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Abstract. We study the interaction between non-deterministic and pro-
babilistic behaviour in systems with continuous state spaces, arbitrary
probability distributions and uncountable branching. Models of such sys-
tems have been proposed previously. Here, we introduce a model that ex-
tends probabilistic automata to the continuous setting. We identify the
class of schedulers that ensures measurability properties on executions,
and show that such measurability properties are preserved by parallel
composition. Finally, we demonstrate how these results allow us to de-
fine an alternative notion of weak bisimulation in our model.

1 Introduction

Current trends in ubiquitous computing, such as mobility, portability, sensor and
wireless ad hoc networks, place an increasing emphasis on the need to model and
analyse complex stochastic behaviours. For example, network traffic demands
continuously distributed durations, sensors may generate real-valued data, and
the geographical mobility of agents typically involves movement in space and
time with stochastic trajectories. The presence of the distributed computation
scenario creates a requirement to model non-determinism, in addition to such
stochastic features.

Several models capable of representing probabilistic behaviour have been
proposed in the literature, see e.g. [1,10,13,16,24]. Particular attention has been
paid to the nature of interaction between probabilistic and non-deterministic
behaviour; though these can be seen as orthogonal, the way they interact in the
model has led to fundamental distinctions. In the discrete state, discrete time
model different variants have been proposed. In some models randomisation re-
places non-determinism [10], while elsewhere [11] states are either probabilistic
or non-deterministic, such that probabilistic and deterministic choices alternate.
Furthermore, one can replace conventional transitions with probabilistic tran-
sitions (transitions whose target is a distribution over states); in the resulting
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model of probabilistic automata [21,22], both non-deterministic and probabilis-
tic choices are present at each step. Each of these variants can be endowed with
appropriate relations, e.g. bisimulation, simulation or trace equivalence relations.

More recently, the analysis of probabilistic systems has been extended to
continuous spaces. Such models can represent systems whose progress, for in-
stance, depends on continuously distributed real-time or geographical position
information. Stochastic process algebras [13] are an extension of process algebras
in which delays are distributed according to some probability distribution over
the reals. Initially, only exponential distributions were considered, as they are
easier to handle because of their memoryless property. The usual convention is to
replace non-determinism with race condition, leading to continuous time Markov
chains, but non-determinism can be kept (e.g. interactive Markov chains [12]).
Generally distributed delays have also been introduced, both in the case in which
non-determinism is replaced with race conditions (e.g. generalised semi-Markov
processes), and in the case in which it is retained [7,4]. Labelled Markov processes
[8] are extensions of transition systems to continuous state spaces and general
distributions, but have no non-determinism, in the sense that the choice of ac-
tion determines the next transition. Operational models with non-determinism
have already been proposed, e.g. [7,4,5], and the notions of bisimulation and
parallel composition have been studied for such systems; [4] also defines weak
bisimulation.

When considering continuous distributions and state spaces, the notion of
measurability of executions plays an important role, and a departure from point-
wise consideration of behaviour is needed since the probability of reaching an
individual state is often 0. This leads to the central topic of this paper: here, we
investigate the measurability issues that arise from the interaction between non-
determinism and continuous state spaces. By allowing the most general setting,
the behaviour of a system can become mathematically intractable when studying
the properties of a system over several steps of execution. We introduce a model
for continuous states spaces, called stochastic transition systems, which can be
seen as an extension of probabilistic automata to a fully continuous setting: both
the set of states and the set of action labels can be continuous. This model also
encapsulates labelled Markov processes by the addition of non-determinism, and
it can serve as an operational model for stochastic process algebras, since states
can record the passage through 3D space and/or time, and labels can include
real-valued delays, as well as discrete actions.

As in the discrete case, we use the notion of scheduler as the entity that
resolves non-determinism. The power of schedulers has to be restricted since
arbitrary schedulers could generate executions that are not tractable from a
mathematical point of view. For this reason, we define the class of measurable
schedulers and show that it identifies the set of schedulers that generate all and
only the “good” executions that are measurable. Under this restriction, we can
define a probability measure on executions, thus enabling us to reason about
global properties of a run of a system.



We also introduce the notion of parallel composition for stochastic transition
systems and show that our measurability properties are compositional: if there
exists a “good” scheduler for the composition, then there must exist two “good”
schedulers on the components that give rise to the same behaviour. This property
is important because it both allows for compositional reasoning and serves as a
sanity check on the correctness of the definition of measurable schedulers that
we have given. As a final remark, we show how we can define the notion of
weak transitions for stochastic transition systems. The measurability conditions
introduced in the paper are needed to define the target probability of several
steps of silent transitions. Based on such transitions, we also give an alternative
notion of weak bisimulation for our model.

