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Abstract. In an expected reachability-time game (ERTG) two players, Min and
Max, move a token along the transitions of a probabilistic timed automaton, so as
to minimise and maximise, respectively, the expected time to reach a target. These
games are concurrent since at each step of the game both players choose a timed
move (a time delay and action under their control), and the transition of the game
is determined by the timed move of the player who proposes the shorter delay.
A game is turn-based if at any step of the game, all available actions are under
the control of precisely one player. We show that while concurrent ERTGs are
not always determined, turn-based ERTGs are positionally determined. Using the
boundary region graph abstraction, and a generalisation of Asarin and Maler’s
simple function, we show that the decision problems related to computing the
upper/lower values of concurrent ERTGs, and computing the value of turn-based
ERTGs are decidable and their complexity is in NEXPTIME ∩ co-NEXPTIME.

1 Introduction

Two-player zero-sum games on finite automata, as a mechanism for supervisory
controller synthesis of discrete event systems, were introduced by Ramadge and
Wonham [1]. In this setting the two players—called Min and Max—represent the
controller and the environment, and control-program synthesis corresponds to finding a
winning (or optimal) strategy of the controller for some given performance objective. If
the objectives are dependent on time, e.g. when the objective corresponds to completing
a given set of tasks within some deadline, then games on timed automata are a well-
established approach for controller synthesis, see e.g. [2,3,4,5,6].

In this paper we extend this approach to objectives that are quantitative both in
terms of timed and probabilistic behaviour. Probabilistic behaviour is important in
modelling, e.g., faulty or unreliable components, the random coin flips of distributed
communication and security protocols, and performance characteristics. We consider
games on probabilistic timed automata (PTAs) [7,8,9], a model for real-time systems
exhibiting nondeterministic and probabilistic behaviour. We concentrate on expected
reachability-time games (ERTGs), which are games on PTAs where the performance
objective concerns the minimum expected time the controller can ensure for the system
to reach a target, regardless of the uncontrollable (environmental) events that occur.
This approach has many practical applications, e.g., in job-shop scheduling, where
machines can be faulty or have variable execution time, and both routing and task graph
scheduling problems. For real-life examples relevant to our setting, see e.g. [10,6].



2 Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and Ashutosh Trivedi

In the games that we study, a token is placed on a configuration of a PTA and a
play of the game corresponds to both players proposing a timed move of the PTA, i.e.
a time delay and action under their control (we assume each action of the PTA is under
the control of precisely one of the players). Once the players have made their choices,
the timed move with the shorter delay4 is performed and the token is moved according
to the probabilistic transition function of the PTA. Players Min and Max choose their
moves in order to minimise and maximise, respectively, the payoff function (the time
till the first visit of a target in the case of ERTGs). It is well known, see, e.g. [11], that
concurrent timed games are not determined, which means the upper value of the game
(the minimum expected time to reach a target that Min can ensure) is strictly greater
that the lower value of the game (the maximum expected time to reach a target that
Max can ensure). A game is determined if the lower and upper values are equal, and in
this case, the optimal value of the game exists and equals the upper and lower values.
We show that a subclass of ERTGs, called turn-based ERTGs, where at each step of
the game only one of the players has available actions are positionally determined, i.e.
both players have ε-optimal (optimal up to a given precision ε>0) positional (history-
independent and non-randomised) strategies.

The problem we consider is inspired by Asarin and Maler [2] who studied the
brachystochronic problem for timed automata. This work focused on reachability-time
games, i.e. games on a timed automata where the objective concerns the time to reach
a target. The techniques of [2] exploit properties of a special class of functions called
simple functions. The importance of simple functions is also observed in [12] in the
context of one-player games. Simple functions have also enabled the computation
of a uniform solution for (turn-based) reachability-time games [13] and the proof of
correctness of game-reduction for turn-based average-time games [14]. However, we
show that the concept of simple functions is not sufficient in the setting of PTAs.
Contribution. We show that the problem of deciding whether the upper (lower, or the
optimal when it exists) value of an ERTG is at most a given bound is decidable. An
important contribution of the paper is the generalisation of simple functions to quasi-
simple functions. By using this class of functions and the boundary region abstraction
[15,16], we give a novel proof of positional determinacy of turn-based ERTGs. We
demonstrate that the problem of finding the upper and lower value of general ERTGs
is in NEXPTIME ∩ co-NEXPTIME. An EXPTIME-hardness lower bound follows
from the EXPTIME-completeness of the corresponding optimisation problem [16].
From [17] it follows that the problem is not NEXPTIME-hard, unless NP equals co-
NP. Extending this work we get the similar results for expected discounted-time games.
Related Work. Hoffman and Wong-Toi [18] were the first to define and solve optimal
controller synthesis problem for timed automata. For a detailed introduction to the topic
of qualitative games on timed automata, see e.g. [19]. Asarin and Maler [2] initiated
the study of quantitative games on timed automata by providing a symbolic algorithm
to solve reachability-time games. The work of [20] and [13] show that the decision
version of the reachability-time game is EXPTIME-complete for timed automata with

4 Min and Max represent two different forms of non-determinism called angelic and demonic.
To prevent the introduction of a third form, we assume the move of Max (the environment) is
taken if the delays are equal. The converse can be used without changing the presented results.
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at least two clocks. The tool UPPAAL Tiga [5] is capable of solving reachability and
safety objectives for games on timed automata. Jurdziński and Trivedi [14] show the
EXPTIME-completeness for average-time games on automata with two or more clocks.

