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Abstract

Probabilistic timed automata are timed automata extended with discrete probabil-
ity distributions, and can be used to model timed randomised protocols or fault-
tolerant systems. We present symbolic model-checking algorithms for probabilistic
timed automata to verify both qualitative temporal logic properties, corresponding
to satisfaction with probability 0 or 1, and quantitative properties, corresponding to
satisfaction with arbitrary probability. The algorithms operate on zones, which rep-
resent sets of valuations of the probabilistic timed automaton’s clocks. Our method
considers only those system behaviours which guarantee the divergence of time with
probability 1. The paper presents a symbolic framework for the verification of prob-
abilistic timed automata against the probabilistic, timed temporal logic PTCTL.
We also report on a prototype implementation of the algorithms using Difference
Bound Matrices, and present the results of its application to the CSMA/CD and
FireWire root contention protocol case studies.

1 Introduction

Systems exhibiting both timed and probabilistic characteristics are widespread,
in application contexts as diverse as home entertainment, medicine and busi-
ness. For example, timing constraints are often vital to the correctness of em-
bedded digital technology, whereas probability exhibits itself commonly in the
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form of statistical estimates regarding the environment in which a system is
embedded. Similarly, protocol designers often exploit the combination of time
and probability to design correct, efficient protocols, such as the IEEE1394
FireWire root contention protocol. The diffusion of such systems has led to
methods for obtaining formal correctness guarantees; for instance, adaptations
of model checking [1]. Symbolic model checking refers to model-checking tech-
niques in which implicit representations – such as Binary Decision Diagrams
[2] – are used to represent both the transition relation of the system model and
the state sets that are computed during the execution of the model-checking
algorithm.

In this paper, we consider the modelling formalism of probabilistic timed au-
tomata [3,4,5], an extension of timed automata [6,7] with discrete probability
distributions. Probabilistic timed automata have been shown as being suitable
for the description of timed, randomized protocols, such as the aforementioned
FireWire protocol [8], the backoff strategy of the IEEE802.11 WLAN protocol
[9], and the link-local address selection protocol of the IPv4 standard [10].
As a requirement specification language for probabilistic timed automata we
consider PTCTL (Probabilistic Timed Computation Tree Logic). The logic
PTCTL combines the probabilistic threshold operator of the probabilistic tem-
poral logic PCTL [11] with the timing constraints of the timed temporal logic
TCTL [12,7], in order to express properties such as the probabilistic deadline
property ‘with probability 0.99 or greater, the system reaches a leader-elected
state within 1 second’. Model checking of probabilistic timed automata against
PTCTL was shown to be decidable in [3] via an adaptation of the classical
region-graph construction [6,12].

Unfortunately, the region-graph construction (and the integer-time semantics
employed in [8,9,10]) can result in huge state spaces if the maximal constant
used in the description of the automaton is large. Instead, the practical suc-
cess of symbolic, zone-based techniques for non-probabilistic timed automata,
as implemented in the tools Uppaal [13] and Kronos [14], suggests that a
similar symbolic approach may also be employed for the verification of proba-
bilistic timed automata. We answer this hypothesis affirmatively in this paper
by providing zone-based algorithms for the verification of PTCTL. As is stan-
dard in model-checking methods for branching-time logics such as PCTL and
TCTL, the algorithms are based on backwards search through the state space
by iterating successively predecessor relations which, given a state set Z, re-
turn the set of states which can reach states in Z in one transition. This differs
from the forwards reachability approach employed in [3,15] for verifying prob-
abilistic timed automata, which, unlike the approach presented in this paper,
leads to only approximate results and is only applicable to a subset of PTCTL.

Our approach is to consider two classes of PTCTL properties: on the one hand,
qualitative PTCTL formulae refer to probabilistic thresholds 0 and 1 only,
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whereas, on the other hand, quantitative PTCTL formulae feature arbitrary
probability thresholds. The two classes involve different types of algorithms; in
particular, the algorithms for qualitative properties require only graph-based
analysis, and do not refer to exact transition probabilities, avoiding potentially
expensive numerical computation during the model-checking process.

We first consider the subset of PTCTL which requires the computation of
maximum reachability probabilities. For qualitative formulae, we show that
model checking can be performed using a combination of the algorithm devel-
oped for verifying analogous properties of finite-state probabilistic systems [16]
and the algorithm for computing the existence of a path satisfying a tempo-
ral logic formula in non-probabilistic timed automata [7]. More precisely, our
algorithm comprises iteration of timed-predecessor and discrete-predecessor
operations. The timed-predecessor operation maps a state set Z to the set
of states which can reach Z by letting time elapse; the discrete-predecessor
operation maps a state set Z and an edge e of the graph of the probabilistic
timed automaton to the set of states which can reach Z by crossing the edge
e. The case of quantitative formulae is more complicated, because a simple
iteration of timed-predecessor and discrete-predecessor operations does not
suffice to compute the probabilities with which a state satisfies a temporal
logic formula. Our approach instead is to iterate timed-predecessor, discrete-
predecessor and intersection operations until a fix-point is reached. The role
of the intersection operations is to characterise the set of states from which
multiple edges within the support of the same distribution of the probabilis-
tic timed automaton can be used to reach previously generated state sets.
Upon termination of the fix-point algorithm, the set of generated state sets
is used to construct a finite-state probabilistic system which has sufficient in-
formation to compute the maximum reachability probability of interest using
well-established finite-state probabilistic model checking methods [17].

Secondly, we consider algorithms for the subset of PTCTL which requires the
computation of minimum reachability probabilities. In order to verify proper-
ties of real-world timed behaviour, it is vital that such algorithms incorporate
a notion of time divergence. For example, to compute the minimum prob-
ability of reaching a certain state set F , for any state other than those in
F , the probabilistic timed automaton could exhibit behaviour in which the
amount of time elapsed converges before F is reached, or even in which no
time elapses at all. Clearly, such behaviours are pathological, and should be
disregarded during model checking. We present both qualitative and quan-
titative algorithms for computing minimum reachability probabilities which
consider only time-divergent behaviour, based on the non-probabilistic prece-
dent of [7]. The algorithms are based on computing maximum probabilities for
the dual formula while restricting attention to time-divergent behaviours. Note
that letting time converge can only make the reachability of a state set less
probable, and therefore we do not need to consider time-divergence explicitly
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when formulating algorithms for maximum reachability probabilities.

Again following the precedent of [7], we present an algorithm to check that a
probabilistic timed automaton does not contain a state in which it is impos-
sible for time to diverge with probability 1. The presence of such a state con-
stitutes a modelling error, and would invalidate the correctness of our model-
checking procedure. Finally, we report on a prototype implementation of the
techniques of this paper using Difference Bound Matrices (DBMs) [18]. We ap-
ply this implementation to two case studies: the first concerns the IEEE802.3
CSMA/CD (Carrier Sense, Multiple Access with Collision Detection) commu-
nication protocol [19], whereas the second considers the IEEE1394 FireWire
root contention protocol [20].

The paper proceeds as follows. We review a number of preliminary concepts
in Section 2, whereas in Section 3 we revisit the definition of probabilistic
timed automata and PTCTL. In Section 4, we introduce the algorithms for
qualitative and quantitative properties, referring to both the maximum and
the minimum probability of satisfaction. Section 5 summarises our prototype
implementation and the application of it to the case studies. In Section 6, we
conclude the paper. A preliminary version of this work appeared as [21].

2 Preliminaries

We present a number of preliminary concepts, in particular defining three (in-
creasingly general) kinds of probabilistic transition systems, the last of which
will be used for the semantics of probabilistic timed automata in Section 3.

2.1 Distributions

A (discrete probability) distribution over a finite set Q is a function µ : Q→
[0, 1] such that

∑
q∈Q µ(q) = 1. Let support(µ) be the subset of Q such that q ∈

support(µ) if and only if µ(q) > 0. Given Q′ ⊆ Q, we let µ(Q′) =
∑
q∈Q′ µ(q).

For any q ∈ Q, the point distribution µq denotes the distribution which assigns
probability 1 to q. For a possibly uncountable set Q∞, let Dist(Q∞) be the set
of distributions over finite subsets of Q∞.

2.2 Discrete-Time Markov Chains

In this section, we recall the definition of discrete-time Markov chains, and
the way in which probability measures can be defined over their behaviour.
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Let AP be a fixed finite set of atomic propositions.

Definition 1 A (labelled) Discrete-Time Markov Chain (DTMC) is a tuple
DTMC = (S,P,L) where:

• S is a (countable) set of states;
• P : S×S → [0, 1] is a transition probability matrix, such that

∑
s′∈S P(s, s′) =

1 for all states s ∈ S;
• L : S → 2AP is a labelling function which assigns to each state s ∈ S the

set L(s) of atomic propositions that are valid in s.

Each element P(s, s′) of the transition probability matrix gives the probability
of making a transition from state s to state s′. An execution of a DTMC
is represented by a finite or infinite path ω. A finite path is a finite, non-
empty sequence of states s0s1 . . . sn such that P(si, si+1)>0 for all 0 6 i < n.
Similarly, an infinite path is an infinite sequence of states s0s1s2 . . . such that
P(si, si+1)>0 for all i > 0. The length of a finite path, denoted by |s0s1 · · · sn|,
is n (the number of transitions of the path), whereas the length of an infinite
path is ∞. For any path ω and any i 6 |ω|, we denote by ω(i) the (i+1)th
state of ω. The last state of a finite path ω is denoted by last(ω). We say that
a finite path ωfin of length n is a prefix of an infinite path ω if ωfin(i)=ω(i)
for 0 6 i 6 n. The sets of all finite and infinite paths starting in state s are
denoted Pathfin(s) and Path ful(s), respectively.

To reason about the probabilistic behaviour of the DTMC, we need to deter-
mine the probability with which certain paths are taken. This is achieved by
defining, for each state s ∈ S, a probability measure Probs over Path ful(s).
Below, we give an outline of this construction. For further details, see [22].
The probability measure is induced by the transition probability matrix P
as follows. First, for any finite path ωfin ∈ Pathfin(s) such that |ωfin |=n, we
define the probability Ps(ωfin) as follows:

Ps(ωfin)
def
=

 1 if n = 0

P(ωfin(0), ωfin(1)) · · ·P(ωfin(n−1), ωfin(n)) otherwise

Next, we define the cylinder of a finite path ωfin as:

C(ωfin)
def
= {ω ∈ Path ful(s) |ωfin is a prefix of ω} ,

and let Σs be the smallest σ-algebra on Path ful(s) which contains the cylinders
C(ωfin) for ωfin ∈ Pathfin(s). Finally, we define Probs on Σs as the unique
measure such that Probs(C(ωfin)) = Ps(ωfin) for all ωfin ∈ Pathfin(s).
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2.3 Probabilistic Systems

Next, we present a form of transition system which combines probabilistic
choice, as in Markov chains, with nondeterministic choice. We refer to such sys-
tems simply as probabilistic systems, and note that they are essentially equiva-
lent to Markov decision processes [23] and probabilistic-nondeterministic sys-
tems [17].