The main contribution of this paper is the study of measurability proper-
ties of stochastic transition systems with non-determinism and continuous state
spaces. We identify the class of measurable schedulers that generate tractable
runs, confirming the choice originally made in [15]; this restriction enables the
definition of a measure on executions. We also show that such measurability
properties are preserved through parallel composition.

Structure of the paper. In Section 2 we review the basic notions of measure
theory used in this paper. Section 3 introduces the model of stochastic transi-
tion systems, and in Section 4 we study the class of schedulers that guarantees
measurability of executions. Section 5 introduces a CSP-style parallel operator
and analyses the compositionality properties of stochastic transition systems. In
Section 6 weak transitions and weak bisimulation are defined. Finally, Section 7
discusses possible future work.

2 Preliminaries

In this section we review the basic definitions and results of measure theory that
are necessary for the remainder of the paper. A basic knowledge of topology
and metric spaces is assumed. Most results can be found in standard textbooks,
e.g. [2]; [18] serves as a good introduction to measure theory.

Basic definitions. Given a set X, an algebra over X is a family FX of subsets
of X that includes X and is closed under complementation and finite union; FX

is a σ-algebra over X if we additionally require closure under countable union.
A measurable space is a pair (X,FX), where FX is a σ-algebra over X. The
elements of FX are called measurable sets. We abuse the notation and refer to
X as a measurable space whenever the corresponding σ-algebra is clear from the
context. The σ-algebra generated by a family G of subsets of X is the smallest
σ-algebra including G. The product space of two measurable spaces (X,FX) and
(Y,FY ) is the measurable space (X × Y,FX ⊗ FY ), where FX ⊗ FY is the σ-
algebra generated by the rectangles A × B = {(x, y) | x ∈ A, y ∈ B}, for all
A ∈ FX and B ∈ FY ; we alternatively denote FX ⊗ FY by FX×Y . The union



of two measurable spaces is the measurable space (X ∪ Y,FX∪Y ), where FX∪Y

is the σ-algebra generated by the union of FX and FY . The Borel σ-algebra for
a topological space (X, T ) is the σ-algebra generated by the open sets and is
denoted by B(X).

Given a measurable space (X,FX), a measure over (X,FX) is a function
µ : FX → R≥0 such that µ(∅) = 0 and, for every countable family of pairwise
disjoint measurable sets {Ai}i∈I , µ(∪i∈IAi) =

∑
i∈I µ(Ai); the triple (X,FX , µ)

is called a measure space. A probability (resp., sub-probability) measure µ over
(X,FX) is a measure such that µ(X) = 1 (resp., µ(X) ≤ 1). A measurable set
whose complement has probability 0 is called a support for a measure µ. If µ is
a (sub-)probability measure, (X,FX , µ) is called a (sub-)probability space. We
denote the set of probability (resp., sub-probability) measures over (X,FX) by
D(X,FX) (resp, subD(X,FX)). The product probability space for two proba-
bility spaces (X,FX , µX) and (Y,FY , µY ), is (X×Y,FX ⊗FY , µX ⊗µY ), where
µX ⊗ µY is the unique probability measure such that (µX ⊗ µY )(A × B) =
µX(A) · µY (B), for all A ∈ FX and B ∈ FY .

A function f : (X,FX) → (Y,FY ) is measurable if the pre-image of every
measurable set is measurable, that is, if f−1(B) = {x ∈ X | f(x) ∈ B} ∈ FX

for all B ∈ FY . Given a measurable space (X,FX), the indicator function for
a measurable set A ∈ FX is the measurable function IA(x) = 1 if x ∈ A, 0
otherwise. Let (X,FX , µ) be a probability space, (Y,FY ) a measurable space
and f a measurable function from X to Y . The induced probability measure for
f over (Y,FY ) is given by f(µ) defined as f(µ)(B) = µ(f−1(B)) for all B ∈ FY .

We call a family S of subsets of a set X a semi-ring if S includes ∅, is closed
under finite intersection, and if, whenever A,B ∈ S, there exists a finite family
{Ai}i∈{0...n} of pairwise disjoint elements of S such that A \B = ∪n

i=0Ai.