A natural extension of reachability-time games are games on priced timed automata
where the objective concerns the cumulated price of reaching a target. Both [3] and [4]
present semi-algorithms for computing the value of such games for linear prices. In [21]
the problem of checking the existence of optimal strategies is shown to be undecidable
with [22] showing undecidability holds even for three clocks and stopwatch prices.

We are not aware of any previous work studying two-player quantitative games on
PTAs. For a significantly different model of stochastic timed games, deciding whether
a target is reachable within a given bound is undecidable [23]. Regarding one-player
games on PTAs, [16] reduce a number of optimisation problems on concavely-priced
PTAs to solving the corresponding problems on the boundary region abstraction and
[24] solve expected reachability-price problems for linearly-priced PTAs using digital
clocks. In [25] the problem of deciding whether a target can be reached within a given
price and probability bound is shown to be undecidable for priced PTAs with three
clocks and stopwatch prices. By a simple modification of the proofs in [25] it can
be demonstrated that checking the existence of optimal strategies is undecidable for
reachability-price turn-based games on priced (probabilistic) timed automata with three
clocks and stopwatch prices.

A full version of this paper, including proofs is also available [26], while a
preliminary version appeared as [27].

2 Expected Reachability Games

Expected reachability games (ERGs) are played between two players Min and Max
on a state-transition graph, whose transitions are nondeterministic and probabilistic, by
jointly resolving the nondeterminism to move a token along the transitions of the graph.
The objective for player Min in the game is to reach the final states with the smallest
accumulated reward, while Max tries to do the opposite.

Before we give a formal definition, we need to introduce the concept of discrete
probability distributions. A discrete distribution over a (possibly uncountable) set Q is
a function d : Q→[0, 1] such that supp(d)= {q ∈ Q | d(q)>0} is at most countable and∑
q∈Q d(q)=1. Let D(Q′) denote the set of all discrete distributions over Q. We say a

distribution d ∈ D(Q) is a point distribution if d(q)=1 for some q ∈ Q.

Definition 1. An ERG is a tuple G=(S, F,AMin, AMax, pMin, pMax, πMin, πMax) where:

– S is a (possibly uncountable) set of states including a set of final states F ;
– AMin and AMax are (possibly uncountable) sets of actions controlled by players

Min and Max and ⊥ is a distinguished action such that AMin ∩AMax = {⊥};
– pMin : S×AMin → D(S) and pMax : S×AMax → D(S) are the partial

probabilistic transition functions for players Min and Max such that pMin(s,⊥)
and pMax(s,⊥) are undefined for all s ∈ S;

– πMin : S×AMin → R≥0 and πMax : S×AMax → R≥0 are the reward functions
for players Min and Max.
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We say that the ERG is finite if both S and A are finite. For any state s, we let
AMin(s) denote the set of actions available to player Min in s, i.e., the actions
a ∈ AMin for which pMin(s, a) is defined, letting AMin(s)=⊥ if no such action
exists. Similarly, AMax(s) denotes the actions available to player Max in s and we let
A(s)=AMin(s)×AMax(s). We say that s is controlled by Min (Max) if AMax(s)={⊥}
(AMin(s)={⊥}) and the game G is turn-based if there is a partition (SMin, SMax) of S
such that all states in SMin (SMax) are controlled by Min (Max).

A game G starts with a token in some initial state and players Min and Max construct
an infinite play by repeatedly choosing enabled actions, and then moving the token to a
successor state determined by their probabilistic transition functions where the reward
of the move is determined by their reward functions. More precisely, if in state s players
Min and Max choose actions a and b respectively, then if πMin(s, a)<πMax(s, b) or b =
⊥ the probabilistic transition function and reward value are determined by Min’s choice,
i.e. by the transition function pMin(s, a) and reward value πMin(s, a), and otherwise are
determined by Max’s choice. Formally we introduce the following auxiliary functions
of an ERG which return the transition function and reward value of the game.

Definition 2. Let G be an ERG. The probabilistic transition and reward functions p :
S×AMin×AMax→D(S) and π : S×AMin×AMax→R≥0 of G are such that for any
s ∈ S and (a, b) ∈ AMin:

p(s, a, b) =

 undefined if a = b = ⊥
pMin(s, a) if a 6= ⊥ and either b = ⊥ or πMin(s, a)<πMax(s, b)
pMax(s, b) otherwise

π(s, a, b) =

{
πMin(s, a) if b = ⊥ or πMin(s, a)<πMax(s, b)
πMax(s, b) otherwise.

From the conditions imposed on the probabilistic transition function, it follows that
(a, b) ∈ A(s) if and only if p(s, a, b) is defined. Using these definitions, if in state s
the action pair (a, b) ∈ A(s) is chosen, then the probability of making a transition to s′

equals p(s′|s, a, b)def
=p(s, a, b)(s′) and the reward equals π(s, a, b).

A transition of G is a tuple (s, (a, b), s′) such that p(s′|s, a, b)>0 and a play is
an finite or infinite sequence 〈s0, (a1, b1), s1, . . .〉 such that (si, (ai+1, bi+1), si+1) is a
transition for all i ≥ 0. For a finite play ρ = 〈s0, (a1, b1), s1, . . . , sk〉, let last(ρ) denote
the last state sk of the play. We write Play (Playfin ) for the sets of (finite) plays in G
and Play(s) (Playfin(s)) for the sets of (finite) plays starting from s ∈ S.