Definition 2 A probabilistic system, PS, is a tuple (S, Steps ,L) where

• S is a set of states;
• Steps ⊆ S × Dist(S) is a probabilistic transition relation;
• L : S → 2AP is a labelling function assigning atomic propositions to states.

We assume that the probabilistic transition relation is total ; that is, for every
state s ∈ S, there exists (s, µ) ∈ Steps for some µ ∈ Dist(S). Occasionally we
omit the labelling condition from the definition of probabilistic systems, and
write (S, Steps).

A probabilistic transition s
µ−→ s′ is made from a state s by nondeterministically

selecting a distribution µ ∈ Dist(S) such that (s, µ) ∈ Steps , and then making
a probabilistic choice of target state s′ according to µ, such that µ(s′)>0.

We consider two ways in which a probabilistic system’s computation may be
represented. A path, representing a particular resolution of both nondetermin-
ism and probability, is a non-empty finite or infinite sequence of transitions:

ω = s0
µ0−→ s1

µ1−→ s2
µ2−→ · · · .

We use the same notation for the length, (i+1)th state and prefix of paths
of probabilistic systems as that used for paths of DTMCs as presented in
Section 2.2; in particular, the set of infinite (respectively, finite) paths starting
in the state s are denoted by Path ful(s) (respectively, Pathfin(s)). Furthermore,
for the finite path ωfin , the finite or infinite path ω, and the distribution µ

such that (last(ωfin), µ) ∈ Steps and µ(ω(0))>0, we write ωfin
µ−→ ω for the

concatenation of ωfin and ω via the transition last(ωfin)
µ−→ ω(0).

In contrast to a path, an adversary represents a particular resolution of non-
determinism only. Formally, an adversary A is a function mapping every finite
path ωfin to a distribution µ such that (last(ωfin), µ) ∈ Steps . For any ad-
versary A and state s, we let PathAful(s) (respectively, PathAfin(s)) denote the
subset of Path ful(s) (respectively, Pathfin(s)) induced by A. We use AdvPS to
denote the set of adversaries of the probabilistic system PS.
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For each adversary A ∈ AdvPS, we can define the probability measure ProbAs
over PathAful(s). More precisely, for a probabilistic system PS = (S, Steps ,L)
and state s ∈ S, under a given adversary A, the behaviour from state s can be
described with the (countable) infinite-state DTMC: DTMCAs = (SAs ,P

A
s ,LAs )

where SAs = PathAfin(s), for any finite paths ωfin , ω
′
fin ∈ SAs :

PA(ωfin , ω
′
fin) =

µ(s′) if ω′fin is of the form ωfin
µ−→ s′ and A(ωfin)=µ

0 otherwise,

and LAs (ωfin) = L(last(ωfin)) for each ωfin ∈ SAs . There is a one-to-one cor-
respondence between the paths of DTMCAs and the paths of PathAful(s), and
hence using the construction given in Section 2.2 we can define a probability
measure ProbAs over PathAful(s) [24].

We now introduce the following definitions concerning probabilistic systems
which are required later in the paper. To begin we introduce the syntax and
semantics for the probabilistic temporal logic PCTL [11].

Definition 3 The syntax of PCTL is defined as follows:

Φ ::= a
∣∣∣ ¬Φ

∣∣∣ Φ ∨ Φ
∣∣∣ P∼λ[Φ U Φ]

∣∣∣ P∼λ[Φ V Φ]

where a ∈ AP , ∼∈{6, <,>,>} and λ ∈ [0, 1].

We use use the abbreviations 3Φ and 2Φ for true U Φ and false V Φ respec-
tively. In the standard manner, we refer to Φ U Ψ, Φ V Ψ, 3Φ and 2Ψ as path
formulae.

PCTL can be used to express properties such as:

• ‘with probability less than 0.01, an error state is reached’, which is repre-
sented as the formula P<0.01[3 error ], where error is an atomic proposition
labelling the error locations;

• ‘with probability greater than 0.98, the system remains operational’, which
is represented as the formula P>0.98[2 operational ], where operational is an
atomic proposition labelling the states in which the system is operational.

Below we present the semantics for PCTL followed by a number of lemmas
concerning PCTL required in the remainder of the paper.

Definition 4 Let PS = (S, Steps ,L) be a probabilistic system. For any state
s ∈ S and PCTL formula Θ, the satisfaction relation s |= Θ is defined induc-
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tively as follows:

s |= a ⇔ a ∈ L(s)

s |= Φ ∨Ψ ⇔ s |= Φ or s |= Ψ

s |= ¬Φ ⇔ s 6|= Φ

s |= P∼λ[ϕ] ⇔ pAs (ϕ) ∼ λ for all A ∈ AdvPS

where pAs (ϕ) = ProbAs {ω ∈ PathAful(s) |ω |= ϕ} and, for any path ω ∈ PathAful(s):

ω |= Φ U Ψ ⇔ ∃i ∈ N. (ω(i) |= Ψ ∧ ∀j<i. ω(j) |= Φ)

ω |= Φ V Ψ ⇔ ∀i ∈ N. ((∀j<i. ω(j) 6|= Φ) → ω(i) |= Ψ) .

In the lemmas below we require an extension of the logic PCTL that allows
more general path formulae, that is those obtained through the negation, con-
junction and disjunction of (standard) PCTL path formulae. The semantics
for such formulae follows the standard approach for such connectives, for ex-
ample, for any PCTL path formulae ϕ, ϕ′ and path ω:

ω |= ¬ϕ ⇔ ω 6|= ϕ

ω |= ϕ ∨ ϕ′ ⇔ ω |= ϕ or ω |= ϕ′ .

Lemma 5 Let PS=(S, Steps ,L) be a probabilistic system and Φ and Ψ PCTL
formulae. For any state s ∈ S:

sup
A∈AdvPS

pAs (Φ U Ψ) = sup
A∈AdvPS

pAs (Φ U ¬P<1[Φ U Ψ]) .

Proof. See for example [16]. 2

Lemma 6 Let PS=(S, Steps ,L) be a probabilistic system and Φ and Ψ be
PCTL formulae. For any path ω ∈ Path ful :

ω |= Φ U Ψ ⇔ ω 6|= ¬Φ V ¬Ψ

ω |= Φ U Ψ ⇔ ω 6|= (¬Ψ U (¬Ψ∧¬Φ)) ∨2(Φ∧¬Ψ)

ω |= Φ V Ψ ⇔ ω |= (Ψ U (Ψ∧Φ)) ∨2(¬Φ∧Ψ) .

Proof. The lemma is independent of the fact that we consider probabilistic
systems, and a proof can be found in for example [25]. 2
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Lemma 7 Let PS=(S, Steps ,L) be a probabilistic system and Φ, Ψ and Θ be
PCTL formulae. For any path ω ∈ Path ful :

ω |= (Ψ U (Ψ∧Φ)) ∨ ((¬Φ∧Ψ) U Θ) ⇔ ω |= Ψ U ((Φ∧Ψ) ∨Θ) .

Proof. Consider any probabilistic system PS = (S, Steps ,L) and path ω ∈
Path ful . For the ‘if’ direction suppose that ω |= Ψ U ((Φ∧Ψ) ∨ Θ). Now, by
Definition 4 there exists an i>0 such that: ω(i) |= (Φ∧Ψ) ∨ Θ and ω(j) |= Ψ
for all j<i, and hence we have the following two cases to consider:

• ω(i) |= Φ∧Ψ and ω(j) |= Ψ for all j<i, then using Definition 4 it follows
that ω |= Ψ U (Ψ∧Φ).

• ω(i) |= Θ and ω(j) |= Ψ for all j<i, then either ω(j) |= ¬Φ∧Ψ for all j<i,
and therefore ω |= (¬Φ∧Ψ) U Θ, or ω(k) |= Φ∧Ψ for some k<i and since
by the hypothesis ω(j) |= Ψ for all j<i, we have ω |= Ψ U (Ψ∧Φ).

Because these are the only possible cases to consider using Definition 4 the
‘if’ direction follows.

For the ‘only if’ direction suppose that ω |= (Ψ U (Ψ∧Φ)) ∨ ((¬Φ∧Ψ) U Θ),
considering the satisfaction of each disjunct separately, it is straightforward
to show that ω |= Ψ U ((Φ∧Ψ) ∨Θ) as required. 2

Lemma 8 Let PS=(S, Steps ,L) be a finite-state probabilistic system, A an
adversary of PS and Φ be a PCTL formula. For any state s ∈ S:

pAs (2 Φ) = 1 ⇔ ∀ ω ∈ PathAful(s). ω |= 2 Φ .

Proof. The ‘if’ direction follows from the definition of pAs and the fact that
ProbAs is a probability measure. For the ‘only if’ direction suppose for a con-
tradiction that pAs (2 Φ) = 1 and there exists a path ω in PathAful(s) such
that ω 6|= 2 Φ. Now, using Definition 4, it follows that there exists i ∈ N
such that ω(i) |= ¬Φ. Letting ωfin be the finite prefix of ω of length i, we
have ω′ 6|= 2 Φ for all ω′ ∈ {ω′ ∈ PathAful(s) |ωfin is a prefix of ω′}. Further-

more, from the measure construction (see Section 2.2), we have ProbAs {ω′ ∈
PathAful(s) |ωfin is a prefix of ω′} > 0. Finally, combining these two facts we
have pAs (2 Φ) < 1 which is a contradiction as required. 2

Lemma 9 Let PS=(S, Steps ,L) be a finite-state probabilistic system, A an
adversary of PS and Φ be a PCTL formula. For any state s ∈ S:

pAs (Φ U ¬P<1[2 Φ]) > pAs (2 Φ) .
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Proof. Consider any finite-state probabilistic system PS = (S, Steps ,L), ad-
versary A, state s and PCTL formula Φ. First consider the adversary A′ which
behaves like A except when a state s′ satisfying ¬P<1[2 Φ] is reached and, in
which case, acts like the adversary for which from s′ the probability of satis-
fying 2 Φ is 1 (the existence of such an adversary follows from the fact that
s′ |= ¬P<1[2 Φ]). By the construction of A′ it follows that:

pAs (Φ U ¬P<1[2 Φ]) = pA
′

s (Φ U ¬P<1[2 Φ]) and pA
′

s (2 Φ) > pAs (2 Φ) . (1)

Now, since any state s′ ∈ S, if s′ |= ¬P<1[2 Φ], by Definition 4 and the
construction of A′ we have pA

′
s′ (2Φ) = 1. From Lemma 8 it follows that any

state reachable from s′ under the adversary A′ satisfies Φ. Using this result we
have that for any path ω of PathA

′

ful(s): ω |= Φ U ¬P<1[2 Φ] implies ω |= 2 Φ,
and therefore

pA
′

s (2 Φ) = pA
′

s (Φ U ¬P<1[2 Φ]) + pA
′

s

(
(2 Φ) ∧ ¬(Φ U ¬P<1[2 Φ])

)
. (2)

Now using Lemma 6 we have:

pA
′

s

(
(2 Φ) ∧ ¬(Φ U ¬P<1[2 Φ])

)
= pA

′

s

(
(2 Φ) ∧

(
(P<1[2 Φ] U (P<1[2 Φ] ∧ ¬Φ)) ∨2(Φ ∧ P<1[2 Φ])

))
= pA

′

s

((
(2 Φ) ∧ (P<1[2 Φ] U (P<1[2 Φ] ∧ ¬Φ))

)
∨

(
(2 Φ) ∧2(Φ ∧ P<1[2 Φ])

))
= pA

′

s

(
(2 Φ) ∧2(Φ ∧ P<1[2 Φ])

)
= pA

′

s

(
2(Φ ∧ P<1[2 Φ])

)
= 1− pA

′

s

(
3(¬Φ ∨ ¬P<1[2 Φ])

)
where the second step follows by the distributivity of conjunction over dis-
junction, the third step from the fact that, for any PCTL formulae Φ and Ψ,
no path can satisfy the formula (2Φ) ∧ (P<1[2 Φ] U (P<1[2 Φ] ∧ ¬Φ)), and
the final two steps follow from Definition 4. From (1) and (2) to complete the
proof it is sufficient to show that pA

′
s ((2 Φ) ∧ ¬(Φ U ¬P<1[2 Φ])) = 0, which

from above reduces to demonstrating that pA
′

s (3(¬Φ ∨ ¬P<1[2 Φ])) = 1.