Theorem 1. Every sub-probability measure defined over a semi-ring S can be
uniquely extended to a sub-probability measure over the σ-algebra generated by
S.

Theorem 2. Let (X,FX) and (Y,FY ) be two measurable spaces and f a real-
valued nonnegative measurable function on X × Y . Assume we have a function
ν : Y × FX → R≥0 such that ν(y, ·) is a measure on (X,FX) for all y ∈ Y and
ν(·, A) is measurable for all A ∈ FX . Then

∫
X

f(x, y)ν(y, dx) exists and is a
measurable function of Y .

Regular conditional probabilities. As we will demonstrate later, our con-
struction will require conditional probabilities. In the discrete case, we can define
the probability of an event A given B as P (A|B) = P (A ∩ B)/P (B), which is
defined only when P (B) > 0. Unfortunately, this cannot be done in general for
the continuous case, as it is still meaningful to condition with respect to events
of probability 0. Consider for example a measure defined on R2; even if the prob-
ability of a given x can be zero, it can be interesting to study the probability
measure on R for such given x. It is therefore necessary to extend the concept
of conditional probabilities.



Definition 1. Let (X,FX , µ) be a probability space, (Y,FY ) a measurable space
and f : X → Y a measurable function. A regular conditional probability
for µ with respect to f is a function ν : Y ×FX → [0, 1] such that:

1. ν(y, ·) is a probability measure on FX , for each y ∈ Y ;
2. ν(·, A) is a measurable function on (Y,FY ), for each A ∈ FX ;
3. µ(A ∩ f−1(B)) =

∫
B

ν(y, A) f(µ)(dy).

Regular conditional probabilities do not exist for all probability spaces. It is
necessary to impose restrictions on the kind of measurable spaces we consider.
A Polish space is the topological space underlying a complete separable metric
space. Given a Polish space X, (X,FX) is a standard Borel space if FX is the
Borel σ-algebra generated by the topology. Finally, given a standard Borel space
(X,FX), Y ⊆ X is an analytic set if it is the continuous image of some Polish
space. The space (Y,FY ) is an analytic space if it is measurably isomorphic to an
analytic set in a Polish space, that is, if there exists a measurable bijection whose
inverse is also measurable. Note that singleton sets are measurable in Polish and
analytic spaces. Examples of analytic sets are the discrete spaces and any open
or closed subset of the reals equipped with the Borel σ-algebra. Analytic sets are
closed under union and Cartesian product. Thus, analytic sets are quite general;
for instance, the semantic model of timed systems is given by the product of
a discrete set (the graph-theoretic representation of a system) and the possible
values of time (the real numbers).

Theorem 3. Let (Y,FY )be an analytic spac and f : (X,FX , µ) → (Y,FY ) a
measurable function. Then there exists a regular conditional probability ν for f .

A σ-algebra on probability measures. In the following, we define probabil-
ity distributions on sets of probabilistic transitions whose targets are probability
measures on states. We therefore need to define a σ-algebra on sets of proba-
bility measures; we use the standard construction, due to Giry [9]. Let (X,FX)
be a measurable set and D(X,FX) the set of probability measures on X. We
build a σ-algebra on the set of probability measures D(X,FX) as follows: for
each A ∈ FX , define a function pA : D(X,FX) → [0, 1] by pA(ν) = ν(A). The
σ-algebra on D(X,FX), denoted by FD(X,FX) is the least σ-algebra such that all
the pA’s are measurable. The generators of the σ-algebra are the sets of prob-
ability measures DA,I = p−1

A (I) = {µ ∈ D(X,FX) | µ(A) ∈ I}, for all A ∈ FX

and I ∈ B([0, 1]).

3 Stochastic Transition Systems

In this section we introduce our model, called stochastic transition systems, which
features both non-deterministic and probabilistic behaviour. The model can be
seen as an extension of probabilistic automata [21] to continuous state and label
spaces and to continuous probability measures. Stochastic transition systems are
fully non-deterministic, and thus also generalise labelled Markov processes [8].



In this section we introduce the fundamental concepts of our continuous
model, most of which are an adaptation of [21] to the continuous setting.

Definition 2. A stochastic transition system (STS) S is a tuple ((Q,FQ),
q, (L,FL),→), where

– (Q,FQ) is the analytic space of states;
– q ∈ Q is the initial state;
– (L,FL) is the analytic space of labels;
– →⊆ Q× L×D(Q,FQ) is the set of probabilistic transitions.