A strategy of Min is a function µ : Playfin→D(AMin) such that supp(µ(ρ)) ⊆
AMin(last(ρ)) for all finite plays ρ ∈ Playfin , i.e. for any finite play, a strategy returns
a distribution over actions available to Min in the last state of the play. A strategy χ
of Max is defined analogously and we let ΣMin and ΣMax denote the sets of strategies
of Min and Max, respectively. A strategy σ is pure if σ(ρ) is a point distribution for
all ρ ∈ Playfin , while it is stationary if last(ρ)=last(ρ′) implies σ(ρ)=σ(ρ′) for all
ρ, ρ′ ∈ Playfin . A strategy is positional if it is pure and stationary and let ΠMin and
ΠMax denote the set of positional strategies of Min and Max, respectively.

For any state s and strategy pair (µ, χ) ∈ ΣMin×ΣMax, let Playµ,χ(s) denote the
infinite plays in which Min and Max play according to µ and χ, respectively. Using
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standard results from probability theory, see e.g., [28], we can construct a probability
measure Probµ,χs over the set Playµ,χ(s). Let Xi and Yi denote the random variables
corresponding to ith state and action of a play (i.e., for play 〈s0, (a1, b1), s1, . . .〉
we have Xi=si and Yi+1=(ai+1, bi+1)), and given a real-valued random variable
f : Play → R, let Eµ,χs {f} denote the expected value of f with respect to the
probability measure Probµ,χs . To keep the presentation simple, for the rest of the paper
we only consider transient stochastic games [30, Chapter 4] (games where every play
is finite with probability 1) and for this reason we make the following assumption5.
Assumption 1. For any strategy pair (µ, χ) ∈ ΣMin×ΣMax, and state s ∈ S there is
q > 0 and n ∈ N such that Probµ,χs (Xn ∈ F ) ≥ q.
Recall that the objective for Min is to reach a final state with the smallest accumulated
reward, while for Max it is the opposite. Starting from s, if Min uses the strategy µ and
Max χ, then the expected reward accumulated before reaching a final state is given by:

EReachµ,χ(s)
def
= Eµ,χs

{∑min{k−1 |Xk∈F}
i=0 π(Xi, Yi+1)

}
.

Observe when starting at state s, Max can choose actions such that the expected
reward is at least a value arbitrarily close to supχ∈ΣMax

infµ∈ΣMin
EReachµ,χ(s).

This is called the lower value Val∗(s) of the game when starting at state s. For
χ ∈ ΣMax let Valχ(s)= infµ∈ΣMin EReach

µ,χ(s). We say χ is optimal (ε-optimal),
if Valχ(s)=Val∗(s) (Valχ(s)≥Val∗(s)−ε) for all s ∈ S. Similarly, Min can make
choices such that the expected reward is at most a value arbitrarily close to the upper
value Val∗(s)= infµ∈ΣMin

supχ∈ΣMax
EReachµ,χ(s). In addition, for µ ∈ ΣMin, we can

define Valµ(s) and say when µ is optimal or ε-optimal.
A game G is determined if Val∗(s)=Val∗(s) for all s ∈ S and then we say that the

value of the game exists and equals Val(s)=Val∗(s)=Val∗(s). If G is determined, then
each player has an ε-optimal strategy for all ε>0. A game is positionally determined if

Val(s)= infµ∈ΠMin
supχ∈ΣMax

EReachµ,χ(s) = supχ∈ΠMax
infµ∈ΣMin

EReachµ,χ(s)

for all s ∈ S. It is straightforward to see that if a game is positionally determined, then
both players have positional ε-optimal strategies for all ε>0.

Optimality Equations. We complete this section by introducing optimality equations
for ERGs. For a game G and function P : S→R≥0, we say that P is a solution of the
optimality equations Opt∗(G), and write P |=Opt∗(G), if for any s ∈ S:

P (s) =

 0 if s ∈ F
inf

α∈AMin(s)

{
sup

β∈AMax(s)

{
π(s, α, β) +

∑
s′∈S

p(s′|s, α, β) · P (s′)
}}

if s 6∈ F .

and P is a solution of the optimality equations Opt∗(G), and write P |=Opt∗(G), if for
any s ∈ S:

P (s) =

 0 if s ∈ F
sup

β∈AMax(s)

{
inf

α∈AMin(s)

{
π(s, α, β) +

∑
s′∈S

p(s′|s, α, β) · P (s′)
}}

if s 6∈ F .

5 Techniques (see, e.g., positive stochastic games [30, Chapter 4]) for lifting such an assumption
are orthogonal to the main idea presented in this paper.
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The following result demonstrate the correspondence between these equations and the
lower and upper values of the expected reachability game.

Proposition 3. For any ERG G and bounded function P : S→R≥0 :

– if P |= Opt∗(G), then Val∗(s) = P (s) for all s ∈ S and for any ε>0 player Min
has a positional strategy µε such that Valµε(s)≤P (s)+ε for all s ∈ S;

– if P |= Opt∗(G), then Val∗(s)=P (s) for all s ∈ S and for any ε>0 player Max
has a positional strategy χε such that Valχε(s)≥P (s)−ε for all s ∈ S.

If G is turn-based, then the equations Opt∗(G) and Opt∗(G) are the same and we write
Opt(G) for these equations. The following is a direct consequence of Proposition 3.

Proposition 4. If G is a turn-based, P : S→R≥0 is a bounded and P |= Opt(G), then
Val(s)=P (s) for all s ∈ S and for any ε>0 both players have ε-optimal strategies.