Now, for any state s′ ∈ S, suppose that under A′ one cannot reach a state sat-
isfying ¬Φ∨¬P<1[2 Φ]. Therefore all states reachable from s′ under A′ satisfy
Φ, and hence Lemma 8 implies that s′ |= ¬P<1[2 Φ] which is a contradiction.
Therefore, since the state s′ ∈ S was arbitrary, from any state, under A′, one
reaches a state satisfying ¬Φ ∨ ¬P<1[2 Φ]. Now, since S is finite, it follows
that under A′ the probability of reaching a state satisfying ¬Φ∨¬P<1[2 Φ] is
1, and hence pA

′
s (3(¬Φ ∨ ¬P<1[2 Φ])) = 1 as required. 2

Lemma 10 Let PS=(S, Steps ,L) be a finite-state probabilistic system and Φ
and Ψ be PCTL formulae. For any adversary A ∈ AdvPS and state s ∈ S:

pAs (Φ V Ψ) 6 pAs
(

Ψ U ((Φ∧Ψ) ∨ ¬P<1[2 (¬Φ∧Ψ)])
)
.
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Proof. Consider any finite-state probabilistic system PS = (S, Steps ,L), ad-
versary A ∈ AdvPS, state s ∈ S and PCTL formulae Φ and Ψ. Using Lemma 6
we have:

pAs (Φ V Ψ) = pAs
((

Ψ U (Ψ∧Φ)
)
∨2(¬Φ∧Ψ)

)
= pAs

(
Ψ U (Ψ∧Φ)

)
+ pAs

(
2(¬Φ∧Ψ)

)
rearranging

6 pAs
(
Ψ U (Ψ∧Φ)

)
+ pAs

(
(¬Φ∧Ψ) U ¬P<1[2 (¬Φ∧Ψ)]

)
by Lemma 9

= pAs
((

Ψ U (Ψ∧Φ)
)
∨

(
(¬Φ∧Ψ) U ¬P<1[2 (¬Φ∧Ψ)]

))
rearranging

= pAs
(

Ψ U ((Φ∧Ψ) ∨ ¬P<1[2 (¬Φ∧Ψ)])
)

by Lemma 7

where the correctness of the rearranging steps in the derivation follow from
fact that in both cases the two formulae that form the disjunction are disjoint
in the sense that no path can satisfy both formulae. 2

2.4 Timed Probabilistic Systems

We now introduce timed probabilistic systems , an extension of probabilistic
systems and a variant of Segala’s probabilistic timed automata [26].

Definition 11 A timed probabilistic system, TPS, is a tuple (S,TSteps ,L)
where:

• S is a (possibly infinite) set of states;
• TSteps ⊆ S × R>0 × Dist(S) is a timed probabilistic transition relation,

such that, if (s, t, µ) ∈ TSteps and t>0, then µ is a point distribution;
• L : S → 2AP is a labelling function assigning atomic propositions to states.

The component t of a tuple (s, t, µ) is called a duration. As for probabilistic
systems, we can introduce paths and adversaries for timed probabilistic sys-
tems, except transitions are now labelled by duration-distribution pairs and
an adversary maps each finite path to a duration-distribution pair.

We restrict attention to time-divergent adversaries; a common restriction im-
posed in real-time systems so that unrealisable behaviour (i.e. corresponding
to time not advancing beyond a bound) is disregarded during analysis. For
any path

ω = s0
t0,µ0−−−→ s1

t1,µ1−−−→ s2
t2,µ2−−−→ · · ·

of a timed probabilistic system, the duration up to the (n+1)th state of ω,
denoted Dω(n+1), equals

∑n
i=0 ti. We say that a path ω is divergent if for any

t ∈ R>0, there exists j ∈ N such that Dω(j)>t.

Definition 12 An adversary A of a timed probabilistic system TPS is diver-
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gent if and only if for each state s of TPS the probability under ProbAs of the
divergent paths of PathAful(s) is 1. Let AdvTPS be the set of divergent adversaries
of TPS.

Our notion of probabilistic divergence is less strict than the notion in which
an adversary is divergent if and only if all of its paths are divergent, and
therefore can avoid needless complications during the system construction
process [16,26,3]. A restriction we impose on probabilistic timed systems is
that of non-zenoness , which stipulates that there does not exist a state from
which time cannot diverge, as we consider this situation to be a modelling
error.

Definition 13 A probabilistic timed system TPS is non-zeno if and only if
there exists a divergent adversary of TPS.

3 Probabilistic Timed Automata

In this section we review the definition of probabilistic timed automata [3],
a modelling framework for real-time systems exhibiting both nondeterminis-
tic and stochastic behaviour. The formalism is derived by extending classical
timed automata [6,7] with discrete probability distributions over edges. First,
we introduce standard notation for clocks and zones of timed automata, and
then we proceed to the definition of probabilistic timed automata. At the end
of this section, we introduce PTCTL as a probabilistic timed temporal logic
for the specification of properties of probabilistic timed automata.

3.1 Clocks and Zones

Let X be a finite set of variables called clocks which take values from the
time domain R>0 (non-negative reals). A function v : X → R>0 is referred
to as a clock valuation. The set of all clock valuations is denoted by RX

>0. For
any v ∈ RX

>0 and t ∈ R>0, we use v+t to denote the clock valuation defined
as (v+t)(x) = v(x)+t for all x ∈ X . We use v[X:=0] to denote the clock
valuation obtained from v by resetting all of the clocks in X ⊆ X to 0, and
leaving the values of all other clocks unchanged; formally, v[X:=0](x) = 0 if
x ∈ X and v[X:=0](x) = v(x) otherwise.

The set of zones of X , written Zones(X ), is defined inductively by the syntax:

ζ ::= x 6 d | c 6 x | x+c 6 y+d | ¬ζ | ζ ∨ ζ
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where x, y ∈ X and c, d ∈ N. As usual, ζ1∧ζ2 = ¬(¬ζ1 ∨ ¬ζ2) and strict
constraints can be written using negation, for example x>2 = ¬(x62).

The clock valuation v satisfies the zone ζ, written v . ζ, if and only if ζ
resolves to true after substituting each clock x ∈ X with the corresponding
clock value v(x) from v. Intuitively, the semantics of a zone is the set of clock
valuations (subset of RX

>0) which satisfy the zone. Note that more than one
zone may represent the same set of clock valuations (for example, (x62) ∧
(y61) ∧ (x6y+2) and (x62) ∧ (y61) ∧ (x6y+3)). We henceforth consider
only canonical zones, which are zones for which the constraints are as ‘tight’ as
possible. For any valid zone ζ ∈ Zones(X ), there exists a O(|X |3) algorithm to
compute the (unique) canonical zone of ζ [27]. This enables us to use the above
syntax for zones interchangeably with semantic, set-theoretic operations.

We require the following classical operations on zones [7,28]. For zones ζ, ζ ′ ∈
Zones(X ) and subset a of clocks X ⊆ X , let:

↙ζ′ ζ
def
=

{
v | ∃t>0.

(
v+t . ζ ∧ ∀t′6t. (v+t′ . ζ∨ζ ′)

)}
[X:=0]ζ

def
= {v | v[X:=0] . ζ}

ζ[X:=0]
def
= {v[X:=0] | v . ζ} .

The zone ↙ζ′ ζ contains the clock valuations that can, by letting time pass,
reach a clock valuation in ζ and remain in ζ ′ until ζ is reached. The zone
[X:=0]ζ contains the clock valuations which result in a clock valuation in
ζ when the clocks in X are reset to 0. The zone ζ[X:=0] contains the clock
valuations which are obtained from clock valuations in ζ by resetting the clocks
in X to 0.

3.2 Syntax and Semantics of Probabilistic Timed Automata

We now present the formal syntax of probabilistic timed automata.

Definition 14 A probabilistic timed automaton is a tuple (L,X , inv , prob,L)
where:

• L is a finite set of locations;
• X is a finite set of clocks;
• inv : L→ Zones(X ) is a function called the invariant condition;
• prob ⊆ L×Zones(X )×Dist(2X×L) is a finite set called the probabilistic

edge relation;
• L : L → 2AP is a labelling function assigning atomic propositions to loca-

tions.
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true x63

x>1

x62
di

sr si

x>2

x:=0x:=0

x:=0

x:=0

0.1

0.05

0.95

0.9

Fig. 1. A probabilistic timed automaton modelling a probabilistic protocol.

A state of a probabilistic timed automaton PTA is a pair (l, v) ∈ L×RX
>0 such

that v . inv(l). Informally, the behaviour of a probabilistic timed automaton
can be understood as follows. In any state (l, v), there is a nondeterministic
choice of either (1) making a discrete transition or (2) letting time pass . In
case (1), a discrete transition can be made according to any (l, g, p) ∈ prob
with source location l which is enabled; that is, zone g is satisfied by the
current clock valuation v. Then the probability of moving to the location l′

and resetting all of the clocks in the set X to 0 is given by p(X, l′). In case (2),
the option of letting time pass is available only if the invariant condition inv(l)
is continuously satisfied while time elapses.

Definition 15 An edge of PTA generated by (l, g, p) ∈ prob is a tuple of the
form (l, g, p,X, l′) such that p(X, l′) > 0. Let edges(l, g, p) be the set of edges
generated by (l, g, p), and let edges = {edges(l, g, p) | (l, g, p) ∈ prob}.

