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Abstract. We propose automated techniques for the verification and
control of probabilistic real-time systems that are only partially observ-
able. To formally model such systems, we define an extension of proba-
bilistic timed automata in which local states are partially visible to an
observer or controller. We give a probabilistic temporal logic that can
express a range of quantitative properties of these models, relating to
the probability of an event’s occurrence or the expected value of a re-
ward measure. We then propose techniques to either verify that such a
property holds or to synthesise a controller for the model which makes it
true. Our approach is based on an integer discretisation of the model’s
dense-time behaviour and a grid-based abstraction of the uncountable
belief space induced by partial observability. The latter is necessarily ap-
proximate since the underlying problem is undecidable, however we show
how both lower and upper bounds on numerical results can be generated.
We illustrate the effectiveness of the approach by implementing it in the
PRISM model checker and applying it to several case studies, from the
domains of computer security and task scheduling.

1 Introduction

Guaranteeing the correctness of complex computerised systems often needs to
take into account quantitative aspects of system behaviour. This includes the
modelling of probabilistic phenomena, such as failure rates for physical compo-
nents, uncertainty arising from unreliable sensing of a continuous environment,
or the explicit use of randomisation to break symmetry. It also includes real-time
characteristics, such as time-outs or delays in communication or security proto-
cols. To further complicate matters, such systems are often nondeterministic
because their behaviour depends on inputs or instructions from some external
entity such as a controller or scheduler.

Automated verification techniques such as probabilistic model checking have
been successfully used to analyse quantitative properties of probabilistic, real-
time systems across a variety of application domains, including wireless com-
munication protocols, computer security and task scheduling. These systems are
commonly modelled using Markov decision processes (MDPs), if assuming a dis-
crete notion of time, or probabilistic timed automata (PTAs), if using a dense
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model of time. On these models, we can consider two problems: verification
that it satisfies some formally specified property for any possible resolution of
nondeterminism; or, dually, synthesis of a controller (i.e., a means to resolve
nondeterminism) under which a property is guaranteed. For either case, an im-
portant consideration is the extent to which the system’s state is observable to
the entity controlling it. For example, to verify that a security protocol is func-
tioning correctly, it may be essential to model the fact that some data held by
a participant is not externally visible, or, when synthesising a controller for a
robot, the controller may not be implementable in practice if it bases its decisions
on information that cannot be physically observed.

Partially observable MDPs (POMDPs) are a natural way to extend MDPs in
order to tackle this problem. However, the analysis of POMDPs is considerably
more difficult than MDPs since key problems are undecidable [24]. A variety of
verification problems have been studied for these models (see e.g., [1,3,11]) and
the use of POMDPs is common in fields such as AI and planning [8], but there
is limited progress in the development of practical techniques for probabilistic
verification in this area, or exploration of their applicability.

In this paper, we present novel techniques for verification and control of prob-
abilistic real-time systems under partial observability. We propose a model called
partially observable probabilistic timed automata (POPTAs), which extends the
existing model of PTAs with a notion of partial observability. The semantics of
a POPTA is an infinite-state POMDP. We then define a temporal logic, based
on [27], to express properties of POPTAs relating to the probability of an event
or the expected value of various reward measures. Nondeterminism in a POPTA
is resolved by a strategy that decides which actions to take and when to take
them, based only on the history of observations (not states). The core problems
we address are how to verify that a temporal logic property holds for all possible
strategies, and how to synthesise a strategy under which the property holds.

In order to achieve this, we use a combination of techniques. First, we develop
a digital clocks discretisation for POPTAs, which extends the existing notion for
PTAs [20], and reduces the analysis to a finite POMDP. We define the conditions
under which properties in our temporal logic are preserved and prove the cor-
rectness of the reduction. To analyse the resulting POMDP, we use grid-based
techniques [23,29], which transform it to a fully observable but continuous-space
MDP and then approximate its solution based on a finite set of grid points. We
use this to construct and solve a strategy for the POMDP. The result is a pair
of lower and upper bounds on the property of interest for the original POPTA.
If the results are not precise enough, we can refine the grid and repeat.

We implemented these methods in a prototype tool based on PRISM [19],
and investigated their applicability by developing three case studies: a non-
repudiation protocol, a task scheduling problem and a covert channel prevention
device (the NRL pump). Despite the complexity of POMDP solution methods,
we show that useful results can be obtained, often with precise bounds. In each
case study, nondeterminism, probability, real-time behaviour and partial observ-
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ability are all crucial ingredients to the analysis, a combination not supported
by any existing techniques or tools.

Related work. POMDPs are common in fields such as AI and planning, and
have many applications [8]. They have also been studied in the verification com-
munity, e.g. [1,3,11], establishing undecidability and complexity results for var-
ious qualitative and quantitative verification problems. Work in this area often
also studies related models such as Rabin’s probabilistic automata [3], which
can be seen as a special case of POMDPs, and partially observable stochas-
tic games (POSGs) [12], which generalise them. More practically oriented work
includes: [15], which proposes a counterexample-driven refinement method to
approximately solve MDPs in which components have partial observability of
each other; and [10], which synthesises concurrent program constructs, using a
search over memoryless strategies in a POSG. Theoretical results [6] and algo-
rithms [9,14] have been developed for synthesis of partially observable timed
games. In [6], it is shown that the synthesis problem is undecidable and, if the
resources of the controller are fixed, decidable but prohibitively expensive. The
algorithms require constraints on controllers: in [9], controllers only respond to
changes made by the environment and, in [14], their structure must be fixed in
advance. We are not aware of any work for probabilistic real-time models.