3 Expected Reachability-Time Games

Expected reachability-time games (ERTGs) are played on the infinite graph of a
probabilistic timed automaton where Min and Max choose their moves so that the
expected time to reach a final state is minimised or maximised, respectively. Before
defining ERTGs, we introduce the concept of clocks, constraints, regions, and zones.

Clocks. Let C be a finite set of clocks. A clock valuation on C is a function ν : C→R≥0
and we write V for the set of clock valuations. Abusing notation, we also treat a
valuation ν as a point in R|C|. If ν ∈ V and t ∈ R≥0 then we write ν+t for the
clock valuation defined by (ν+t)(c) = ν(c)+t for all c ∈ C. For C ⊆ C, we write
ν[C:=0] for the valuation where ν[C:=0](c) equals 0 if c ∈ C and ν(c) otherwise. For
X ⊆ V , we write X for the smallest closed set in V containing X . Although clocks are
usually allowed to take arbitrary non-negative values, w.l.o.g [31] we assume that there
is an upper bound K such that for every clock c ∈ C we have that ν(c) ≤ K.

Clock constraints. A clock constraint over C is a conjunction of simple constraints of
the form c ./ i or c−c′ ./ i, where c, c′ ∈ C, i ∈ N, i≤K, and ./ ∈ {<,>,=,≤,≥}.
For ν ∈ V , let SCC(ν) be the finite set of simple constraints which hold in ν.

Clock regions. A clock region is a maximal set ζ⊆V such that SCC(ν)=SCC(ν′) for
all ν, ν′ ∈ ζ. We write R for the finite set of clock regions. Every clock region is
an equivalence class of the indistinguishability-by-clock-constraints relation, and vice
versa. We write [ν] for the clock region of ν and, if ζ=[ν], write ζ[C:=0] for [ν[C:=0]].

Clock zones. A clock zone is a convex set of clock valuations, which is a union of a set
of clock regions. We write Z for the set of clock zones. A set of clock valuations is a
clock zone if and only if it is definable by a clock constraint. Observe that, for every
clock zone W , the set W is also a clock zone.

We now introduce ERTGs which extend classical timed automata [32] with discrete
distributions and a partition of the actions between two players Min and Max.

Definition 5 (ERTG Syntax). A (concurrent) expected reachability-time game (ERTG)
is a tuple T =(L,LF , C, Inv ,Act ,ActMin,ActMax, E, δ) where
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– L is a finite set of locations including a set of final locations LF ;
– C is a finite set of clocks;
– Inv : L→ Z is an invariant condition;
– Act is a finite set of actions and {ActMin,ActMax} is a partition of Act;
– E : L×Act → Z is an action enabledness function;
– δ : L×Act → D(2C×L) is a probabilistic transition function.

When we consider an ERTG as an input of an algorithm, its size is understood as the
sum of the sizes of encodings of L, C, Inv , Act , E, and δ. As usual [33], we assume
that probabilities are expressed as ratios of two natural numbers, each written in binary.

An ERTG is turn-based if for each location `, only one player has enabled actions,
i.e.E(`, a)=∅ for all a ∈ ActMin or a ∈ ActMax. In this case, we write LMin and LMax

for the set of locations where players Min and Max, respectively, have an enabled action.
A one-player ERTG is a turn-based ERTG where one of the player does not control any
location, i.e., eitherLMin=∅ orLMax=∅. A (non-probabilistic) reachability-timed game
is an ERTG such that δ(`, a) is a point distribution for all ` ∈ L and a ∈ Act .

A configuration of an ERTG is a pair (`, ν), where ` is a location and ν a clock
valuation such that ν ∈ Inv(`). For any t ∈ R, we let (`, ν)+t equal the configuration
(`, ν+t). In a configuration (`, ν), a timed action (time-action pair) (t, a) is available
if and only if the invariant condition Inv(`) is continuously satisfied while t time
units elapse, and a is enabled (i.e. the enabling condition E(`, a) is satisfied) after
t time units have elapsed. Furthermore, if the timed action (t, a) is performed, then
the next configuration is determined by the probabilistic transition relation δ, i.e. with
probability δ[`, a](C, `′) the clocks in C are reset and we move to the location `′.

An ERTG starts at some initial configuration and Min and Max construct an
infinite play by repeatedly choosing available timed actions (ta, a) ∈ R≥0×ActMin

and (tb, b) ∈ R≥0×ActMax proposing ⊥ if no timed action is available. The player
responsible for the move is Min if the time delay of Min’s choice is less than that of
Max’s choice or Max chooses ⊥, and otherwise Max is responsible. We assume the
players cannot simultaneously choose ⊥. We now present the formal semantics which
is an ERG with potentially infinite number of states and actions. It is straightforward to
show the semantics of a turn-based ERTG is a turn-based ERG.