Example 16 Consider the probabilistic timed automaton modelling a simple
probabilistic communication protocol given in Figure 1. The nodes represent
the locations, namely di (sender has data, receiver idle), si (sender sent data,
receiver idle), and sr (sender sent data, receiver received). The automaton
starts in location di in which data has been received by the sender. After between
1 and 2 time units, the protocol makes a transition either to sr with probability
0.9 (data received), or to si with probability 0.1 (data lost). In si after 2 to 3
time units, the protocol will attempt to resend the data, which again can be
lost, this time with probability 0.05.

We now give the semantics of probabilistic timed automata defined in terms
of timed probabilistic systems.

Definition 17 Let PTA = (L,X , inv , prob,L) be a probabilistic timed au-
tomaton. The semantics of PTA is defined as the timed probabilistic system
TPSPTA = (S,TSteps ,L′) where:

• S ⊆ L× RX
>0 and (l, v) ∈ S if and only if v . inv(l);

• ((l, v), t, µ) ∈ TSteps if and only if one of the following conditions holds:
time transitions: t>0, µ=µ(l,v+t) and v+t′ . inv(l) for all 06t′6t

14



discrete transitions: t=0 and there exists (l, g, p) ∈ prob such that v . g,
v[X:=0] . inv(l′) for all (X, l′) ∈ support(p), and for any (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=v[X:=0]

p(X, l′);

• L′(l, v) = L(l) for any (l, v) ∈ S.

We say that PTA is non-zeno if and only if TPSPTA is non-zeno. When clear
from the context, we omit the PTA subscript of TPSPTA.

We say that a probabilistic timed automaton is well-formed if whenever a
probabilistic edge is enabled it can be taken. Formally, a probabilistic timed
automaton PTA = (L,X , inv , prob,L) is said to be well-formed if:

∀(l, g, p) ∈ prob. ∀v ∈ RX
>0. (v.g) →

(
∀(X, l′) ∈ support(p). v[X:=0].inv(l′)

)
.

A probabilistic timed automaton can be transformed into a well-formed proba-
bilistic timed automaton by simply replacing the guard g in each probabilistic
edge (l, g, p) ∈ prob with(

∧(X,l′)∈support(p)[X:=0]inv(l′)
)
∧ g .

Since this transformation has no effect on the semantics of the automaton,
for the remainder of the paper we assume all probabilistic timed automata we
consider are well-formed.

3.3 Probabilistic Timed Computation Tree Logic

We now describe Probabilistic Timed Computation Tree Logic (PTCTL) which
can be used to specify properties of probabilistic timed automata. This logic
is a combination of two extensions of the temporal logic CTL [29], the timed
logic TCTL [12,7] and the probabilistic logic PCTL [11,17]. The logic TCTL
employs a set of formula clocks, Z, disjoint from the clocks X of the proba-
bilistic timed automaton under study. Formula clocks are assigned values by
formula clock valuations E ∈ RZ

>0. The logic TCTL can express timing con-
straints and includes the reset quantifier z.φ, used to reset the formula clock
z so that the formula φ is evaluated from a state at which z=0. PTCTL is
obtained by enhancing TCTL with the probabilistic quantifier P∼λ[·] from
PCTL and removing the path quantifiers ∃ and ∀.

Definition 18 The syntax of PTCTL is defined as follows:

φ ::= a
∣∣∣ ζ ∣∣∣ ¬φ ∣∣∣ φ ∨ φ ∣∣∣ z.φ ∣∣∣ P∼λ[φ U φ]

∣∣∣ P∼λ[φ V φ]
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where a ∈ AP , ζ ∈ Zones(X ∪ Z), z ∈ Z, ∼∈{6, <,>,>} and λ ∈ [0, 1].

We use the abbreviations 3φ and 2φ for true U φ and false V φ respectively.

In PTCTL we can express properties such as:

• ‘with probability strictly greater than 0.99, the system delivers packet 1
within 5 time units and does not try to send packet 2 in the meantime’,
which is represented by z.P>0.99[packet2unsent U (packet1delivered∧(z<5))];

• ‘with probability at least 0.95, the system clock x does not exceed 3 before
8 time units elapse’, which is represented as z.P>0.95[(x63) U (z=8)];

• ‘the system remains up after the first 60 time units have elapsed with prob-
ability greater than 0.99’, represented as z.P>0.99[2 (system up ∨ (z660))].

Next, we define the semantics of PTCTL. We write v, E to denote the com-
posite clock valuation in R(X∪Z)

>0 obtained from v ∈ RX
>0 and E ∈ RZ

>0. Given
a state and formula clock valuation pair (l, v), E , zone ζ and duration t, by
abuse of notation we let (l, v), E .ζ denote v, E .ζ, and (l, v)+t denote (l, v+t).

Definition 19 Let TPS = (S,TSteps ,L′) be the timed probabilistic system
associated with the probabilistic timed automaton PTA. For any state s ∈ S,
formula clock valuation E ∈ RZ

>0 and PTCTL formula θ, we say that s, E
satisfies θ, written s, E |= θ, where the relation |= is defined inductively as
follows:

s, E |= a ⇔ a ∈ L′(s)
s, E |= ζ ⇔ s, E . ζ

s, E |= φ ∨ ψ ⇔ s, E |= φ or s, E |= ψ

s, E |= ¬φ ⇔ s, E 6|= φ

s, E |= z.φ ⇔ s, E [z:=0] |= φ

s, E |= P∼λ[ϕ] ⇔ pAs,E(ϕ) ∼ λ for all A ∈ AdvTPS

where pAs,E(ϕ) = ProbAs {ω ∈ PathAful(s) |ω, E |= ϕ} and for any ω ∈ Path ful(s):

• ω, E |= φ U ψ if and only if there exists i ∈ N and t 6 Dω(i+1)−Dω(i) such
that

– ω(i)+t, E+Dω(i)+t |= ψ

– ∀t′<t. (ω(i)+t′, E+Dω(i)+t
′ |= φ∨ψ)

– ∀j<i.∀t′6Dω(j+1)−Dω(j). (ω(j)+t′, E+Dω(j)+t
′ |= φ∨ψ)
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• ω, E |= φ V ψ if and only if for all i ∈ N and t 6 Dω(i+1)−Dω(i), if

– ∀t′<t. (ω(i)+t′, E+Dω(i)+t
′ 6|= φ∧ψ)

– ∀j<i.∀t′6Dω(j+1)−Dω(j). (ω(j)+t′, E +Dω(j)+t
′ 6|= φ∧ψ)

then ω(i)+t, E+Dω(i)+t |= ψ.

For any PTCTL formula φ we denote by Sat(φ) the set of state and formula
clock valuation pairs which satisfy φ, that is: Sat(φ) = {s, E ∈ S×RZ

>0 | s, E |=
φ}.

We now present a number of definitions and lemmas concerning the satisfac-
tion of PTCTL formulae that we will require in the remainder of the paper.

Lemma 20 Let PTA be a probabilistic timed automaton, TPS=(S,TSteps ,L′)
be the corresponding timed probabilistic system and φ and ψ be PTCTL for-
mulae. For any state and formula clock valuation pair ω, E ∈ Path ful×RZ

>0:

ω, E |= φ U ψ ⇔ ω, E 6|= ¬φ V ¬ψ .

Proof. The proof follows from the semantics of PTCTL (Definition 19). 2

Proposition 21 Let PTA = (L,X , inv , prob,L) be a probabilistic timed au-
tomaton, TPS=(S,TSteps ,L′) be the corresponding timed probabilistic system
and θ be a PTCTL formula. There is a finite probabilistic system (the region
graph) R such that for any PTCTL formulae φ and ψ, adversary A ∈ AdvTPS

and state-formula clock valuation pair s, E ∈ S × 2Z , there exists PCTL for-
mulae Φ and Ψ, adversary B of R and state r of R such that:

• if P∼λ[φ U ψ] is a subformula of θ, then pAs (φ U ψ) = pBr (Φ U Ψ);
• if P∼λ[φ V ψ] is a subformula of θ, then pAs (φ V ψ) = pBr (Φ V Ψ).

Proof. The proof follows from the region graph construction [6] applied to
probabilistic timed automata [3]. In particular, the state r of R corresponds
to the unique region to which s, E belongs. 2

Lemma 22 Let PTA = (L,X , inv , prob,L) be a probabilistic timed automaton
and TPS=(S,TSteps ,L′) be the corresponding timed probabilistic system. For
any state-formula clock valuation pair s, E ∈ S×2Z and PTCTL path formula
ϕ, there exists adversaries A1 and A2 such that:

pA1
s,E(ϕ) = inf

A∈AdvTPS

pAs,E(ϕ) and pA2
s,E(ϕ) = sup

A∈AdvTPS

pAs,E(ϕ) .
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algorithm PTCTLModelCheck(PTA, θ)

output: set of symbolic states [[θ]] such that

[[a]] := {(l, inv(l)) | l ∈ L and l ∈ L(a)}
[[ζ]] := {(l, inv(l) ∧ ζ) | l ∈ L}
[[¬φ]] := {(l, inv(l) ∧ ¬∨

(l,ζ)∈[[φ]] ζ) | l ∈ L}
[[φ ∨ ψ]] := [[φ]] ∨ [[ψ]]
[[z.φ]] := {(l, [{z}:=0]ζ) | (l, ζ) ∈ [[φ]]}
[[P∼λ[φ U ψ]]] := Until([[φ]], [[ψ]],∼ λ)
[[P∼λ[φ V ψ]]] := Release([[φ]], [[ψ]],∼ λ)

Fig. 2. Symbolic PTCTL model checking algorithm

Proof. Employing Proposition 21 we can reduce the problem to finite state
probabilistic systems and since we have used a probabilistic version of diver-
gence the result is a simple adaptation of the approach used for probabilistic
systems under probabilistic notions of fairness, see for example in the case of
supremum [30, Lemma 9.5.15 (page 243)]. 2

4 Symbolic PTCTL Model Checking

In this section, we present a method for model checking a probabilistic timed
automaton against PTCTL formulae. Our algorithm relies on an implicit,
symbolic representation of the clock-valuation space (and also avoids explicit
construction of the probabilistic timed automaton’s region graph, as utilised
in [3]). In order to represent symbolically the state sets computed during
the model checking process, we use the concept of symbolic state: a symbolic
state is a pair (l, ζ) comprising a location and a zone over X∪Z. The set
of state and formula clock valuation pairs corresponding to a symbolic state
(l, ζ) is {(l, v), E | v, E . ζ}, while the state set corresponding to a set of sym-
bolic states is the union of those corresponding to each individual symbolic
state. In the manner standard for model checking, we progress up the parse
tree of a PTCTL formula, from the leaves to the root, recursively calling the
algorithm PTCTLModelCheck, shown in Figure 2, to compute the set of sym-
bolic states which satisfy each subformula. Handling observables and Boolean
operations is classical, and we therefore reduce our problem to computing
Until([[φ1]], [[φ2]],∼λ) and Release([[φ1]], [[φ2]],∼λ), which arises when we check a
probabilistically quantified formula.