An extended version of this paper, with proofs, is available as [26].

2 Partially Observable Markov Decision Processes

We begin with background material on MDPs and POMDPs. Let Dist(X) denote
the set of discrete probability distributions over a set X, δx the distribution that
selects x ∈ X with probability 1, and R the set of non-negative real numbers.

Definition 1 (MDP). An MDP is a tuple M=(S, s̄, A, P,R) where: S is a set
of states; s̄ ∈ S an initial state; A a set of actions; P : S×A → Dist(S) a
(partial) probabilistic transition function; and R : S×A→ R a reward function.

Each state s of an MDP M has a set A(s)
def
= {a ∈ A | P (s, a) is defined} of

enabled actions. If action a ∈ A(s) is selected, then the probability of moving to
state s′ is P (s, a)(s′) and a reward of R(s, a) is accumulated in doing so. A path
of M is a finite or infinite sequence ω = s0a0s1a1 · · · , where si ∈ S, ai ∈ A(si)
and P (si, ai)(si+1)>0 for all i ∈ N. We write FPathsM and IPathsM, respectively,
for the set of all finite and infinite paths of M starting in the initial state s̄.

A strategy of M (also called a policy or scheduler) is a way of resolving the
choice of action in each state, based on the MDP’s execution so far.

Definition 2 (Strategy). A strategy of an MDP M=(S, s̄, A, P,R) is a func-
tion σ : FPathsM→Dist(A) such that σ(s0a0s1 . . . sn)(a)>0 only if a ∈ A(sn).

A strategy is memoryless if its choices only depend on the current state, finite-
memory if it suffices to switch between a finite set of modes and deterministic
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if it always selects an action with probability 1. The set of strategies of M is
denoted by ΣM.

When M is under the control of a strategy σ, the resulting behaviour is
captured by a probability measure PσM over the infinite paths of M [18].

POMDPs. POMDPs extend MDPs by restricting the extent to which their
current state can be observed, in particular by strategies that control them. In
this paper (as in, e.g., [3,11]), we adopt the following notion of observability.

Definition 3 (POMDP). A POMDP is a tuple M=(S, s̄, A, P,R,O, obs) where:
(S, s̄, A, P,R) is an MDP; O is a finite set of observations; and obs : S → O is a
labelling of states with observations. For any states s, s′ ∈ S with obs(s)=obs(s′),
their enabled actions must be identical, i.e., A(s)=A(s′).

The current state s of a POMDP cannot be directly determined, only the corre-
sponding observation obs(s) ∈ O. More general notions of observations are some-
time used, e.g., that depend also on the previous action taken or are probabilistic.
Our analysis of probabilistic verification case studies where partial observation
is needed (see, e.g., Sec. 5) suggests that this simpler notion of observability
will often suffice in practice. To ease presentation, we assume the initial state is
observable, i.e., there exists ō ∈ O such that obs(s)=ō if and only if s=s̄.

The notions of paths, strategies and probability measures given above for
MDPs transfer directly to POMDPs. However, the set ΣM of all strategies for
a POMDP M only includes observation-based strategies, that is, strategies σ
such that, for any paths π = s0a0s1 . . . sn and π′ = s′0a0

′s′1 . . . s
′
n satisfying

obs(si) = obs(s′i) and ai = a′i for all i, we have σ(π) = σ(π′).
Key properties for a POMDP (or MDP) are the probability of reaching a

target, and the expected reward cumulated until this occurs. Let O denote the
target (e.g., a set of observations of a POMDP). Under a specific strategy σ, we
denote these two properties by PrσM(FO) and EσM(FO), respectively.

Usually, we are interested in the optimal (minimum or maximum) values
ProptM (FO) and EoptM (FO), where opt ∈ {min,max}. For a MDP or POMDP M:

Prmin
M (FO)

def
= infσ∈ΣM

PrσM(FO) Emin
M (FO)

def
= infσ∈ΣM

EσM(FO)

Prmax
M (FO)

def
= supσ∈ΣM

PrσM(FO) Emax
M (FO)

def
= supσ∈ΣM

EσM(FO)

Beliefs. For POMDPs, determining the optimal probabilities and expected re-
wards defined above is undecidable [24], making exact solution intractable. A
useful construction, e.g., as a basis of approximate solutions, is the translation
from a POMDP M to a belief MDP B(M), an equivalent (fully observable) MDP,
whose (continuous) state space comprises beliefs, which are probability distribu-
tions over the state space of M. Intuitively, although we may not know which of
several observationally-equivalent states we are currently in, we can determine
the likelihood of being in each one, based on the probabilistic behaviour of M.
A formal definition is given below.