Definition 6 (ERTG Semantics). Let T be an ERTG. The semantics of T is given the
ERG [[T ]]=(S, F,AMin, AMax, pMin, pMax, πMin, πMax) where

– S ⊆ L×V is the (possibly uncountable) set of states such that (`, ν) ∈ S if and
only if ν ∈ Inv(`) and F = {(`, ν) ∈ S | ` ∈ LF} is the set of final states;

– AMin = (R≥0×ActMin) ∪ {⊥} and AMax = (R≥0×ActMax) ∪ {⊥} are the sets
of timed actions of players Min and Max;

– for ? ∈ {Min,Max}, (`, ν) ∈ S and (t, a) ∈ A? the probabilistic transition
function p? is defined when ν+t′ ∈ Inv(`) for all t′≤t and ν+t ∈ E(`, a) and for
any (`, ν′):

p?((`, ν), (t, a))((`
′, ν′)) =

∑
C⊆C∧(ν+t)[C:=0]=ν′ δ[`, a](C, `′);

– for ? ∈ {Min,Max}, s ∈ S and (t, a) ∈ AMin the reward function π? is given by
π?(s, (t, a))=t.
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`0x,y≤2 `1

0<y≤2, x≤2
`F x,y≤2

x > 1
b

0.50.5, x:=0

y > 1

a

y > 1

c

0.2, y:=0

0.8x = 2
a

Fig. 1. An expected reachability-time game.

The sum in the definitions of pMin and pMax is used to capture the fact that resetting
different subsets of C may result in the same clock valuation (e.g. if all clocks are
initially zero, then we end up with the same valuation, no matter which clocks we
reset). Also, notice that the reward function of the ERG corresponds to the elapsed time
of each move. For any ERTG T , to ensure Assumption 1 holds on the ERG [[T ]], we
require only that the following weaker assumption holds on [[T ]].

Assumption 2. For any strategy pair (µ, χ) ∈ ΣMin×ΣMax, and state s ∈ S we have
that limn→∞ Probµ,χs (Xn ∈ F ) = 1.

Example 7. Consider the ERTG in Figure 1; we use solid and dashed lines to indicate
actions controlled by Min and Max respectively. The shaded circle denotes the final
location. Considering location `1, the invariant condition is 0<y≤2∧x≤2, actions a
and c are enabled when y>1 and, if a is taken, we move to `F , while if c is taken, with
probability 0.2 we move to `0 and reset y, and with probability 0.8 move to `F .

Starting in the configuration6 (`0, (0, 0)) and supposing Min’s strategy is to choose
(1.1, b) (i.e., wait 1.1 time units before performing action b) in location `0 and then
choose (0.5, a) in location `1, while Max’s strategy in location `1 is to choose (0.2, c).
One possible play under this strategy pair is 〈(`0,(0,0)), ((1.1,b),⊥), (`1,(0,1.1)),
((0.5,a), (0.2,c)), (`0,(0.2,0)), ((1.1,b),⊥), (`F , (1.3,1.1))〉 which has probability
0.5·0.2·0.5 = 0.05 and time 1.1+0.2+1.1 = 2.4 of reaching the final location. Using
the optimality equations Opt∗(G) and Opt∗(G), we obtain upper and lower value in
state (`0, (0, 0)) of 10

9 and 1, respectively. For details of the equations see [26].

Example 7 above demonstrates that in general expected reachability-time games are
not determined. However, our results yield a novel proof of the following fundamental
result for turn-based expected reachability-time games.

Theorem 8. Turn-based ERTGs are positionally determined.

Since the general ERTG are not determined, we study the following decision problem
related to computing the upper-value of a configuration. All presented results also apply
to the corresponding lower value problem, and the value problem, if the value exists.

Definition 9 (ERTG Decision Problem). The decision problem for an ERTG T , a
state s of [[T ]], and a bound T ∈ Q is to decide whether Val∗(s)≤T .

We now present the second fundamental result of the paper.

6 We suppose the first (second) coordinate in a clock valuation correspond to the clock x (y).
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Theorem 10. The ERTG decision problem is in NEXPTIME ∩ co-NEXPTIME.

From [16] we know that the ERTG problem is EXPTIME-complete even for one
player ERTGs with two or more clocks. Hence the ERTG problem for general (two-
player, concurrent) ERTG is at least EXPTIME-hard. Moreover, from the results of [17]
and [29] it follows that ERTG problem is not NEXPTIME-hard, unless NP = co-NP.

4 Proofs of Theorems 8 and 10

This section is dedicated to the correctness of Theorems 8 and 10. We begin by defining
boundary region abstraction (BRA) (an instance of an ERG) of an ERTG. In Section 4.2
we show that the solution of the optimality equations for a BRA always exists and is
unique. While Section 4.3 demonstrates (Theorem 15) that the solution of the optimality
equations of the BRA can be used to construct a solution of the optimality equations of
the ERTG. Using these results we can then prove our main results.

Proof outline of Theorem 8. Using Theorem 15, a boudned solution of the equations
for the upper and lower values of a ERTG always exists, and hence Proposition 3
implies both players have positional ε-optimal strategies. Since for turn-based ERTGs
both equations are equivalent, from Proposition 4 positional determinacy of turn-based
ERTGs follows.

Proof outline of Theorem 10. From Theorem 15 the upper value of a state of a ERTG can
be derived from that of the boundary region abstraction. Since in the BRA the sub-graph
of reachable states from any state is finite (Lemma 12) and its size is at most exponential
in size of its ERTG, the upper value of a state in BRA can be computed by analysing
an ERG of exponential size. The membership of the ERTG problem in NEXPTIME
∩ co-NEXPTIME then follows from the fact that a non-deterministic Turing machine
needs to guess a (rational) solution of optimality equations only for exponentially many
states, and it can verify in exponential time whether it is indeed a solution.