As in the cases for (non-probabilistic) timed automata and (finite-state) prob-
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abilistic systems with fairness constraints, when considering properties which
have universal quantification over paths or require the computation of min-
imum probabilities, the standard algorithm can no longer be applied. For
example, for any formula clock z ∈ Z, under divergent adversaries the mini-
mum probability of reaching z>1 is 1; however, if we remove the restriction
to time-divergent adversaries this minimum probability becomes 0.

The techniques we introduce here are based on those for non-probabilistic
timed automata [7], which we now recall. For the discussion below, to sim-
plify presentation, we will use a TCTL formula to represent its corresponding
satisfaction set, i.e. use φ to denote Sat(φ), and dually allow a set of state
and formula clock valuation pairs to represent a TCTL formula, i.e. use Y to
denote a formula where s, E |= Y if and only if s, E ∈ Y .

In [7], it is shown that verifying φ ∀U ψ (‘all divergent paths satisfy φ U ψ’)
reduces to computing the fixpoint:

lfp Y.
(
ψ ∨ ¬z.

(
¬Y ∃U (¬(φ∨Y ) ∨ (z>c))

) )
(3)

for any c ∈ N greater than 0. The important point is that the universal
quantification over paths has been replaced by an existential quantification,
combined with a constraint enforcing that more than c time units must elapse
repeatedly.

For the analysis of probabilistic timed automata it is convenient to consider,
instead of until, the dual, release formula φ ∃V ψ (‘there exists a divergent
path satisfying φ V ψ’). Using (3) and the duality between U and V , for any
c ∈ N greater than 0, φ ∃V ψ reduces to computing:

¬lfp Y.
(
¬ψ ∨ ¬z.

(
(¬Y ) ∃U (¬(¬φ∨Y ) ∨ (z>c))

) )
= ¬lfp Y.

(
¬(ψ ∧ ¬¬z.

(
(¬Y ) ∃U (¬(¬φ∨Y ) ∨ (z>c))

) )
= ¬lfp Y.

(
¬(ψ ∧ z.

(
(¬Y ) ∃U (¬(¬φ∨Y ) ∨ (z>c))

) )
= ¬lfp Y.

(
¬(ψ ∧ z.

(
(¬Y ) ∃U ((¬¬φ∧¬Y ) ∨ (z>c))

) )
= ¬lfp Y.

(
¬(ψ ∧ z.

(
(¬Y ) ∃U ((φ∧¬Y ) ∨ (z>c))

) )
= gfp Y.

(
ψ ∧ z.

(
Y ∃U ((φ∧Y ) ∨ (z>c))

) )
.

The validity of the above reduction steps correspond to standard logical equiv-
alences (either ¬¬θ ≡ θ, θ∨θ′ ≡ ¬(¬θ∧¬θ′) or ¬(θ∨θ′) ≡ ¬θ∧¬θ′) except the
final reduction which follows from the duality between the least and greatest
fixpoint (¬lfpX. (¬θ{X:=¬X}) ≡ gfpX. θ). Therefore, verifying the formula
φ ∃V ψ can be performed by computing the fixpoint:

gfp Y.
(
ψ ∧ z.

(
Y ∃U ((φ∧Y ) ∨ (z>c))

) )
. (4)
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Now, letting 1

pmax
s,E (ϕ)

def
= sup

A∈AdvTPS

pAs,E(ϕ) and pmin
s,E (ϕ)

def
= inf

A∈AdvTPS

pAs,E(ϕ) ,

we have, for any state and formula clock valuation pair s, E :

pmin
s,E (φ U ψ) = inf

A∈AdvTPS

pAs,E(φ U ψ)

= inf
A∈AdvTPS

(
1− pAs,E(¬φ V ¬ψ)

)
by Lemma 20

= 1− sup
A∈AdvTPS

pAs,E(¬φ V ¬ψ) rearranging

= 1− pmax
s,E (¬φ V ¬ψ) .

Substituting this equality into the semantics of PTCTL (Definition 19) we
have:

{s, E | s, E |= P.λ[φ U ψ]}= {s, E | pmax
s,E (φ U ψ) . λ} (5)

{s, E | s, E |= P.λ[φ V ψ]}= {s, E | pmax
s,E (φ V ψ) . λ} (6)

{s, E | s, E |= P&λ[φ U ψ]}= {s, E | 1−λ & pmax
s,E (¬φ V ¬ψ)} (7)

{s, E | s, E |= P&λ[φ V ψ]}= {s, E | 1−λ & pmax
s,E (¬φ U ¬ψ)} (8)

that is we have reduced the model checking problem to the computation of
maximum probabilities for until and release formulae.

We begin in Section 4.1 by introducing operations on symbolic states. In Sec-
tion 4.2, we introduce algorithms for calculating the maximum until probabil-
ities, while in Section 4.3 we present algorithms for calculating the maximum
release probabilities. In each case we include specialised algorithms for qualita-
tive formulae (λ ∈ {0, 1}), as, for such formulae, verification can be performed
through non-numerical analysis [31,32]. Then in Section 4.4 we show how to
ensure that a probabilistic timed automaton is non-zeno, Section 4.5 discusses
the termination of the algorithms introduced.

Note that the cases P>0[·] and P61[·] are trivially satisfied, while the cases
P<0[·] and P>1[·] are trivially not satisfied, and therefore we omit these cases
in our analysis.

4.1 Operations on Symbolic States

In this section we extend the time predecessor and discrete predecessor func-
tions tpre and dpre of [7,28] to probabilistic timed automata. First, for any set

1 Note that, Lemma 22 implies that ‘minimum’ and ‘maximum’ can be used instead
of ‘infimum’ and ‘supremum’.
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of symbolic states U, let ζ lU =
∨{ζ | (l, ζ) ∈ U}; that is, ζ lU is the zone such that

v, E . ζ lU if and only if (l, v), E ∈ u for some u ∈ U. For any sets of symbolic
states U, V ⊆ L× Zones(X ∪ Z), clock z ∈ Z and edge (l, g, p,X, l′):

z.U
def
=

{
(l, [{z}:=0]ζ lU)

∣∣∣ l ∈ L }
tpreU(V)

def
=

{
(l,↙ζl

U∧inv(l) (ζ lV∧inv(l)))
∣∣∣ l ∈ L }

dpre((l, g, p,X, l′), U)
def
=

{
(l, g ∧ inv(l) ∧ ([X:=0]ζ l

′

U ))
}
.

Furthermore, we define the conjunction and disjunction of sets of symbolic
states as follows:

U∧V def
=

{
(l, ζ lU∧ζ lV)

∣∣∣ l ∈ L }
and U∨V def

=
{

(l, ζ lU∨ζ lV)
∣∣∣ l ∈ L }

.

Finally, let [[false]]
def
= ∅ and [[true]]

def
= {(l, inv(l)) | l ∈ L}, the sets of symbolic

states representing the empty and full state sets respectively.

Informally z.U denotes the set of symbolic states describing those state and
formula clock valuation pairs which, when clock z is reset to 0, belong to the
set of states and formula clock valuation pairs encoded by U. We denote by
tpreU(V) the set of symbolic states describing those state and formula clock
valuation pairs which belong to the set encoded by V by letting time elapse,
remaining at all intermediate times in the set encoded by U. Finally, we denote
by dpre((l, g, p,X, l′), U) the set of symbolic states describing those state and
formula clock valuation pairs which, when the edge (l, g, p,X, l′) is traversed,
belong to the set encoded by U.

4.2 Computing Maximum Until Probabilities

In this section we present methods for calculating the set of states satisfying
a formula of the form P.λ[φ U ψ] and P&λ[φ V ψ] which, from (5) and (8),
reduce to the computation of pmax

s,E (φ U ψ) or pmax
s,E (¬φ U ¬ψ) for all state and

formula clock valuation pairs s, E . Note that, since we consider only non-
zeno automata, when calculating these sets we can ignore the restriction to
divergent adversaries; intuitively, letting time converge cannot make the event
of reaching a ψ-satisfying state more probable. This is analogous to the fact
that verifying the same type of properties against (finite-state) probabilistic
systems does not need to take fairness constraints into account [24], and that
verifying (non-probabilistic) non-zeno timed automata against formulae of the
form φ ∃U ψ (‘there exists a divergent path which satisfies φ U ψ’) does not
need to take divergence of paths into account [7].
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4.2.1 The Qualitative Case

We first concentrate on the qualitative case, that is compute the set of states
satisfying φ U ψ with maximum probability equal to 1, or maximum proba-
bility strictly greater than 0, respectively. Our approach is inspired by the
methods for computing the associated properties on finite-state probabilistic
systems [16], which we now recall.

Theorem 23 ([16,33]) Let PS = (S, Steps ,L) be a finite-state probabilistic
system and Φ U Ψ a PCTL path formula.

• The set {s ∈ S | pmax
s (Φ U Ψ)>0} is given by the fixpoint

lfp Y.
(
Sat(Ψ) ∪

(
Sat(Φ) ∩ prePS

0 (Y )
) )

where prePS
0 (Y ) = {s | ∃(s, µ)∈Steps . µ(Y )>0} for Y ⊆ S.

• The set {s ∈ S | pmax
s (Φ U Ψ)>1} is given by the fixpoint

gfp Y. lfp Y ′.
(
Sat(Ψ) ∪

(
Sat(Φ) ∩ prePS

1 (Y, Y ′)
) )

where prePS
1 (Y, Y ′) = {s | ∃(s, µ)∈Steps . (µ(Y )=1∧µ(Y ′)>0)} for Y, Y ′ ⊆ S.

Intuitively, s ∈ prePS
0 (Y ) if one can go from s to a state in Y with positive

probability, and s ∈ prePS
1 (Y, Y ′) if one can go from s to a state in Y ′ with

positive probability and with probability 1 reach a state in Y .

In contrast to verifying a PCTL until formula against probabilistic systems,
when checking the satisfaction of a PTCTL until formula φ U ψ against a
timed probabilistic system, one must check that, as time passes, the system
remains in the set of states satisfying φ∨ψ. Therefore, in our context, the
functions pre0 and pre1 are parameterised by a state set Y and require the
continuous evolution through Y during a time-passage transition.

We now introduce the functions pre0 and pre1 , which operate on states of a
probabilistic timed automaton, and are analogous to prePS

0 and prePS
1 , respec-

tively.

Definition 24 Let PTA be a probabilistic timed automaton with corresponding
timed probabilistic system TPS = (S,TSteps ,L′), and Y, Y ′, Y0, Y1 ⊆ S be sets
of states of TPS. Then:

pre0 Y (Y ′) =
{
s, E ∈ S×RZ

>0 | ∃(s, t, µ) ∈ TSteps .

∃s′ ∈ S.
(
s′, E+t ∈ Y ′ ∧ µ(s′)>0

)
∧ ∀t′6t.