Definition 4 (Belief MDP). Let M=(S, s̄, A, P,R,O, obs) be a POMDP. The
belief MDP of M is given by B(M)=(Dist(S), δs̄, A, P

B, RB) where, for any beliefs
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b, b′ ∈ Dist(S) and action a ∈ A:

PB(b, a)(b′) =
∑
s∈S b(s) ·

(∑
o∈O∧ba,o=b′

∑
s′∈S∧obs(s′)=o P (s, a)(s′)

)
RB(b, a) =

∑
s∈S R(s, a) · b(s)

and ba,o is the belief reached from b by performing a and observing o, i.e.:

ba,o(s′) =

{ ∑
s∈S P (s,a)(s′)·b(s)∑

s∈S b(s)·(
∑

s′′∈S∧obs(s′′)=o P (s,a)(s′′))
if obs(s′)=o

0 otherwise.

The optimal values for the belief MDP equal those for the POMDP, e.g. we have:

Prmax
M (FO) = Prmax

B(M)(FTO) and Emax
M (FO) = Emax

B(M)(FTO)

where TO = {b ∈ Dist(S) | ∀s ∈ S. (b(s)>0→ obs(s) ∈ O)}.

3 Partially Observable Probabilistic Timed Automata

In this section, we define partially observable probabilistic timed automata (POP-
TAs), which generalise the existing model of probabilistic timed automata (PTAs)
with the notion of partial observability from POMDPs explained in Sec. 2. We de-
fine the syntax of a POPTA, explain its semantics (as an infinite-state POMDP)
and define and discuss the digital clocks semantics of a POPTA.

Time & clocks. As in classical timed automata [2], we model real-time be-
haviour using non-negative, real-valued variables called clocks, whose values in-
crease at the same rate as real time. Assuming a finite set of clocks X , a clock
valuation v is a function v : X→R and we write RX for the set of all clock
valuations. Clock valuations obtained from v by incrementing all clocks by a
delay t ∈ R and by resetting a set X ⊆ X of clocks to zero are denoted v+t and
v[X:=0], respectively, and we write 0 if all clocks are 0. A (closed, diagonal-free)
clock constraint ζ is either a conjunction of inequalities of the form x6c or x>c,
where x ∈ X and c ∈ N, or true. We write v |= ζ if clock valuation v satisfies
clock constraint ζ and use CC (X ) for the set of all clock constraints over X .

Syntax of POPTAs. To explain the syntax of POPTAs, we first consider the
simpler model of PTAs and then show how it extends to POPTAs.

Definition 5 (PTA syntax). A PTA is a tuple P=(L, l,X ,A, inv , enab, prob, r)
where:

– L is a finite set of locations and l ∈ L is an initial location;
– X is a finite set of clocks and A is a finite set of actions;
– inv : L→ CC (X ) is an invariant condition;
– enab : L×A→ CC (X ) is an enabling condition;
– prob : L×A→ Dist(2X×L) is a probabilistic transition function;
– r=(rL, rA) is a reward structure where rL : L → R is a location reward

function and rA : L×A→ R is an action reward function.
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A state of a PTA is a pair (l, v) of location l ∈ L and clock valuation v ∈
RX . Time t ∈ R can elapse in the state only if the invariant inv(l) remains
continuously satisfied while time passes and the new state is then (l, v+t). An
action a is enabled in the state if v satisfies enab(l, a) and, if it is taken, then
the PTA moves to location l′ and resets the clocks X ⊆ X with probability
prob(l, a)(X, l′). PTAs have two kinds of rewards: location rewards, which are
accumulated at rate rL(l) while in location l and action rewards rA(l, a), which
are accumulated when taking action a in location l. PTAs equipped with reward
structures are a probabilistic extension of linearly-priced timed automata [5].

Definition 6 (POPTA syntax). A partially observable PTA (POPTA) is a
tuple P = (L, l,X ,A, inv , enab, prob, r,OL, obsL) where:

– (L, l,X ,A, inv , enab, prob, r) is a PTA;
– OL is a finite set of observations;
– obsL : L→ OL is a location observation function.

For any locations l, l′ ∈ L with obsL(l)=obsL(l′), we require that inv(l)=inv(l′)
and enab(l, a)=enab(l′, a) for all a ∈ A.

The final condition ensures the semantics of a POPTA yields a valid POMDP:
recall states with the same observation are required to have identical available
actions. Like for POMDPs, for simplicity, we also assume that the initial location
is observable, i.e., there exists ō ∈ OL such that obsL(l)=ō if and only if l=l.

The notion of observability for POPTAs is similar to the one for POMDPs,
but applied to locations. Clocks, on the other hand, are always observable. The
requirement that the same choices must be available in any observationally-
equivalent states, implies the same delays must be available in observationally-
equivalent states, and so unobservable clocks could not feature in invariant or
enabling conditions. The inclusion of unobservable clocks would therefore neces-
sitate modelling the system as a game with the elapse of time being under the
control of a second (environment) player. The underlying semantic model would
then be a partially observable stochastic game (POSG), rather than a POMDP.
However, unlike POMDPs, limited progress has been made on efficient compu-
tational techniques for this model (belief space based techniques, for example,
do not apply in general [12]). Even in the simpler case of non-probabilistic timed
games, allowing unobservable clocks requires algorithmic analysis to restrict the
class of strategies considered [9,14].