We say that a transition (q, a, µ) is labelled by a and enabled from q, and
denote it by q

a−→ µ; transitions are ranged over by t. We denote the set of
possible transitions by T = Q×L×D(Q,FQ) and define a σ-algebra on it as the
product of the σ-algebras of the components, that is, FT = FQ⊗FL⊗FD(Q,FQ).
The set of transitions enabled from a state q is denoted by T (q) = {(q′, a, µ) ∈→
| q = q′}. We denote the elements of an STS S by Q, FQ, q, L, FL and → and
we propagate indices when necessary; thus, the elements of Si are Qi, FQi

, qi,
Li, FLi

and →i .

Combined transitions. Following [21], since we resolve non-determinism in a
randomised way, we combine the transitions leaving a state q in order to obtain
a new transition. Similarly to the discrete case, this induces a probability measure
on the set of transitions leaving state q, that is, a measure π on T with a support
contained in T (q). Since different transitions have in general different labels, the
combination of the transitions leaving a state results in a new distribution on
both labels and target states.

Definition 3. Given a state q and a sub-probability measure π over (T ,FT )
with a support contained in T (q), the combined transition for π from q is
the pair (q, µπ) (denoted by q → µπ), where µπ is the sub-probability measure
over (L×Q,FL ⊗FQ) defined as follows:

µπ(A×X) =
∫

(q,a,µ)∈T
IA(a)µ(X)dπ

The integral above is well defined for the σ-algebra FT on transitions. It is easy
to show that µπ is a sub-probability measure. Observe that we require π to be a
sub-probability measure, therefore it is possible that no transition is scheduled
with positive probability. We let this denote the probability to stop, which is
defined as µπ(⊥) = 1− µπ(L×Q).

Executions. Given an STS S, a possibly infinite alternating sequence of states
and actions α = q0a1q1 · · · is called an execution. We denote the set of executions
by Exec, the set of finite executions ending with a state by Exec∗ and the set
of infinite executions by Execω. Given a finite execution α, α[↓] denotes its last
state. The length of an execution α, denoted by |α|, is the number of occurrences
of actions in α; if α is infinite |α| = ∞. We denote a finite execution α that has
terminated by α⊥, where an execution α terminates if ⊥ is scheduled from the
last state of α.



A σ-algebra on executions. We define the σ-algebra FExec over the set of execu-
tions. This is necessary to study the properties of system runs. In the discrete
case, FExec is the σ-algebra generated by cones, that is, the set of executions
that extend some finite prefix. This concept is generalised to the continuous case
by using sets of executions called basic sets. Formally, given a non empty finite
sequence of measurable sets Λ = X0A1X1 · · ·AnXn, Ai ∈ FL, i ∈ {1..n}, and
Xi ∈ FQ, i ∈ {0..n}, the basic set with base Λ is defined as:

CΛ = {q0a1 · · · qnα | ∀i ∈ {0..n} qi ∈ Xi and ∀i ∈ {1..n} ai ∈ Ai and α ∈ Exec}

The length of a basic set CΛ is given by the number of occurrences of elements
of FL in Λ. Observe that basic sets form a semi-ring. FExec is the σ-algebra
generated by basic sets.

We define the σ-algebra FExec∗ on finite executions in a similar way as the
σ-algebra generated by the sets of the form Q0A1 · · ·Qn = {α = q0a1 · · · qn | qi ∈
Qi for all i ∈ {0 · · ·n} and aj ∈ Aj for all j ∈ {1 · · ·n}}, where Q0 . . . Qn ∈ FQ

and A1 . . . An ∈ FL. (Exec∗,FExec∗) is the measurable set of finite executions.
Note that FExec∗ is the restriction of FExec to finite executions.

Schedulers. We use schedulers as the entities that resolve non-determinism.
Given a history in the form of a sequence of states and labels that the sys-
tem has visited, a scheduler chooses the next transition from the current state
by assigning a sub-probability measure to the enabled transitions.

Definition 4. A scheduler is a function η : Exec∗ → subD(T ), such that, for
all α ∈ Exec∗, T (α[↓]) is a support for η(α).

We denote the set of schedulers by A. Since a scheduler η returns a distribu-
tion on transitions for each finite execution α, it induces a combined transition
(α[↓], µη(α)) leaving the last state of each execution. Note that we use randomised
schedulers; originally introduced for discrete systems, they have been shown to
have important properties, for example the probabilistic temporal logic PCTL is
preserved by bisimulation under randomised schedulers [22]. Randomised sched-
ulers are also necessary to obtain compositionality under parallel compositions
(see Section 5). Non-randomised (deterministic) schedulers can be seen as the
subclass of schedulers that return a Dirac distribution after each execution.