(
s+t′, E+t′ ∈ Y ∪Y ′

) }
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algorithm dpre0(V)

Y := [[false]]
for e ∈ edges
Y := Y ∨ dpre(e, V)

end
return Y

algorithm dpre1(U, V)

Y := [[false]]
for (l, g, p) ∈ prob
Y0 := [[true]]
Y1 := [[false]]
for e ∈ edges(l, g, p)
Y0 := dpre(e, U) ∧ Y0

Y1 := dpre(e, V) ∨ Y1

end
Y := (Y0 ∧ Y1) ∨ Y

end
return Y

Fig. 3. The functions dpre0 and dpre1

and pre1 Y (Y0, Y1) equals{
s, E ∈ S×RZ

>0 | ∃(s, t, µ) ∈ TSteps .∀s′ ∈ S.
(
µ(s′)>0 → s′, E+t ∈ Y0

)
∧∃s′ ∈ S.

(
s′, E+t ∈ Y1 ∧ µ(s′)>0

)
∧ ∀t′6t.

(
s+t′, E+t′ ∈ Y ∪(Y0 ∩ Y1)

) }
.

Similarly to the finite-state case (Theorem 23), these functions can be embed-
ded in fixpoint expressions which correspond to the complements of the state
sets satisfying P60[φ U ψ] or P<1[φ U ψ]. Note that the fixpoint expression
given in Proposition 25 corresponds to finding those states and formula clock
valuation pairs from which there exists a path satisfying φ U ψ, and therefore
has the same structure as that used in [7] for verifying timed automata against
the formula φ∃U ψ.

Proposition 25 Let PTA be a probabilistic timed automaton with correspond-
ing timed probabilistic system TPS = (S,TSteps ,L′), and φ, ψ be PTCTL
formulae. The set {s, E ∈ S×RZ

>0 | pmax
s,E (φ U ψ)>0} is given by the fixpoint

lfp Y.
(
Sat(ψ) ∪ pre0 Sat(φ∨ψ)(Y )

)
.

Proof. To ease notation, we use pmax
>0 (φ U ψ) to denote the set of state and

formula clock valuation pairs {s, E ∈ S×RZ
>0 | pmax

s,E (φ U ψ)>0}. Our aim is to
show that:

pmax
>0 (φ U ψ) = lfp Y.

(
Sat(ψ) ∪ pre0 Sat(φ∨ψ)(Y )

)
.

We split the proof into two parts: first we show that pmax
>0 (φ U ψ) is a fixpoint

and second we show that it is the least fixpoint.
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• To establish that pmax
>0 (φ U ψ) is a fixpoint, that is pmax

>0 (φ U ψ) equals Sat(ψ)∪
pre0 Sat(φ∨ψ)(p

max
>0 (φ U ψ)), we show that:

pmax
>0 (φ U ψ) ⊆ Sat(ψ) ∪ pre0 Sat(φ∨ψ)(p

max
>0 (φ U ψ)) (9)

pmax
>0 (φ U ψ) ⊇ Sat(ψ) ∪ pre0 Sat(φ∨ψ)(p

max
>0 (φ U ψ)) . (10)

In the case of (9), for any s, E ∈ pmax
>0 (φ U ψ), by Definition 17, the zero-

duration time transition (s, 0, µs) is an element of TSteps , and from Defini-
tion 19 we have that s, E |= φ∨ψ. Combining these two facts with Def-
inition 24 it follows that s, E ∈ pre0 Sat(φ∨ψ)(p

max
>0 (φ U ψ)). Hence, since

s, E ∈ pmax
>0 (φ U ψ) was arbitrary, pmax

>0 (φ U ψ) ⊆ pre0 Sat(φ∨ψ)(p
max
>0 (φ U ψ))

from which (9) follows.

It therefore remains to show that (10) holds. From Definition 19 it follows
that pmax

>0 (φ U ψ) ⊇ Sat(ψ), and hence the problem reduces to demonstrat-
ing that:

pmax
>0 (φ U ψ) ⊇ pre0 Sat(φ∨ψ)(p

max
>0 (φ U ψ)) .

Recall that, for any s, E ∈ S×RZ
>0, we have s, E ∈ pmax

>0 (φ U ψ) if and only
if there exists an adversary A such that pAs,E(φ U ψ)>0, and observe that

pAs,E(φ U ψ)>0 if and only if there exists a path ω ∈ PathAful(s) such that
ω, E |= φ U ψ. Combining these properties we have:

s, E ∈ pmax
>0 (φ U ψ) ⇔ ω, E |= φ U ψ for some ω ∈ Path ful(s) . (11)

Now for any s, E ∈ pre0 Sat(φ∨ψ)(p
max
>0 (φ U ψ)), from Definition 24 there ex-

ists a transition (s, t, µ) ∈ TSteps and state s′ ∈ S such that µ(s′)>0 and
s′, E+t ∈ pmax

>0 (φ U ψ). Since s′, E+t ∈ pmax
>0 (φ U ψ), from (11) there exists

a path ω ∈ Path ful(s
′) such that ω, E+t |= φ U ψ. Letting ω′ = s

t,µ−→ ω,
from Definition 24 it follows that s+t′, E+t′ ∈ Sat(φ∨ψ) for all t′6t, which,
in combination with the fact that ω, E+t |= φ U ψ, guarantees that ω′, E |=
φ U ψ. Given that ω′ ∈ Path ful(s), from (11) we have s, E ∈ pmax

>0 (φ U ψ),
and hence since s, E ∈ pre0 Sat(φ∨ψ)(p

max
>0 (φ U ψ)) was arbitrary, (10) follows.

• We next demonstrate that pmax
>0 (φ U ψ) is the least fixpoint, that is, for

any Y ⊆ S×RZ
>0, if Y = Sat(ψ) ∪ pre0 Sat(φ∨ψ)(Y ), then pmax

>0 (φ U ψ) ⊆ Y .

The proof is by contradiction: assume that there exists Y ⊆ S×RZ
>0 such

that Y = Sat(ψ) ∪ pre0 Sat(φ∨ψ)(Y ) and pmax
>0 (φ U ψ) \ Y 6= ∅. Now for any

s, E ∈ pmax
>0 (φ U ψ) \ Y , by construction s, E ∈ pmax

>0 (φ U ψ), and therefore
from (11) there exists ω ∈ Path ful(s) such that ω, E |= φ U ψ. Now using
Definition 19, we have that there exists i ∈ N and t 6 Dω(i+1)−Dω(i) such

24



that

– ω(i)+t, E+Dω(i)+t |= ψ

– ∀t′<t.
(
ω(i)+t′, E+Dω(i)+t

′ |= φ∨ψ
)

– ∀j<i.∀t′6Dω(j+1)−Dω(j).
(
ω(j)+t′, E+Dω(j)+t

′ |= φ∨ψ
)
.

Since Sat(ψ) ⊆ Y and Y is a fixpoint, from Definition 24:

∀t′6 t.
(
ω(i)+t′, E+Dω(i)+t

′ ∈ pre0 Sat(φ∨ψ)(Y )
)

and, since Y is a fixpoint, we have pre0 Sat(φ∨ψ)(Y ) ⊆ Y . Repeatedly apply-
ing this fact together with Definition 24 it follows that:

∀j<i.∀t′6Dω(j+1)−Dω(j). (ω(j)+t′, E+Dω(j)+t
′ ∈ pre0 Sat(φ∨ψ)(Y )) ,

and therefore, since ω ∈ Path ful(s), we have s, E ∈ Y , which is a contradic-
tion.

We conclude that pmax
>0 (φ U ψ) = lfp Y. (Sat(ψ)∪pre0 Sat(φ∨ψ)(Y )) as required. 2

Proposition 26 Let PTA be a probabilistic timed automaton with correspond-
ing timed probabilistic system TPS = (S,TSteps ,L′), and φ, ψ be PTCTL
formulae. The set {s, E ∈ S×RZ

>0 | pmax
s,E (φ U ψ)>1} is given by the fixpoint

gfp Y0. lfp Y1.
(
Sat(ψ) ∪ pre1 Sat(φ∨ψ)(Y0, Y1)

)
.

Proof. We use pmax
>1 (φ U ψ) to denote the set of state and formula clock val-

uation pairs {s, E ∈ S×RZ
>0 | pmax

s,E (φ U ψ)>1}, and let

Z = gfp Y0. lfp Y1.
(
Sat(ψ) ∪ pre1 Sat(φ∨ψ)(Y0, Y1)

)
.

Hence, our aim is to show that pmax
>1 (φ U ψ) = Z. We split the proof into two

parts: demonstrating that Z ⊆ pmax
>1 (φ U ψ) and that Z ⊇ pmax

>1 (φ U ψ).

Our first task is to show that Z ⊆ pmax
>1 (φ U ψ). Note that, because Z is

a fixpoint, we have Z = lfp Y1. (Sat(ψ) ∪ pre1 Sat(φ∨ψ)(Z, Y1)). Therefore we
consider the sequence of sets of state and formula clock valuation pairs defined
by Y 0

1 = ∅ and Y i+1
1 = Sat(ψ) ∪ pre1 Sat(φ∨ψ)(Z, Y

i
1 ), and let i? = min{i |Y i

1 =

Y i+1
1 }. The existence of i? follows from the fact that Y i

1 ⊆ Y i+1
1 and only

finitely many symbolic states can be generated (see Section 4.5). Observe that
Z = Y i?

1 and note that because i? = 0 implies that Z = ∅ and is therefore not
of interest, we henceforth assume that i?>1.

Clearly Sat(ψ) ⊆ pmax
>1 (φ U ψ) and the sets (Y i+1

1 \Y i
1 ) for 16i<i? form a par-

tition of Z. Note that s, E ∈ (Y i+1
1 \Y i

1 ) implies that s, E ∈ pre1 Sat(φ∨ψ)(Z, Y
i
1 ).
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This fact allows us to construct a (memoryless) adversary A in the following
way, for any finite path ωfin :

• if last(ωfin), E ∈ (Y i+1
1 \Y i

1 ) for some 16i<i? and formula clock valuation E ,
let A(ωfin) = (s, t, µ), where (s, t, µ) is any transition satisfying the condition
in the definition of pre1 Sat(φ∨ψ)(Z, Y

i
1 ) (see Definition 24);

• if last(ωfin), E 6∈ (Y i+1
1 \Y i

1 ) for any formula clock valuation E let A(ωfin) be
arbitrary.

Let λmin be the minimum probability referred to in the description of the prob-
abilistic timed automaton; that is, λmin = min(l,g,p,X,l′)∈edges p(X, l

′). We will
now show that for any 06i<i?, if s, E ∈ (Y i+1

1 \Y i
1 ), then pAs,E(φ U ψ)>(λmin)

i.
We proceed by induction on i.

Base case. Consider a state and formula clock valuation pair s, E ∈ (Y 1
1 \Y 0

1 ).
As stated above, Y 1

1 = Sat(ψ) and Y 0
1 = ∅, and hence it follows from Defi-

nition 19 that pAs,E(φ U ψ) = 1 = λ0
min.