Encouragingly, however, we will later show in Sec. 5 that POPTAs with
observable clocks were always sufficient for our modelling and analysis.

Restrictions on POPTAs. At this point, we need to highlight a few syntactic
restrictions on the POPTAs treated in this paper. Firstly, we emphasise that
clock constraints appearing in a POPTA, i.e., in its invariants and enabling
conditions, are required to be closed (no strict inequalities) and diagonal-free
(no comparisons of clocks). This is a standard restriction when using the digital
clocks discretisation [20] which we work with in this paper.

Secondly, a specific (but minor) restriction for POPTAs is that resets can only
be applied to clocks that are non-zero. The reasoning behind this is outlined later
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Fig. 1. Examples of partially observable PTAs (see Examples 1 and 2).

in Example 2. Checking this restriction can easily be done when exploring the
discrete (digital clocks) semantics of the model – see below and Sec. 4.

Semantics of POPTAs. We now formally define the semantics of a POPTA P,
which is given in terms of an infinite-state POMDP. This extends the standard
semantics of a PTA [27] (as an infinite MDP) with the same notion of observ-
ability we gave in Sec. 2 for POMDPs. The semantics, [[P]]T, is parameterised by
a time domain T, giving the possible values taken by clocks. For the standard
(dense-time) semantics of a POPTA, we take T = R. Later, when we discretise
the model, we will re-use this definition, taking T = N. When referring to the
“standard” semantics of P we will often drop the subscript R and write [[P]].

Definition 7 (POPTA semantics). Let P=(L, l,X ,A, inv , enab, prob, r,OL,
obsL) be a POPTA. The semantics of P, with respect to the time domain T, is
the POMDP [[P]]T=(S, s̄,A ∪ T, P,R,OL×TX , obs) such that:

– S = {(l, v) ∈ L×TX | v |= inv(l)} and s̄ = (l,0);
– for (l, v) ∈ S and a ∈ A ∪ T, we have P ((l, v), a) = µ if and only if:

• (time transitions) a ∈ T, µ = δ(l,v+a) and v+t |= inv(l) for all 06t6a;
• (action transition) a ∈ A, v |= enab(l, a) and for (l′, v′) ∈ S:

µ(l′, v′) =
∑
X⊆X∧v′=v[X:=0] prob(l, a)(X, l′)

– for any (l, v) ∈ S and a ∈ A ∪ T, we have R((l, v), a) =

{
rL(l)·a if a ∈ T
rA(l, a) if a ∈ A

– for any (l, v) ∈ S, we have obs(l, v) = (obsL(l), v).

Example 1. Consider the POPTA in Fig. 1(a) with clocks x, y. Locations are
grouped according to their observations, and we omit enabling conditions equal
to true. We aim to maximise the probability of observing o5. If locations were
fully observable, we would leave l when x=y=1 and then, depending on whether
the random choice resulted in a transition to l1 or l2, wait 0 or 1 time units, re-
spectively, before leaving the location. This would allow us to move immediately
from l3 or l4 to l5, meaning observation o5 is seen with probability 1. However,
in the POPTA, we need to make the same choice in l1 and l2 since they yield the
same observation. As a result, at most one of the transitions leaving locations l3
and l4 is enabled, and the probability of observing o5 is thus at most 0.5.
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Digital clocks. Since the semantics of a POPTA (like for a PTA) is an infinite-
state model, for algorithmic analysis, we first need to construct a finite represen-
tation. In this paper, we propose to use the digital clocks approach, generalising
a technique already used for PTAs [20], which in turn adapts one for timed au-
tomata [16]. In short, this approach discretises a POPTA model by transforming
its real-valued clocks to clocks taking values from a bounded set of integers.

For clock x ∈ X , let kx denote the greatest constant to which x is compared
in the clock constraints of POPTA P. If the value of x exceeds kx, its exact value
will not affect the satisfaction of any invariants or enabling conditions, and thus
not affect the behaviour of P. The digital clocks semantics, written [[P]]N, can be
obtained from Defn. 7, taking T to be N instead of R. We also need to redefine
the operation v+t, which now adds a delay t ∈ N to a clock valuation v ∈ NX :
we say that v+t assigns the value min{v(x)+t,kx+1} to each clock x ∈ X .

Under the restrictions on POPTAs described above, the digital semantics of
a POPTA preserves the key properties required in this paper, namely optimal
probabilities and expected cumulative rewards for reaching a specified observa-
tion. This is captured by the following theorem (the proof is available in [26]).

Theorem 1. If P is a closed, diagonal-free POPTA which resets only non-zero
clocks, then, for any set of observations O of P and opt ∈ {min,max}, we have:

Propt[[P]]R
(FO) = Propt[[P]]N

(FO) and Eopt[[P]]R
(FO) = Eopt[[P]]N

(FO).

The proof relies on showing probabilistic and expected reward values agree on the
belief MDPs underlying the POMDPs representing the dense time and digital
clocks semantics. This requires introducing the concept of a belief PTA for a
POPTA (analogous to a belief MDP for a POMDP) and results for PTAs [20].