4.1 Boundary region abstraction

The region graph [32] is useful for solving time-abstract optimisation problems on
timed automata. The region graph, however, is not suitable for solving timed optimisa-
tion problems and games on timed automata as it abstracts away the timing information.
The corner-point abstraction [34] is an abstraction of timed automata which retains
some timing information, but it is not convenient for the dynamic programming based
proof techniques used in this paper. The boundary region abstraction (BRA) [13],
a generalisation of the corner-point abstraction, is more suitable for such proof
techniques. More precisely, we need to prove certain properties of values in ERTG,
which we can do only when reasoning about all states of the ERTG. In the corner point
abstraction we cannot do this since it represents only states corresponding to corner
points of regions. Here, we generalise the BRA of [13] to handle ERTG.

Timed Successor Regions. Recall that R is the set of clock regions. For ζ, ζ ′ ∈ R, we
say that ζ ′ is in the future of ζ, denoted ζ ∗−→ ζ ′, if there exist ν ∈ ζ, ν′ ∈ ζ ′ and
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t ∈ R≥0 such that ν′ = ν+t and say ζ ′ is the time successor of ζ if ν+t′ ∈ ζ ∪ ζ ′ for
all t′ ≤ t and write ζ → ζ ′, or equivalently ζ ′ ← ζ, to denote this fact. For regions
ζ, ζ ′ ∈ R such that ζ ∗−→ ζ ′ we write [ζ, ζ ′] for the zone ∪{ζ ′′ | ζ ∗−→ ζ ′′ ∧ ζ ′′ ∗−→ ζ ′}.
Thin and Thick Regions. We say that a region ζ is thin if [ν]6=[ν+ε] for every ν ∈ ζ
and ε>0 and thick otherwise. We writeRThin andRThick for the sets of thin and thick
regions, respectively. Observe that if ζ ∈ RThick then, for any ν ∈ ζ, there exists ε>0,
such that [ν]=[ν+ε] and the time successor of a thin region is thick, and vice versa.

Intuition for the Boundary Region Graph. Recall K is an upper bound on clock
values and let JKKN = {0, 1, . . . ,K}. For any ν ∈ V , b ∈ JKKN and c ∈ C we
define time(ν, (b, c))

def
=b−ν(c) if ν(c)≤b, and time(ν, (b, c))

def
=0 if ν(c)>b. Intuitively,

time(ν, (b, c)) returns the amount of time that must elapse in ν before the clock c
reaches the integer value b. Observe that, for any ζ ′ ∈ RThin, there exists b ∈ JKKN
and c ∈ C, such that ν ∈ ζ implies (ν+(b−ν(c)) ∈ ζ ′ for all ζ ∈ R in the past of
ζ ′ and write ζ →b,c ζ

′. The boundary region abstraction is motivated by the following.
Consider a ∈ Act , (`, ν) and ζ ∗−→ ζ ′ such that ν ∈ ζ, [ζ, ζ ′] ⊆ Inv(`) and ν′ ∈ E(`, a).

– If ζ ′ ∈ RThick, then there are infinitely many t ∈ R≥0 such that ν+t ∈ ζ ′.
However, amongst all such t’s, for one of the boundaries of ζ ′, the closer ν+t is to
this boundary, the ‘better’ the timed action (t, a) becomes for a player’s objective.
However, since ζ ′ is a thick region, the set {t ∈ R≥0 | ν+t ∈ ζ ′} is an open interval,
and hence does not contain its boundary values. Observe that the infimum equals
binf − ν(cinf) where ζ →binf,cinf ζinf → ζ ′ and the supremum equals bsup−ν(csup) where
ζ →bsup,csup ζsup ← ζ ′. In the boundary region abstraction we include these ‘best’
timed actions through the actions (binf, cinf, a, ζ

′) and (bsup, csup, a, ζ
′).

– If ζ ′ ∈ RThin, then there exists a unique t ∈ R≥0 such that ν+t ∈ ζ ′. Moreover
since ζ ′ is a thin region, there exists a clock c ∈ C and a number b ∈ N such that
ζ →b,c ζ

′ and t = b−ν(c). In the boundary region abstraction we summarise this
‘best’ timed action from region ζ via region ζ ′ through the action (b, c, a, ζ ′).

Based on this intuition above the boundary region abstraction is defined as follows.

Definition 11. For an ERTG T = (L,LF , C, Inv ,Act ,ActMin,ActMax, E, δ) the BRA
of T is given by the ERG T̂ = (Ŝ, F̂ , ÂMin, ÂMax, p̂Min, p̂Max, π̂Min, π̂Max) where

– Ŝ ⊆ L × V ×R is the (possibly uncountable) set of states such that (`, ν, ζ) ∈ Ŝ
if and only if ζ ∈ R, ζ ⊆ Inv(`), and ν ∈ ζ;

– F̂ = {(`, ν, ζ) ∈ Ŝ | ` ∈ LF} is the set of final states;
– ÂMin ⊆ (JKKN×C×ActMin×R) ∪ {⊥} is the set of actions of player Min;
– ÂMax ⊆ (JKKN×C×ActMax×R) ∪ {⊥} is the set of actions of player Max;
– for ? ∈ {Min,Max}, s = (`, ν, ζ) ∈ Ŝ and α = (bα, cα, aα, ζα) ∈ Â? the

probabilistic transition function p? is defined if [ζ, ζα] ⊆ Inv(`) and ζα ⊆ E(`, aα)

and for any (`′, ν′, ζ ′) ∈ Ŝ:

p̂?(s, α)((`
′, ν′, ζ ′)) =

∑
C⊆C∧να[C:=0]=ν′∧ζα[C:=0]=ζ′ δ[`, aα](C, `

′)

where να = ν+time(ν, (bα, cα)) and one of the following conditions holds:
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(`0, (0.3, 0.1),