According to the above definition, a scheduler can make arbitrary choices
at each point of the computation. We define a class of schedulers whose global
behaviour respects measurability properties.

Definition 5. A scheduler η is measurable if the function fη(α) = µη(α) (called
the flattening of η) is a measurable function from (Exec∗,FExec∗) to (subD(L×
Q),FsubD(L×Q)). We denote the class of measurable schedulers by Ameas .

Probabilistic executions. The interaction of an STS S and a scheduler η results
in a system with no non-determinism, i.e. a purely probabilistic process. We call
this object a probabilistic execution following [21].



Definition 6. Given an STS S and a scheduler η, the probabilistic execution
PS,η for S and η is the tuple (Exec∗,FL×Q, µ), where µ : Exec∗×FL×Q → [0, 1]
such that for each α ∈ Exec∗ µ(α, ·) is a sub-probability measure over L × Q
defined by µη(α).

A probabilistic execution defines the transitions induced by the scheduler η:
given a finite execution it returns the combined transition scheduled by η. We
write µX , X ∈ FL×Q, whenever we fix X and µ is a function on Exec∗. Similarly,
we write µα (or µη(α)) whenever we fix α and µ is a measure on FL×Q.

Not all probabilistic executions are “good”; our objective is to define a mea-
sure on executions, essential to define weak transitions, and the measurability of
the function µ is necessary for this purpose. In the purely probabilistic case (no
non-determinism) this problem is solved by using Markov kernels (e.g. [8]). We
adapt this idea to our setting by defining measurable probabilistic executions
and by studying the conditions under which they are generated.

Definition 7. A probabilistic execution PS,η = (Exec∗,FL×Q, µ) is measurable
if µ : Exec∗ × FL×Q → [0, 1] is such that µ(·, X) is a measurable function for
each X ∈ FL×Q.

When µ has such a measurability property, we can see it as a generalisation
of Markov kernels to the history-dependent case.

Related models. As stated above, stochastic transition systems are an exten-
sion of probabilistic automata to the continuous case; the latter correspond to
the subset of STSs with discrete σ-algebras on states. Labelled Markov processes
(LMPs) [8] correspond to the case where there is no non-determinism on actions,
that is, for every action there is exactly one distribution from each state. The
measurability problem is solved in LMPs by using, for each action, a Markov
kernel to denote the probability transition function. An extension of probabilistic
automata with continuous distributions and real-valued time labels is proposed
in [5], but measurability properties are not considered. Similar models for the
continuous setting can be found in [7], proposing an alternating model, where
states are either non-deterministic or probabilistic, and in [4], proposing a model
where each state enables one probabilistic distribution or arbitrarily many tran-
sitions labelled with actions or time. Again, neither of these papers considers the
problem of measurability of executions.

4 Measurability and Schedulers

We aim to extend the results of the discrete case to stochastic transition systems
and define the measure on executions induced by a scheduler. This requires the
corresponding probabilistic execution to be measurable. In this section we show
that the class of measurable schedulers identifies all and only the measurable
probabilistic executions. The following example shows that arbitrary schedulers
could produce “bad” executions and explains why considering the point-wise
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Fig. 1. A simple stochastic transition system illustrating the need for measurable
schedulers.

behaviour of a scheduler is not enough in the continuous setting; instead, it is
necessary to consider its global behaviour.

Example 1. Consider the system of Figure 1: the initial state q0 enables a single
transition with some measure µ on the interval [0, 1]. From each state in [0, 1]
two Dirac transitions are enabled: one to q1 and the other to q2. Labels are not
relevant. The probability of moving to q1 after two steps under a scheduler η is
given by

∫
[0,1]

µη(q)({q1})µ(dq), that is, the probability of reaching any state q

multiplied by the probability of reaching q1 from each q. Let η be the scheduler
that chooses q1 from a non-measurable subset A of [0, 1], and q2 from its com-
plement. The integral above is not defined as µη(q)({q1}) is not a measurable
function, that is, the probabilistic execution is not measurable. We want to rule
out such a probabilistic execution as “pathological” and disallow the scheduler
generating it.