Example 2. The POPTA P in Fig. 1(b) demonstrates why our digital clocks
approach (Thm. 1) is restricted to POPTAs which reset only non-zero clocks. We
aim to minimise the expected reward accumulated before observing o3 (rewards
are shown in Fig. 1(b) and are zero if omitted). If locations were fully observable,
the minimum reward would be 0, achieved by leaving l immediately and then
choosing a1 in l1 and a2 in l2. However, if we leave l immediately, l1 and l2
are indistinguishable (we observe (o1,2, (0)) when arriving in both), so we must
choose the same action in these locations, and hence the expected reward is 0.5.

Consider the strategy that waits ε ∈ (0, 1) before leaving l, accumulating a
reward of ε. This is possible only in the dense-time semantics. We then observe
either (o1,2, (ε)) in l1, or (o1,2, (0)) in l2. Thus, we see if x was reset, determine if
we are in l1 or l2, and take action a1 or a2 accordingly such that no further reward
is accumulated before seeing o3, for a total reward of ε. Since ε can be arbitrarily
small, the minimum (infimum) expected reward for [[P]]R is 0. However, for the
digital clocks semantics, we can only choose a delay of 0 or 1 in l. For the former,
the expected reward is 0.5, as described above; for the latter, we can again pick
a1 or a2 based on whether x was reset, for a total expected reward of 1. Hence
the minimum expected reward for [[P]]N is 0.5, as opposed to 0 for [[P]]R.
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4 Verification and Strategy Synthesis for POPTAs

We now present our approach for verification and strategy synthesis for POPTAs
using the digital clock semantics given in the previous section.

Property specification. First, we define a temporal logic for the formal spec-
ification of quantitative properties of POPTAs. This is based on a subset (we
omit temporal operator nesting) of the logic presented in [27] for PTAs.

Definition 8 (Properties). The syntax of our logic is given by the grammar:

φ ::= P./p[ψ]
∣∣ R./q[ρ] ψ ::= α U6t α

∣∣ α Uα
α ::= true

∣∣ o ∣∣ ¬o ∣∣ ζ ∣∣ α ∧ α ∣∣ α ∨ α ρ ::= I=t
∣∣ C6t ∣∣ Fα

where o is an observation, ζ is a clock constraint, ./ ∈ {6, <,>, >}, p ∈ Q∩[0, 1],
q ∈ Q>0 and t ∈ N.

A property φ is an instance of either the probabilistic operator P or the expected
reward operator R. As for similar logics, P./p[ψ] means the probability of path
formula ψ being satisfied is ./p, and R./q[ρ] the expected value of reward operator
ρ is ./q. For the probabilistic operator, we allow time-bounded (α U6t α) and
unbounded (α Uα) until formulas, and adopt the usual equivalences such as
Fα ≡ true Uα (“eventually α”). For the reward operator, we allow I=t (location
reward at time instant t), C6t (reward accumulated until time t) and Fα (the
reward accumulated until α becomes true). Our propositional formulas (α) are
Boolean combinations of observations and clock constraints.

We omit nesting of P and R operators for two reasons: firstly, the digital clocks
approach that we used to discretise time is not applicable to nested properties
(see [20] for details); and secondly, it allows us to use a consistent property
specification for either verification or strategy synthesis problems (the latter is
considerably more difficult in the context of nested formulas [4]).

Definition 9 (Property semantics). Let P be a POPTA with location obser-
vation function obsL and semantics [[P]]. We define satisfaction of a property φ
from Defn. 8 with respect to a strategy σ ∈ Σ[[P]] as follows:

[[P]], σ |= P./p[ψ ] ⇐⇒ Pσ[[P]]({ω ∈ IPaths [[P]] | ω |=ψ}) ./ p
[[P]], σ |= R ./q[ ρ ] ⇐⇒ Eσ[[P]](rew (ρ)) ./ q

Satisfaction of a path formula ψ by path ω, denoted ω |= ψ and the random
variable rew (ρ) for a reward operator ρ are defined identically as for PTAs. Due
to lack of space, we omit their formal definition here and refer the reader to [27].
For a propositional formula α and state s = (l, v) of [[P]], we have s |= o if and
only if obsL(l)=o and s |= ζ if and only if v |= ζ. Boolean operators are standard.

Verification and strategy synthesis. Given a POPTA P and property φ, we
are interested in solving the dual problems of verification and strategy synthesis.
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Definition 10 (Verification). The verification problem is: given a POPTA P
and property φ, decide if [[P]],σ |=φ holds for all strategies σ∈Σ[[P]].

Definition 11 (Strategy synthesis). The strategy synthesis problem is: given
POPTA P and property φ, find, if it exists, a strategy σ∈Σ[[P]] such that [[P]],σ |=φ.