0<y<x<1)

(`1, (0, 0.8),

x=0∧0<y<1)

(`1, (0, 1.8),

x=0∧1<y<2)

(`1, (0, 1),

x=0∧0<y<1)

(`1, (0, 1),

x=0∧y=1)

(`1, (0, 1),

x=0∧1<y<2)

(`0, (1, 0),

0<x<1∧y=0)

`F

((1, x, b, 1<x<2∧0<y<1),⊥);0.7

((2, x, b, 1<y<x<2),⊥);1.7

((2, x, b, x=2∧1<y<2),⊥);1.7

((1,y,b,1<x<2,0<y<1),⊥);0.9

((1,y,b,1<x<2,y=1),⊥);0.9

((1,y,b,1<y<x<2),⊥);0.9

0.8

0.2
((2,y

,a,0<
x<1,1<

y<2),

(1,y,
c,x=

0∧1<y<2));0

Fig. 2. Sub-graph of the boundary region abstraction for the ERTG of Figure 1.

• ζ →bα,cα ζα,
• ζ →bα,cα ζinf → ζα for some ζinf ∈ R
• ζ →bα,cα ζsup ← ζα for some ζsup ∈ R;

– for ? ∈ {Min,Max}, (`, ν, ζ) ∈ Ŝ and (bα, cα, aα, ζα) ∈ Â? the reward function
π̂? is given by π̂?((`, ν, ζ), (bα, cα, aα, ζα)) = bα−ν(cα).

Although the boundary region abstraction is not a finite ERG, for a fixed initial state we
can restrict attention to a finite ERG, thanks to the following result of [15,16].

Lemma 12. For any state of a boundary region abstraction, its reachable sub-graph is
finite and is constructible in time exponential in the size of corresponding ERTG.

Example 13. Sub-graph of BRA reachable from (`0, (0.3, 0.1), 0<y<x<1) for the
ERTG of Figure 1 is shown in Figure 2. Edges are labelled (b, c, a, ζ) whose intuitive
meaning is to wait until clock c attains the value b and then fire action a. The rewards of
edges (indicated in bold) correspond to the time delay before the action is fired. Figure 2
includes the actions available in the initial state and one of action pairs available in
(`1, (0, 1), x=0∧1<y<2). To simplify, the states with location `F are merged together
into a single state labelled `F and probabilities that are equal to 0.5 are omitted.

4.2 Solving optimality equations of a boundary region abstraction

Based on the optimality equations Opt∗(T̂ ) (see Section 2), we define the value
improvement function Ψ : [Ŝ→R≥0]→[Ŝ→R≥0] where for f : Ŝ→R≥0 and s ∈ Ŝ:

Ψ(f)(s)
def
=

 0 if s ∈ F̂
min

α∈ÂMin(s)

{
max

β∈ÂMax(s)

{
π̂(s, α, β) +

∑
s′∈Ŝ

p̂(s′|s, α, β) · f(s′)
}}

if s 6∈ F̂

By construction, a fixpoint of Ψ is a solution of Opt∗(T̂ ). The following demonstrates
the existence and uniqueness of a fixpoint of Ψ, and thus also the solution of Opt∗(T̂ ).
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`00 ≤ x ≤ 1 `1 `F

a

b, x=1

0.5
x:=00.5 x=1

Fig. 3. Example demonstrating optimal strategies are not regionally positional.

Proposition 14. For any ERTG T , the value improvement function Ψ on the BRA T̂
has a unique fixed point and equals limi→∞Ψi(f) for an arbitrary f ∈ [Ŝ → R≥0].

Proof. From Assumption 2 and Lemma 12 follows that every |L×R|-th iterate of Ψ is
a contraction. Hence using Banach fixed point theorem the result is immediate. ut

4.3 Correctness of the boundary region abstraction reduction

In this section we show how the optimality equations for the boundary region
abstraction can be used to solve optimality equations for its ERTG. Given an ERTG T
and real-valued function f : Ŝ → R on the states of the BRA T̂ , we define f̃ : S → R
by f̃(`, ν) = f(`, ν, [ν]) which gives a real-valued function on the states of T . The
following theorem states that, by applying this mapping, the solution of optimality
equations for an ERTG is given by that of the optimality equations for its BRA.

Theorem 15. Let T be an ERTG. If P |= Opt∗(T̂ ), then P̃ |= Opt∗(T ).

To prove Theorem 15 we first introduce quasi-simple functions and state some of
their key properties. Next, we show that for any BRA T̂ the solution of Opt∗(T̂ ) is
regionally quasi-simple (a quasi-simple function for every region). Finally, we sketch
how Theorem 15 follows from this fact (Proposition 19 and Theorem 21).

Quasi-simple functions. Asarin and Maler [2] introduced simple functions, a finitely
representable class of functions, with the property that every decreasing sequence is
finite. Given X⊆V , a function F :X→R is simple if there exists e ∈ N and either
F (ν)=e for all ν ∈ X , or there exists c ∈ C and F (ν)=e−ν(c) for all ν ∈ X . A
function F :Ŝ→R≥0 is regionally simple if F (`, ·, ζ) is simple for all ` ∈ L and ζ ∈ R.

