the size of the PTCTL
formula. Note that the addition of probability distributions to timed automata
does not significantly increase the size of the region graph over the size of the
non-probabilistic region graph, and that the freeze quantifier formulae we have
added to PBTL can be handled in a straightforward manner.

Future work could address the potential inefficiencies of this method. Model
checking of real-time systems is expensive, with its complexity being exponential
in the number of clocks and the magnitude of their upper bounds (denoted by
kc in our presentation). However, a number of techniques for combating this
inefficiency have been developed (see [16]), and could be applied in this context.

Another potential avenue of research is the application of the methods of
this paper to hybrid automata, a model for discrete-continuous systems which
allows more general continuous dynamics than timed automata. In particular, it
is known that certain classes of hybrid automata are reducible to timed automata
[12], and other classes have finite bisimilarity quotients [15], both of which may
be particularly adaptable to probabilistic extensions.
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