The verification and strategy synthesis problems for φ can be solved similarly, by
computing optimal values for either probability or expected reward objectives:

Pmin
[[P]] (ψ) = infσ∈Σ[[P]]

Pσ[[P]](ψ) Emin
[[P]] (ρ) = infσ∈Σ[[P]]

Eσ[[P]](ρ)

Pmax
[[P]] (ψ) = supσ∈Σ[[P]]

Pσ[[P]](ψ) Emax
[[P]] (ρ) = supσ∈Σ[[P]]

Eσ[[P]](ρ)

and, where required, also synthesising an optimal strategy. For example, verifying
φ=P>p[ψ ] requires computation of Pmin

[[P]] (ψ) since φ is satisfied by all strategies
if and only if Pmin

[[P]] (ψ)>p. Dually, consider synthesising a strategy for which
φ′=P6p[ψ ] holds. Such a strategy exists if and only if Pmin

[[P]] (ψ)6p and, if it does,
we can use the optimal strategy that achieves the minimum value. A common
practice in probabilistic verification to simply query the optimal values directly,
using numerical properties such as Pmin=?[ψ ] and R max=?[ ρ ].

As mentioned earlier, when solving POPTAs (or POMDPs), we may only be
able to under- and over-approximate optimal values, which requires adapting the
processes sketched above. For example, if we have determined lower and upper
bounds p[ 6 Pmin

[[P]] (ψ) 6 p]. We can verify that φ=P>p[ψ ] holds if p[ > p or
ascertain that φ does not hold if p > p]. But, if p[ < p < p], we need to refine our
approximation to produce tighter bounds. An analogous process can be followed
for the case of strategy synthesis. The remainder of this section therefore focuses
on how to (approximately) compute optimal values and strategies for POPTAs.

Numerical computation algorithms. Approximate numerical computation
of either optimal probabilities or expected reward values on a POPTA P is per-
formed with the sequence of steps given below, each of which is described in more
detail subsequently. We compute both an under- and an over-approximation. For
the former, we also generate a strategy which achieves this value.

(A) We modify POPTA P, reducing the problem to computing optimal values
for a probabilistic reachability or expected cumulative reward property [27];

(B) We apply the digital clocks discretisation of Sec. 3 to reduce the infinite-state
semantics [[P]]R of P to a finite-state POMDP [[P]]N;

(C) We build and solve a finite abstraction of the (infinite-state) belief MDP
B([[P]]N) of the POMDP from (B), yielding an over-approximation;

(D) We synthesise and analyse a strategy for [[P]]N, giving an under-approximation;
(E) If required, we refine the abstraction’s precision and repeat (C) and (D).

(A) Property reduction. As discussed in [27] (for PTAs), checking P or R

properties of the logic of Defn. 8 can always be reduced to checking either a prob-
abilistic reachability (P./p[Fα]) or expected cumulative reward (R./q[Fα]) prop-
erty on a modified model. For example, time-bounded probabilistic reachability
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(P./p[F
6t α]) can be transformed into probabilistic reachability (P./p[F (α∧y6t)])

where y is a new clock added to the model. We refer to [27] for full details.

(B) Digital clocks. We showed in Sec. 3 that, assuming certain simple restric-
tions on the POPTA P, we can construct a finite POMDP [[P]]N representing P by
treating clocks as bounded integer variables. The translation itself is relatively
straightforward, involving a syntactic translation of the PTA (to convert clocks),
followed by a systematic exploration of its finite state space. At this point, we
also check satisfaction of the restrictions on POPTAs described in Sec. 3.

(C) Over-approximation. We now solve the finite POMDP [[P]]N. For simplic-
ity, here and below, we describe the case of maximum reachability probabilities
(the other cases are very similar) and thus need to compute Prmax

[[P]]N
(FO). We first

compute an over-approximation, i.e. an upper bound on the maximum probabil-
ity. This is computed from an approximate solution to the belief MDP B([[P]]N),
whose construction we outlined in Sec. 2. This MDP has a continuous state
space: the set of beliefs Dist(S), where S is the state space of [[P]]N.

To approximate its solution, we adopt the approach of [29] which computes
values for a finite set of representative beliefs G whose convex hull is Dist(S).
Value iteration is applied to the belief MDP, using the computed values for beliefs
in G and interpolating to get values for those not in G. The resulting values give
the required upper bound. We use [29] as it works with unbounded (infinite hori-
zon) and undiscounted properties. There are many other similar approaches [28],
but these are formulated for discounted or finite-horizon properties.

The representative beliefs can be chosen in a variety of ways. We follow [23],
where G = { 1

M v | v ∈ N|S| ∧
∑|S|
i=1 v(i)=M}, i.e. a uniform grid with resolution

M . A benefit is that interpolation is very efficient, using a process called trian-
gulation [13]. A downside is that the grid size is exponential M .

(D) Under-approximation. Since it is preferable to have two-sided bounds,
we also compute an under-approximation: here, a lower bound on Prmax

[[P]]N
(FO).

To do so, we first synthesise a finite-memory strategy σ∗ for [[P]]N (which is often
a required output anyway). The choices of this strategy are built by stepping
through the belief MDP and, for the current belief, choosing an action that
achieves the values returned by value iteration in (C) above – see for example [28].
We then compute, by building and solving the finite Markov chain induced by
[[P]]N and σ∗, the value Prσ

∗

[[P]]N
(FO) which is a lower bound for Prmax

[[P]]N
(FO).