For timed games, Asarin and Maler showed that if f :Ŝ→R≥0 is regionally simple,
then Ψ(f) is regionally simple. Therefore, since Ψ is a decreasing function, it follows
that starting from a regionally simple function in finitely many iterations of Ψ a fixed
point is reached and the upper value in reachability-time games is regionally simple.
Also, using the properties of simple functions, [13] shows that for a non-probabilistic
reachability-time game, the optimal strategies are regionally positional, i.e., in every
state of a region the strategy chooses the same action. Unfortunately, in the case of
ERTGs, Ψ(f) is not necessarily regionally simple for any given regionally simple
function f . Moreover, as the example below demonstrates, neither is the value of the
game necessarily regionally-simple nor optimal strategies regionally positional.

Example 16. Consider the ERTG shown in Figure 3. Observe that for every state
(`0, ν) in the region (`0, 0<x<1), the optimal expected time to reach `F equals
min{inft≥0 {t+ 0.5·1 + 0.5·0} , 1−ν(x)} = min{0.5, 1−ν(x)}. Hence optimal ex-
pected reachability-time is not regionally simple. Moreover, the optimal strategy is



Expected Reachability-Time Games 13

not regionally positional, since if ν(x)≤0.5, then the optimal strategy is to fire a
immediately, while otherwise the optimal strategy is to wait until ν(x)=1 and fire b.

Due to these results it is not possible to work with simple function, and we define quasi-
simple functions. Let E ⊆ V×V be the partial order on clock valuations, where νEν′ if
and only if there exists a t ∈ R≥0 such that for each clock c ∈ C either ν′(c)−ν(c) = t
or ν(c)=ν′(c). For x=(x1, . . . , xn) ∈ Rn, we let ‖x‖∞ = max {|xi| | 1 ≤ i ≤ n}.

Definition 17. Let X ⊆ V . A function F : X → R is quasi-simple if for all ν, ν′ ∈ X:

– (Lipschitz Continuous) there exists k≥0 such that |F (ν)−F (ν′)| ≤ k · ‖ν−ν′‖∞;
– (Monotonically decreasing and nonexpansive w.r.t. E) νE ν′ implies F (ν)≥F (ν′)

and F (ν)−F (ν′) ≤ ‖ν−ν′‖∞.

For a convex set X ⊆ V and continuous function F : X → R, we let F : X → R
denote the unique continuous function satisfying F (ν)=F (ν) for all ν ∈ X .

Theorem 18 (Properties of Quasi-simple Functions). Let X ⊆ V .

1. Every simple function is also quasi-simple.
2. If F : X→R is quasi-simple, then F : X→R is quasi-simple.
3. If F, F ′ : X→R are quasi-simple functions, then both the pointwise minimum and

maximum of F and F ′ are quasi-simple.
4. The limit of a sequence of quasi-simple functions is quasi-simple.

We say that f : Ŝ → R≥0 is regionally quasi-simple if f(`, ·, ζ) is quasi-simple for all
` ∈ L and ζ ∈ R. Using Theorem 18 and Definition 11 we get the following result.

Proposition 19. If f is regionally quasi-simple, then Ψ(f) is regionally quasi-simple.

From Proposition 14 it follows that for an arbitrary function f : Ŝ → R≥0 the limit of
the sequence 〈f,Ψ(f),Ψ2(f), . . .〉 is the solution of Opt∗(T̂ ). From Proposition 19 it
follows that, if we start from a regionally quasi-simple function f , then all the functions
in the sequence 〈f,Ψ(f),Ψ2(f), . . .〉 are regionally quasi-simple. Since the limit of
quasi-simple functions is quasi-simple, the following proposition is immediate.

Proposition 20. For any ERTG T , if P |= Opt∗(T̂ ), then P is regionally quasi-simple.

The following result states that, from a regionally quasi-simple solution of the
optimality equations for the boundary region abstraction, one can derive the solution
of the optimality equations for the expected reachability time-game.

Theorem 21. For any ERTG T , if P |= Opt∗(T̂ ) and P is regionally quasi-simple,
then P̃ |= Opt∗(T ).

The following observation is crucial for the proof of Theorem 21.

Lemma 22. Let s = (`, ν) ∈ S and ζ ∈ R such that [ν] ∗−→ ζ. If P : Ŝ → R is
regionally quasi-simple, then the functions:

t 7→ t+
∑
s′∈S p(s

′|s, (t, a),⊥)·P̃ (s′) and t 7→ t+
∑
s′∈S p(s

′|s,⊥, (t, b))·P̃ (s′)

are continuous and nondecreasing on the interval {t ∈ R≥0 | ν+t ∈ ζ}.
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5 Conclusions

We introduced expected reachability-time games and showed that the natural decision
problem is decidable and in NEXPTIME ∩ co-NEXPTIME. Furthermore, we proved
that the turn-based subclass of these games is positionally determined. We believe
that the main contribution of this paper is the concept of quasi-simple function
that generalise simple functions to the context of probabilistic timed games. In fact,
the techniques introduced in this paper extend to expected discounted-time games
(EDTGs)7 in a straightforward manner, since every expected discounted-time game can
be reduced to an expected reachability-time game. Hence all the result presented for
ERTGs are valid for EDTGs as well. Regarding other games on probabilistic timed
automata, we conjecture that it is possible to reduce expected average-time games
to mean payoff games on the boundary region abstraction. However, the techniques
presented in this paper are insufficient to demonstrate such a reduction.

Although the computational complexity of solving games on timed automata is
high, UPPAAL Tiga [5] is able to solve practical [6,10] reachability and safety
properties for timed games by using efficient symbolic zone-based algorithms. A
natural future work is to investigate the possibility of extending similar algorithms for
probabilistic timed games.
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