4.1 Measurable Schedulers and Probabilistic Executions

We restrict our analysis to measurable executions only, as they represent “well
behaved”, feasible, schedulers and allow us to define probability measure on
paths. We think this is not an unreasonable restriction since schedulers that
produce non-measurable executions represent pathological cases and thus can be
discarded. A similar approach has been adopted in [15], where only the sched-
ulers that preserve the measurability of logical formulae are considered, though
without studying the nature of such schedulers.

Proposition 1. Given an STS S, and a scheduler η, η is measurable if and only
if PS,η is measurable.

Proof outline. We prove the two directions:

– If: Let fη be the flattening of η as in Definition 5. We have to show that
f−1

η (D) ∈ FExec∗ for all D ∈ FsubD(L×Q). Firstly, we prove it for the gen-
erators DX,I of FsubD(L×Q), for all X ∈ FL×Q and I ∈ B([0, 1]). Consider
one such DX,I . Since PS,η is measurable, we get µ−1

X (I) = Y ∈ FExec∗ by
hypothesis. We show that Y = f−1

η (DX,I):
• f−1

η (DX,I) ⊇ Y : consider α ∈ Y , then µ(α, X) ∈ I; this is equivalent
to µη(α)(X) ∈ I, which implies µη(α)(X) ∈ DX,I . It follows that α ∈
f−1

η (DX,I).



• f−1
η (DX,I) ⊆ Y : consider α ∈ f−1

η (DX,I). Then µη(α)(X) ∈ I, that is,
µ(α, X) ∈ I. This, of course, means that α ∈ µ−1

X (I) = Y .
The result is extended to the σ-algebra FsubD(L×Q) by standard arguments.

– Only if: consider PS,η = (Exec∗,FL×Q, µ); we have to show that for all
X ∈ FL×Q and for all I ∈ B([0, 1]), µ−1

X (I) ∈ FExec∗ . It is easy to observe
that µ−1

X (I) corresponds to all the executions from which a distribution in
the generator DX,I of σ-algebra on distributions (see Section 2) is scheduled.
The measurability of the scheduler ensures that such set of executions is in
FExec∗ , as required. ut

The proposition above shows that measurable schedulers generate all and
only the measurable probabilistic executions, that is, the probabilistic executions
that we are interested in. We can therefore disallow non-measurable schedulers.

4.2 Measure on Executions

We can now define the measure on (Exec,FExec) induced by a scheduler and
show that it is defined only for measurable schedulers. Being able to define such
a measure is important in order to study global properties on paths, such as the
extension of trace distributions [20] to our setting, or if we want to use stochastic
transition systems as a model for a stochastic extension of temporal or modal
logic [8,15].

We define the measure δη,q on basic sets induced by a scheduler η from a
start state q inductively on the length of the basic sets as follows:

δη,q(CX) =

{
1 if q ∈ X

0 otherwise

δη,q(CΛAX) =
∫

α∈Λ

µη(α)(A,X)δη,q(dα)

The integral above is defined when the function f(α) = µη(α)(A,X) is mea-
surable from the measure space of finite executions to [0, 1]. From Proposition 1,
this is true whenever we deal with measurable schedulers. The measure δη,q ex-
tends uniquely to FExec since basic sets form a semi-ring (Theorem 1). We get
the following Proposition.

Proposition 2. Given an STS S and a scheduler η, the measure δη,q is defined
for all basic sets if and only if η is measurable.

Proof outline. The proof is a consequence of the definition of δη,q and of Propo-
sition 1. ut

Using the measure defined above, and since schedulers use sub-probability
distributions, we can define the probability of a set of finite executions that have
terminated as the probability to stop after each execution. Formally, given a
sequence Λ = X0A1 · · ·AnXn of measurable sets of states and actions, we define



the probability to stop after Λ as δη,q(CΛ⊥) =
∫

α∈Λ
µη(α)(⊥). The cones CΛ⊥ are

in fact the generators of FExec∗ . The probability of eventually terminating is the
probability of finite executions, which can be defined as the countable union of
disjoint basic sets as follows: Exec∗ = ∪i≥0CQ(LQ)i⊥.

5 Parallel Composition and Measurability

In this section we introduce a CSP-style parallel operator [14], under which two
STSs synchronise on a common interface alphabet, and study the composition-
ality properties of schedulers and measurable executions.

Given an STS S, we partition its label space into two measurable sets Lp

and Li of private and interface labels, respectively. We say that two STS S1

and S2 are compatible if Lp
1 ∩ L2 = ∅ and Lp

2 ∩ L1 = ∅. We denote the union
of the measurable spaces of labels by (L,FL). We can now define the parallel
composition between two compatible STSs.