(E) Refinement. Finally, although no a priori bound can be given on the error
between the generated under- and over-approximations (recall that the basic
problem is undecidable), asymptotic convergence of the grid based approach is
guaranteed [29]. In practice, if the computed approximations do not suffice to
verify the required property (or, for strategy synthesis, σ∗ does not satisfy the
property), then we increase the grid resolution M and repeat steps (C) and (D).
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5 Implementation and Case Studies

We have built a prototype tool for verification and strategy synthesis of POPTAs
and POMDPs as an extension of PRISM [19]. We extended the existing mod-
elling language for PTAs, to allow model variables to be specified as observable
or hidden. The tool performs the steps outlined in Sec. 4, computing a pair of
bounds for a given property and synthesising a corresponding strategy. We fo-
cus on POPTAs, but the tool can also analyse POMDPs directly. The software,
details of all case studies, parameters and properties are available online at:

http://www.prismmodelchecker.org/files/formats15poptas/

We have developed three case studies to evaluate the tool and techniques, dis-
cussed in more detail below. In each case, nondeterminism, probability, real-time
behaviour and partial observability are all essential aspects required for analysis.

The NRL pump. The NRL (Naval Research Laboratory) pump [17] is designed
to provide reliable and secure communication over networks of nodes with ‘high’
and ‘low’ security levels. It prevents a covert channel leaking information from
‘high’ to ‘low’ through the timing of messages and acknowledgements. Com-
munication is buffered and probabilistic delays are added to acknowledgements
from ‘high’ in such a way that the potential for information leakage is minimised,
while maintaining network performance. A PTA model is considered in [21].

We model the pump as a POPTA using a hidden variable for a secret value
z ∈ {0, 1} (initially set uniformly at random) which ‘high’ tries to covertly com-
municate to ‘low’. This communication is attempted by adding a delay of h0 or
h1, depending on the value of z, whenever sending an acknowledgement to ‘low’.
In the model, ‘low’ sends N messages to ‘high’ and tries to guess z based on the
time taken for its messages to be acknowledged. We consider the maximum prob-
ability ‘low’ can (either eventually or within some time frame) correctly guess
z. We also study the expected time to send all messages and acknowledgements.
These properties measure the security and performance aspects of the pump.
Results are presented in Fig. 2 varying h1 and N (we fix h0=2). They show that
increasing either the difference between h0 and h1 (i.e., increasing h1) or the
number N of messages sent improve the chance of ‘low’ correctly guessing the
secret z, at the cost of a decrease in network performance. On the other hand,
when h0=h1, however many messages are sent, ‘low’, as expected, learns nothing
of the value being sent and at best can guess correctly with probability 0.5.

Task-graph scheduler. Secondly, we consider a task-graph scheduling problem
adapted from [7], where the goal is to minimise the time or energy consumption
required to evaluate an arithmetic expression on multiple processors with differ-
ent speeds and energy consumption. We extend both the basic model of [7] and
the extension from [27] which uses PTAs to model probabilistic task execution
times. A new ‘low power’ state to one processor, allowing it to save energy when
not in use, but which incurs a delay when waking up to execute a new task.
This state is entered with probability sleep after each task is completed. We as-
sume that the scheduler cannot observe whether the processor enters this lower

http://www.prismmodelchecker.org/files/formats15poptas/
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Fig. 2. Analysing security/performance of the NRL pump: (a) Maximum probability
of covert channel success; (b) Maximum expected transmission time.

power state, and hence the model is a POPTA. We generate optimal schedulers
(minimising expected execution time or energy usage) using strategy synthesis.

Non-repudiation protocol. Our third case study is a non-repudiation proto-
col for information transfer due to Markowitch & Roggeman [25]. It is designed
to allow an originator O to send information to a recipient R while guaran-
teeing non-repudiation, that is, neither party can deny having participated in
the information transfer. The initialisation step of the protocol requires O to
randomly select an integer N in the range 1, . . . ,K that is never revealed to R
during execution. In previous analyses [22,27], modelling this step was not pos-
sible since no notion of (non-)observability was used. We resolve this by building
a POPTA model of the protocol including this step, thus matching Markowitch
& Roggeman’s original specification. In particular, we include a hidden variable
to store the random value N . We build two models: a basic one, where R’s only
malicious behaviour corresponds to stopping early; and a second, more complex
model, where R has access to a decoder. We compute the maximum probability
that R gains an unfair advantage (gains the information from O while being able
to deny participating). Our results (see Table 1) show that, for the basic model,
this probability equals 1/K and R is more powerful in the complex model.

Experimental results. Table 1 summarises a representative set of experimen-
tal results from the analysis of our three case studies. All were run on a 2.8
GHz PC with 8GB RAM. The table shows the parameters used for each model
(see the web page cited above for details), the property analysed and various
statistics from the analysis: the size of the POMDP obtained through the digi-
tal clocks semantics; number of observations; number of hidden values (i.e., the
maximum number of states with the same observation); the grid size (resolution
M and total number of points); the time taken; and the results obtained. For
comparison, in the rightmost column, we show what result is obtained if the
POPTA is treated as a PTA (by making everything observable).