Induction step. Consider any 16i<i?−1 and s, E ∈ (Y i+2
1 \ Y i+1

1 ) and sup-
pose that pAs′,E ′(φ U ψ)>(λmin)

i for all s′, E ′ ∈ (Y i+1
1 \ Y i

1 ). Since s, E ∈
(Y i+2

1 \Y i+1
1 ), we have s, E ∈ pre1 Sat(φ∨ψ)(Z, Y

i+1
1 ). By construction A(s) =

(s, t, µ) such that there exists s′ ∈ S with s′, E+t ∈ Y i+1
1 , µ(s′)>0 and

s+t′, E+t′ ∈ Sat(φ∨ψ) for all t′6t. It then follows from the definition of
φ U ψ and the probability measure ProbAs,E that:

pAs,E(φ U ψ) > µ(s′) · pAs′,E+t(φ U ψ)

> µ(s′) · (λmin)
i by induction

> λmin · (λmin)
i by definition of λmin

= (λmin)
i+1 as required.

Therefore , if 06i<i? and s, E ∈ (Y i+1
1 \ Y i

1 ), then pAs,E(φ U ψ)>(λmin)
i, and in

particular:

pAs,E(φ U ψ)>(λmin)
i? for all s, E ∈ Z . (12)

Next, observe that, for each finite path ωfin ending in Z\Sat(ψ), the adversary
A selects a transition (last(ωfin), t, µ) such that µ(Z) = 1. Hence, unless a
state satisfying ψ is reached, the adversary A chooses to remain in Z with
probability 1. Therefore, for each s, E ∈ Z, combing this result with (12)
since λmin>0 it follows that pAs,E(φ U ψ)=1, and therefore s, E ∈ pmax

>1 (φ U ψ)
as required.

It remains to show that Z ⊇ pmax
>1 (φ U ψ) and, since Z is the greatest fixpoint,

it suffices to show that pmax
>1 (φ U ψ) is a fixpoint, that is:

pmax
>1 (φ U ψ) = lfp Y1.

(
Sat(ψ) ∪ pre1 Sat(φ∨ψ)(p

max
>1 (φ U ψ), Y1)

)
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which we prove by demonstrating that:

(a) pmax
>1 (φ U ψ) = Sat(ψ) ∪ pre1 Sat(φ∨ψ)(p

max
>1 (φ U ψ), pmax

>1 (φ U ψ));

(b) for any Y ⊆ S×RZ
>0, if Y = Sat(ψ) ∪ pre1 Sat(φ∨ψ)(p

max
>1 (φ U ψ), Y ), then

pmax
>1 (φ U ψ) ⊆ Y .

To prove part (a) we show that:

pmax
>1 (φ U ψ) ⊆ Sat(ψ) ∪ pre1 Sat(φ∨ψ)(p

max
>1 (φ U ψ), pmax

>1 (φ U ψ)) (13)

pmax
>1 (φ U ψ) ⊇ Sat(ψ) ∪ pre1 Sat(φ∨ψ)(p

max
>1 (φ U ψ), pmax

>1 (φ U ψ)) . (14)

Consider any s, E ∈ pmax
>1 (φ U ψ). If s, E ∈ Sat(ψ), then s, E ∈ Sat(ψ) ∪

pre1 Sat(φ∨ψ)(p
max
>1 (φ U ψ), pmax

>1 (φ U ψ)). On the other hand, if s, E 6∈ Sat(ψ),
then we must show that s, E ∈ pre1 Sat(φ∨ψ)(p

max
>1 (φ U ψ), pmax

>1 (φ U ψ)). Let

A be an adversary for which pAs,E(φ U ψ) = 1, and let A(s) = (s, t, µ). By
the construction of the of the probability measure for the adversary A, it
follows that µ(pmax

>1 (φ U ψ)) = 1 and by Definition 19 we have s+t′, E+t′ |=
φ∨ψ for all t′6t. Combining these two facts with Definition 24 it follows that
s, E ∈ pre1 Sat(φ∨ψ)(p

max
>1 (φ U ψ), pmax

>1 (φ U ψ)). Since these are the only cases
to consider (13) holds.

Next, consider any s, E ∈ Sat(ψ) ∪ pre1 Sat(φ∨ψ)(p
max
>1 (φ U ψ), pmax

>1 (φ U ψ)), if

s, E ∈ Sat(ψ) then pAs,E(φ U ψ) = 1 for all adversaries A, and hence s, E ∈
pmax

>1 (φ U ψ). On the other hand, if s, E 6∈ Sat(ψ), then

s, E ∈ pre1 Sat(φ∨ψ)(p
max
>1 (φ U ψ), pmax

>1 (φ U ψ)) ,

which by Definition 24 establishes the existence of a transition (s, t, µ) such
that µ(pmax

>1 (φ U ψ)) = 1 and s+t′, E+t′ ∈ Sat(φ∨ψ) for all t′6t. Now let A
be the adversary such that A(s) = (s, t, µ) and for any s′ ∈ support(µ) and

ωfin ∈ Path
A′s
fin(s′) we have A(s

t,µ−→ ωfin) = As′(ωfin) for all s′ ∈ support(µ) for

some adversary As′ such that p
As′
s′,E+t(φ U ψ) = 1, and A behaves arbitrarily on

all other paths. Note that, from Definition 19 and the fact that s+t′, E+t′ |=
φ∨ψ for all t′6t, if a path ω = s

t,µ−→ ω′ is such that ω′, E+t |= φ U ψ, then
ω, E |= φ U ψ. By the definition of the probability measure ProbAs,E , we have

pAs,E(φ U ψ) =
∑

s′∈support(µ)

µ(s′) · pAs′

s′,E+t(φ U ψ) ,

since pA
s′

s′,E+t(φ U ψ) = 1 for all s′ ∈ support(µ), we conclude that pAs,E(φ U ψ) =
1, and hence s, E ∈ pmax

>1 (φ U ψ). Therefore, since these are the only cases to
consider, (14) follows.
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We now consider part (b). The proof is by contradiction: suppose that there
exists Y ⊆ S×RZ

>0 such that

Y = Sat(ψ) ∪ pre1 Sat(φ∨ψ)(p
max
>1 (φ U ψ), Y ) and pmax

>1 (φ U ψ) \ Y 6= ∅.

Now, for any s, E ∈ pmax
>1 (φ U ψ) \ Y , since s, E ∈ pmax

>1 (φ U ψ), there exists
an adversary A such that pAs,E(φ U ψ) = 1 and by Definition 19, there exists
ω ∈ Path ful(s), i ∈ N and t 6 Dω(i+1)−Dω(i) such that

– ω(i)+t, E+Dω(i)+t |= ψ

– ∀t′<t.
(
ω(i)+t′, E+Dω(i)+t

′ |= φ∨ψ
)

– ∀j<i.∀t′6Dω(j+1)−Dω(j).
(
ω(j)+t′, E+Dω(j)+t

′ |= φ∨ψ
)
.

Moreover, since pAs,E(φ U ψ)=1, by construction of the probability measure

ProbAs it follows that:

– ∀t′<t.
(
ω(i)+t′, E+Dω(i)+t

′ ∈ pmax
>1 (φ U ψ)

)
– ∀j<i.∀t′6Dω(j+1)−Dω(j).

(
ω(j)+t′, E+Dω(j)+t

′ ∈ pmax
>1 (φ U ψ)

)
.

Finally, since Sat(ψ) ⊆ Y and pre1 Sat(φ∨ψ)(p
max
>1 (φ U ψ), Y ) ⊆ Y , using Defi-

nition 24 we have that:

– ω(i)+t, E+Dω(i)+t ∈ Y
– ∀t′<t.

(
ω(i)+t′, E+Dω(i)+t

′ ∈ Y
)

– ∀j<i.∀t′6Dω(j+1)−Dω(j).
(
ω(j)+t′, E+Dω(j)+t

′ ∈ Y
)

and in particular, s, E ∈ Y which is a contradiction which completes the
proof. 2

It now remains to show that we can encode pre0 and pre1 using operations
on symbolic states. Our approach is to first construct sub-expressions which
refer to the discrete transitions of a probabilistic timed automaton only (see
Definition 15 and Definition 17). Given the sets Z, Z0, Z1 of symbolic states,
let:

dpre0(Z)
def
=

∨
e∈edges

dpre(e, Z)

dpre1(Z0, Z1)
def
=

∨
(l,g,p)∈prob

 ∧
e∈edges(l,g,p)

dpre(e, Z0)

 ∧

 ∨
e∈edges(l,g,p)

dpre(e, Z1)

 .

Intuitively, the expression dpre0(Z) returns the symbolic states containing
states which can reach a state in Z in a single discrete transition. The ex-
pression dpre1(Z0, Z1) returns the symbolic states containing states for which
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there exists an outgoing discrete transition derived from a probabilistic edge
(l, g, p) for which Z0 is reached with probability 1 and Z1 is reached with prob-
ability greater than 0. The results of the expressions can be obtained using
the algorithms, also called dpre0 and dpre1 for simplicity, shown in Figure 3.
Using dpre0 and dpre1, we then proceed to define the following expressions,
given the additional set Y of symbolic states:

pre0Y(Z)
def
= (Y ∧ dpre0(Z)) ∨ tpreY(Z)

pre1Y(Z0, Z1)
def
= (Y ∧ dpre1(Z0, Z1)) ∨ tpreY(Z0∧Z1) .

Resolving the expressions pre0Y(Z) and pre1Y(Z0, Z1) results in sets of symbolic
states which correspond exactly to the state sets obtained by the functions
pre0 and pre1 , as stated formally by the lemmas given below.

First however, we introduce the following notation. Let 〈〈·〉〉 : 2L×Zones(X∪Z) →
2S×RZ>0 be the function which, for any set of symbolic states returns the set of
state and formula clock valuation pair which these symbolic states encodes.
Observe that for any sets of symbolic states Y0, Y1 ⊆ L × Zones(X ∪ Z), we
have 〈〈Y0 ∧ Y1〉〉 = 〈〈Y0〉〉 ∩ 〈〈Y1〉〉 and 〈〈Y0 ∨ Y1〉〉 = 〈〈Y0〉〉 ∪ 〈〈Y1〉〉.

Lemma 27 If Y, Z ⊆ L × Zones(X ∪ Z) are symbolic states encoding the
sets Y, Z ⊆ S×RZ

>0 of state and formula clock valuation pairs, then pre0Y(Z)
encodes the set pre0 Y (Z).