Definition 8. Let S1 and S2 be two compatible labelled stochastic transition
systems. The parallel composition S1 || S2 of S1 and S2 is the stochastic
transition system S = ((Q,FQ), q, (L,FL),→), where:

– (Q, FQ) = (Q1 ×Q2,FQ1 ⊗FQ2).
– q = (q1, q2).
– (L,FL) is the union of the labels of the components.
– →⊆ Q× L×D(Q) such that ((q1, q2), a, µ1 ⊗ µ2) ∈→ iff, for i ∈ {1, 2}:

• if a ∈ Li, then (qi, a, µi) ∈→i, or
• if a 6∈ Li, then µi = Dirac(qi).

Observe that S1 || S2 is a well-defined STS given the closure properties of
analytic spaces. Next we define two families of functions, π1 and π2, to be the
left and right projections respectively. Given a state q of S, the projection πi

returns the i-th component of q. For an execution α of S, define the projection
πi(α) as the execution of Si obtained from α by projecting all the states and
removing all the actions not in Li together with the subsequent state. Given a
distribution µ on Q1×Q2, the projection πi(µ) is the distribution on Qi induced
by πi; πi(µ) exists since πi is a measurable function. Finally, given a transition
t = ((q1, q2), a, µ), its projection πi(t) is (qi, a, πi(µ)). If a /∈ Li the projection
πi(t) is still defined but it does not correspond to a possible transition of Si.
Note that all the variants of π1 and π2 are measurable functions. The following
two theorems are important for compositional reasoning.

Theorem 4. Let S1 and S2 be two compatible STSs and α an execution of
S1 || S2. Then πi(α) is an execution of Si, for i ∈ {1, 2}.

Theorem 5. Let S1 and S2 be two compatible STSs and η a measurable sched-
uler for S1 || S2. Then there exists a measurable scheduler η1 such that δη1,q1

=
π1(δη,q).



Proof outline. We define the scheduler η1 on the first component as follows

η1(α1)(T ) =
∫

α∈π−1
1 (α1)

η(α)(π−1
1 (T )) ν(α1, dα) (1)

for all T ∈ FT , where ν(α1, dα) is the regular conditional probability for δη,q with
respect to π1, whose existence follows from Theorem 3. It is easy to show that
η1 defines a legal scheduler for S1 and its measurability follows from Theorem 2.
In order to prove that δη1,q1

= π1(δη, q), we need to show that

δη1,q1
(CΛ) = δη,q(π−1(CΛ)) (2)

for all basic sets CΛ. Equation (2) is proved by algebraic arguments and by
exploiting the properties of regular conditional probabilities. Since the two mea-
sures agree on the basic sets, which form a semi-ring, they extend to the same
measure by Theorem 1. ut

Theorem 5 shows that the action of a scheduler on S can be derived from the
action of the corresponding schedulers on each component since the properties of
an execution can be derived from the properties of its components. This allows
us to analyse systems in a compositional way. At the same time, this result also
confirms that the notion of measurable schedulers and measurable executions is
well-defined, since it respects the important requirement of compositionality.

Remark 1. Theorem 5 extends the analogous result for the discrete case [21]. In
particular, Equation (1) can be rewritten in a more familiar form as:

η1(α1)(t) =
∑

α∈π−1
1 (α1)

δ(Cα | π−1
1 (Cα1)) · η(α)(π−1

1 (t)).

In the discrete case, we can define the probability for a single transition t. The
equation above shows the intuition behind the definition of η1: each transition
is assigned the weighted probability of its inverse image under projection after
each execution in the parallel composition, conditioned on being in an execution
whose projection is α1.

6 Weak Transitions and Weak Bisimulation

In this section, we show how the results of the previous sections enable us to
define weak transitions and weak bisimulation in our model. A weak transition
[17] abstracts from internal computation and considers sequences of actions of the
form τ∗aτ∗, where τ denotes a generic internal action. In the case of probabilistic
automata, this is achieved by considering sequences of transitions that form a
probabilistic execution where only executions whose trace is of the form τ∗aτ∗

have positive probabilities [21]. We wish to extend such approach to stochastic
transition systems. Of course, in order to do this, we must be able to define
the target probability over several steps of executions and we need to restrict to



measurable schedulers. Our definition of weak transitions would not be possible
without the restrictions on schedulers and the construction of the measure on
cones described in Section 4.