On the whole, we find that the performance of our prototype is good, es-
pecially considering the complexity of the POMDP solution methods and the
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Case study
(parameters)

Property
Verification/strategy synthesis of POPTA

PTA
result

States Num. Num. Res. Grid Time Result
([[P]]N) obs. hidd. (M) points (s) (bounds)

pump
(h1 N)

16 2
Pmax=?[F guess]

243 145 3 2 342 0.7 [0.940, 0.992] 1.0
16 2 243 145 3 40 4,845 4.0 [0.940, 0.941] 1.0
16 16 1,559 803 3 2 2,316 16.8 [0.999, 0.999] 1.0

pump
(h1 N D)

8 4 50

Pmax=?[F6Dguess]

12,167 7,079 3 2 17,256 11.0 [0.753, 0.808] 1.0
8 4 50 12,167 7,079 3 12 68,201 36.2 [0.763, 0.764] 1.0
16 8 50 26,019 13,909 3 2 38,130 52.8 [0.501, 0.501] 1.0
16 8 100 59,287 31,743 3 2 86,832 284.8 [0.531, 0.532] 1.0

scheduler
basic

(sleep)

0.25
Rmin=?[F done]
(exec. time)

5,002 3,557 2 2 6,447 3.2 [14.69, 14.69] 14.44
0.5 5,002 3,557 2 2 6,447 3.1 [17.0, 17.0] 16.5
0.75 5,002 3,557 2 4 9,337 3.1 [19.25, 19.25] 18.5

scheduler
basic

(sleep)

0.25
Rmin=?[F done]
(energy cons.)

5,002 3,557 2 4 9,337 3.1 [1.335, 1.335] 1.237
0.5 5,002 3,557 2 2 6,447 3.1 [1.270, 1.270] 1.186
0.75 5,002 3,557 2 2 6,447 3.2 [1.204, 1.204] 1.155

scheduler
prob

(sleep)

0.25
Rmin=?[F done]
(exec. time)

6,987 5,381 2 2 8,593 5.8 [15.00, 15.00] 14.75
0.5 6,987 5,381 2 2 8,593 5.8 [17.27, 17.27] 16.77
0.75 6,987 5,381 2 4 11,805 5.0 [19.52, 19.52] 18.77

scheduler
prob

(sleep)

0.25
Rmin=?[F done]
(energy cons.)

6,987 5,381 2 4 11,805 5.3 [1.335, 1.335] 1.3
0.5 6,987 5,381 2 2 8,593 5.0 [1.269, 1.269] 1.185
0.75 6,987 5,381 2 2 8,593 5.8 [1.204, 1.204] 1.155

nrp
basic
(K)

4

Pmax=?[F unfair ]

365 194 5 8 5,734 0.8 [0.25, 0.281] 1.0
4 365 194 5 24 79,278 5.9 [0.25, 0.25] 1.0
8 1,273 398 9 4 23,435 4.8 [0.125, 0.375] 1.0
8 1,273 398 9 8 318,312 304.6 [0.125, 0.237] 1.0

nrp
complex

(K)

4

Pmax=?[F unfair ]

1,501 718 5 4 7,480 2.1 [0.438, 0.519] 1.0
4 1,501 718 5 12 72,748 14.8 [0.438, 0.438] 1.0
8 5,113 1,438 9 2 16,117 6.1 [0.344, 0.625] 1.0
8 5,113 1,438 9 4 103,939 47.1 [0.344, 0.520] 1.0

Table 1. Experimental results from verification/strategy synthesis of POPTAs.

fact that we use a relatively simple grid mechanism. We are able to analyse
POPTAs whose integer semantics yields POMDPs of up to 60,000 states, with
experiments usually taking just a few seconds and, at worst, 5-6 minutes. These
are, of course, smaller than the standard PTA (or MDP) models that can be
verified, but we were still able to obtain useful results for several case studies.

The values in the rightmost column of Table 1 illustrate that the results
obtained with POPTAs would not have been possible using a PTA model, i.e.,
where all states of the model are observable. For the pump example, the PTA
gives probability 1 of guessing correctly (‘low’ can simply read the value of the
secret). For the scheduler example, the PTA model gives a scheduler with better
time/energy consumption but that cannot be implemented in practice since the
power state is not visible. For the nrp models, the PTA gives probability 1 of
unfairness as the recipient can read the random value the originator selects.

Another positive aspect is that, in many cases, the bounds generated are
very close (or even equal, in which case the results are exact). For the pump and
scheduler case studies, we included results for the smallest grid resolution M
required to ensure the difference between the bounds is at most 0.001. In many
cases, this is achieved with relatively small values (for the scheduler example, in
particular, M is at most 4). For nrp models, we were unable to do this when K=8
and instead include the results for the largest grid resolution for which POMDP
solution was possible: higher values could not be handled within the memory
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constraints of our test machine. We anticipate being able to improve this in the
future by adapting more advanced approximation methods for POMDPs [28].

6 Conclusions

We have proposed novel methods for verification and control of partially ob-
servable probabilistic timed automata, using a temporal logic for probabilistic,
real-time properties and reward measures. We developed techniques based on a
digital clocks discretisation and a belief space approximation, then implemented
them in a tool and demonstrated their effectiveness on several case studies.

Future directions include more efficient approximation schemes, zone-based
implementations and development of the theory for unobservable clocks. Allow-
ing unobservable clocks, as mentioned previously, will require moving to partially
observable stochastic games and restricting the class of strategies.
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