We assume the existence of another partitioning of the label space L into
two measurable sets, Le and Lτ , to denote visible and invisible actions, respec-
tively. We denote generic internal actions by τ . A weak transition is defined as a
probabilistic execution which terminates with probability 1 and with a support
contained in the set of executions containing exactly one visible action. Let WA

denote the executions whose visible trace is exactly one action a ∈ A ⊆ Le and
W = WL. WA is measurable as it can be constructed from basic sets and it also
contains infinite executions.

Definition 9. The pair (q, µ), q ∈ Q and µ ∈ D(L × Q), is a weak tran-
sition (denoted by q ⇒ µ) if there exists a measurable scheduler η such that
δη,q(Exec∗) = 1, δη,q(W) = 1 and µ is defined as follows: µ(A,X) = δη,q((∪i>0

CQ((A∪{τ})Q)iX⊥) ∩WA) for all A ∈ FL, A ⊆ Le, and X ∈ FQ.

It is easy to show that, under the termination condition δη,q(Exec∗) = 1, µ is a
probability measure on L×Q. Weak transitions only consider the local behaviour
from one state, and therefore do not preserve measurability properties that are
defined on sets of states. For this reason, we use the more general notion of weak
hyper-transitions [23], defined as transitions from a distribution over states to a
distribution over states and labels.

Definition 10. Let µ be a probability measure on (Q,FQ) and for each q ∈ Q
let q ⇒ µq be a weak transition. Define µ′(A,X) =

∫
Q

µq(A,X)µ(dq) if the
integral is defined for all A ∈ FL and X ∈ FQ. Then we say that µ ⇒ µ′ is a
weak hyper-transition.

Hyper transitions are used in the discrete case to prove linear-time proper-
ties of systems, such as the fact that bisimulation preserves trace semantics [21].
Note that, in the discrete case, a meaure defined on a set of states and a set of
transitions enabled from each of such states always induce a hyper-transition,
while in the continuous case this is not always true, because of the usual prob-
lems of measurability. This is the reason why we strengthen our notion of weak
bisimulation and define it in terms of weak hyper-transitions.

Weak bisimulation. We extend the notion of weak bisimulation to stochas-
tic transition systems. Bisimulation relations, first introduced in the context
of CCS [17], are fundamental relations for concurrent systems, and have been
extended to the probabilistic setting, both for discrete (strong and weak bisimu-
lation) [16,11,22,3,19] and continuous state spaces (strong bisimulation) [7,8,5].
A notion of weak bisimulation for the continuous setting was introduced in [4],
where the problem of defining a measure on paths for weak transitions was not
considered, since a weak transition was defined as a succession of τ -labelled
non probabilistic transitions followed by a probabilistic transition. The notion



of weak transition defined in this paper is suitable for our more general case of
several probabilistic steps. Strong bisimulation could be easily defined as it does
not abstract from internal computation and therefore can be defined without
restrictions to measurable schedulers.

Given an equivalence relation R on a measurable space (Q,FQ), we say that
X ∈ FQ is R-closed if it is the union of equivalence classes. Two probability
measures µ1 and µ2 on Q are R-equivalent (µ1Rµ2) if µ1(X) = µ2(X) for all
R-closed X ∈ FQ, while two probability measures µ1 and µ2 on Q × L are R-
equivalent if µ1(A,X) = µ2(A,X) for all R-closed X ∈ FQ and for all A ∈ FL.

Definition 11. Let S1 and S2 be two STSs with the same space of labels. An
equivalence relation R on the union of their sets of states is a weak bisimula-
tion between S1 and S2 if:

1. q1Rq2 and
2. for all µ1 and µ2 R-equivalent measures on states, whenever there is a hyper-

transition µ1 → µ′1, there exists a weak hyper-transition µ2 ⇒ µ′2 s.t. µ′1Rµ′2.

7 Conclusions

We have introduced an operational model for non-deterministic systems with
continuous state spaces and continuous probability distributions, thus generalis-
ing existing models. We have studied a framework where it is possible to assign
probabilities to sets of executions, defined weak bisimulation relation and a par-
allel composition operator. The relationship between our notion of bisimulation
and trace distributions is currently being investigated. Stochastic transition sys-
tems are also used as a semantic model for a stochastic process algebra [6]. Fur-
ther work would include a logical characterisation of our equivalence relations,
approximation and metrics.
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