Proof. Consider any sets of state and formula clock valuation pairs Y, Z ⊆
S×RZ

>0 and suppose that the sets of symbolic states Y, Z ⊆ L×Zones(X ∪Z)
encode Y and Z. Since pre0Y(Z) = (Y∧dpre0(Z))∨tpreY(Z), using the definition
of dpre we can split the proof into two parts showing that:

pre0 Y (Z) ⊆

〈〈Y〉〉 ∩
 ⋃
e∈edges

〈〈dpre(e, Z)〉〉

 ∪ 〈〈tpreY(Z)〉〉 (15)

pre0 Y (Z) ⊇

〈〈Y〉〉 ∩
 ⋃
e∈edges

〈〈dpre(e, Z)〉〉

 ∪ 〈〈tpreY(Z)〉〉 . (16)

We begin by showing that (15) holds. For any s, E ∈ pre0 Y (Z), by Defi-
nition 24 there exist (s, t, µ) ∈ TSteps and s′ ∈ S such that s′, E+t ∈ Z,
µ(s′)>0 and s+t′, E+t′ ∈ Y ∪Z for all t′6t. We consider two cases, depending
on whether (s, t, µ) is generated from the discrete or timed transition rule of
Definition 17.

• If (s, t, µ) is derived from the discrete transition rule, then t=0, and hence
s, E ∈ Y ∪Z. If s, E ∈ Z(=〈〈Z〉〉), then s, E ∈ 〈〈tpreY(Z)〉〉 and (15) follows.
It therefore remains to consider the case when s, E ∈ Y (=〈〈Y〉〉). Suppose
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that s = (l, v) and ((l, v), 0, µ) is generated from (l, g, p) ∈ prob. Since
(l′, v′), E ∈ Z and µ(l′, v′)>0 for some (l′, v′) ∈ S, from Definition 17 there
exists an edge (l, g, p,X, l′) ∈ edges(l, g, p) such that (l′, v[X:=0]), E ∈ Z
and v . g. Since (l, v) ∈ S, we have that v . inv(l), and hence v . g ∧ inv(l).
Now, since X ⊆ X we have:

v, E . [X:=0]ζ l
′

Z ⇔ v[X:=0], E . ζ l′Z
⇔ (l′, v[X:=0]), E ∈ (l′, ζ l

′

Z ) rearranging

⇔ (l′, v[X:=0]), E ∈ 〈〈Z〉〉 by definition of ζ l
′
Z .

By definition of dpre and the hypothesis that 〈〈Z〉〉=Z it follows that:

〈〈dpre((l, g, p,X, l′), Z)〉〉 =

{(l, v), E | (v . g ∧ inv(l)) ∧ (l′, v[X:=0]), E ∈ Z)} . (17)

Therefore, (l, v), E ∈ 〈〈dpre((l, g, p,X, l′), Z)〉〉 and combing this with the fact
that s, E ∈ Y=〈〈Y〉〉 it follows that (15) holds in this case.

• We now consider the case when (s, t, µ) is derived from the timed transition
rule. Let s = (l, v). From Definition 17 and Definition 24 it follows that
(l, v+t), E+t ∈ Z, and (l, v+t′), E+t′ ∈ Y ∪Z for all t′6t. By definition of
↙ζ′ ζ (see Section 3.1):

↙ζl
Y∧inv(l) (ζ lZ∧inv(l)) =

{
v′, E ′

∣∣∣ ∃t>0.
(
v′+t, E ′+t . (ζ lZ ∧ inv(l))

∧ ∀t′6t. (v′+t′, E ′+t′ . (ζ lY∨ζ lZ) ∧ inv(l))
)}

=
{
v′, E ′

∣∣∣ ∃t>0.
(
(l, v′+t), E ′+t ∈ Z ∧ v′+t . inv(l))

∧ ∀t′6t. ((l, v′+t′), E ′+t′ ∈ (Y ∪ Z) ∧ v′+t′ . inv(l))
)}

where the final step follows from the fact that v, E . ζ lY if and only if
((l, v), E) ∈ Y (and similarly for ζ lZ and Z). Now, since (l, v+t), E+t ∈ Z
and s+t′, E+t′ ∈ Y ∪Z for all t′6t, we have v, E ∈↙ζl

Y∧inv(l) (ζ lZ∧inv(l)) and
(15) follows from the definition of tpreY(Z).

Since these are the only possible cases we conclude that (15) holds.

It therefore remains to show that (16) holds. Now for any (l, v), E ∈ (〈〈Y〉〉 ∩
(∪e∈edges〈〈dpre(e, Z)〉〉)) ∪ 〈〈tpreY(Z)〉〉, again we split the proof into two cases.

• If (l, v), E ∈ 〈〈Y〉〉∩(∪e∈edges〈〈dpre(e, Z)〉〉), then there exists e = (l, g, p,X, l′) ∈
edges such that (l, v), E ∈ 〈〈Y〉〉 ∩ 〈〈dpre(e, Z)〉〉. Using Definition 17, (17) and
since we assume the probabilistic timed automaton is well-formed we can
use (l, g, p) to construct a probabilistic transition ((l, v), 0, µ) ∈ TSteps . To
show that s, E ∈ pre0 Y (Z), and hence that (16) holds in this case, from
Definition 24 and the fact that (i, v), E ∈ 〈〈Y〉〉(=Y ) it is sufficient to show
that:

∃(l′′, v′′) ∈ S. ((l′′, v′′), E ∈ Z ∧ µ(l′′, v′′)>0) .
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Since (l, v), E ∈ 〈〈dpre(e, Z)〉〉 and e ∈ edges and using Definition 17 we have
(l′, v[X:=0]), E ∈ Z and µ(l′, v[X:=0])>0 as required.

• If (l, v), E ∈ 〈〈tpreY(Z)〉〉, then v, E ∈↙ζl
Y∧inv(l) (ζ lZ∧inv(l)), and it follows that

there exists t>0 such that (l, v+t), E+t ∈ Z, (l, v+t′), E+t′ ∈ Y ∪ Z and
v+ t′ . inv(l) for all t′6t. Now, from the construction of time transitions in
Definition 17, it follows that ((l, v), t, µ(l,v+t)) ∈ TSteps , and hence using this
probabilistic transition in Definition 24 we have (l, v), E ∈ pre0 Y (Z). 2

Lemma 28 If Y, Z0, Z1 ⊆ L × Zones(X ∪ Z) are symbolic states encoding
the sets Y, Z0, Z1 ⊆ S×RZ

>0 of state and formula clock valuation pairs, then
pre1Y(Z0, Z1) encodes the set pre1 Y (Z0, Z1).

Proof. Consider any sets of state and formula clock valuation pairs Y, Z0, Z1 ⊆
S×RZ

>0 and suppose that the sets of symbolic states Y, Z0, Z1 ⊆ L×Zones(X ∪
Z) encode Y , Z0 and Z1. By definition of pre1it is sufficient show that:

pre1 Y (Z0, Z1) ⊆ (〈〈Y〉〉 ∩ 〈〈dpre1(Z0, Z1)〉〉) ∪ 〈〈tpreY(Z0∧Z1)〉〉 (18)

pre1 Y (Z0, Z1) ⊇ (〈〈Y〉〉 ∩ 〈〈dpre1(Z0, Z1)〉〉) ∪ 〈〈tpreY(Z0∧Z1)〉〉 (19)

where

dpre1(Z0, Z1) =
⋃

(l,g,p)∈prob

 ⋂
e∈edges(l,g,p)

〈〈dpre(e, Z0)〉〉

 ∩

 ⋃
e∈edges(l,g,p)

〈〈dpre(e, Z1)〉〉

 .

Considering (18), for any s, E ∈ pre0 Y (Z0, Z1) by Definition 24 there exists
(s, t, µ) ∈ TSteps such that:

• for all s′ ∈ S, if µ(s′) > 0 then s′, E+t ∈ Z0;
• there exists s′ ∈ S such that s′, E+t ∈ Z1 and µ(s′)>0;
• s+t′, E+t′ ∈ Y ∪(Z0 ∩ Z1) for all t′6t.

We consider two cases, depending on whether (s, t, µ) is derived from the
discrete transition or timed transition rule of Definition 17.

• The case of timed transitions is similar to that considered in the proof of
Lemma 27, by substituting Z0 ∩ Z1 for Y ′, and Z0 ∧ Z1 for Y′.

• If (s, t, µ) is derived from the discrete transition rule, then t=0. If s, E ∈
Z0∩Z1, then the result follows from the fact that Z0∩Z1 ⊆ 〈〈tpreY(Z0∧Z1)〉〉.
It therefore remains to consider the case when s, E ∈ Y . Supposing s =
(l, v), and ((l, v), 0, µ) is generated from (l, g, p) ∈ prob, since Y=〈〈Y〉〉 it is
sufficient to show that:

(l, v), E ∈

 ⋂
e∈edges(l,g,p)

〈〈dpre(e, Z0)〉〉

 ∩

 ⋃
e∈edges(l,g,p)

〈〈dpre(e, Z1)〉〉

 .

31



The arguments for demonstrating that (l, v), E ∈ ⋃
e∈edges(l,g,p)〈〈dpre(e, Z1)〉〉

are similar to those used in analogous result in the proof of Lemma 27. We
prove that (l, v), E ∈ ⋂

e∈edges(l,g,p)〈〈dpre(e, Z0)〉〉 by contradiction. Therefore
assume (l, v), E 6∈ 〈〈dpre(e, Z0)〉〉 for some e=(l, g, p,X, l′) ∈ edges(l, g, p).
Using (17) and the fact that ((l, v), 0, µ) is derived from (l, g, p), it follows
that (l′, v[X:=0]), E 6∈ Z0. However, again because ((l, v), 0, µ) is derived
from (l, g, p), we have µ(l′, v[X:=0])>0, and from the hypothesis it follows
that s′, E ∈ Z0 which is a contradiction.

It therefore remains to show that (19) holds. The proof is again split into two
cases: when (l, v), E ∈ 〈〈tpreY(Z0∧Z1)〉〉 which can be dealt with in the same
manner as in the proof of Lemma 27, and when (l, v), E ∈ 〈〈Y〉〉∩〈〈dpre1(Z0, Z1)〉〉
which is demonstrated below.

Consider any (l, v), E ∈ 〈〈Y〉〉 ∩ 〈〈dpre1(Z0, Z1)〉〉. From Definition 24 and since
(l, v), E ∈ 〈〈Y〉〉(=Y ) to prove that (l, v), E ∈ pre1 Y (Z0, Z1) it is sufficient
to show that there exists ((l, v), 0, µ) ∈ TSteps such that the following two
conditions are satisfied:

(1) for all s′ ∈ S, if µ(s′)>0 then s′, E ∈ Z0;
(2) there exists s′ ∈ S such that s′, E ∈ Z1 and µ(s′)>0.

Since (l, v), E ∈ 〈〈dpre1(Z0, Z1)〉〉, by definition of dpre1 there exists (l, g, p) ∈
prob such that

(l, v), E ∈ ∩e∈edges(l,g,p)〈〈dpre(e, Z0)〉〉 and (l, v), E ∈ ∪e∈edges(l,g,p)〈〈dpre(e, Z1)〉〉 .

Since we assume the probabilistic timed automaton is well-formed, using Defi-
nition 17 there exists ((l, v), 0, µ) ∈ TSteps generated from (l, g, p). We proceed
by showing that this probabilistic transition satisfies the two conditions given
above.

(1) Assume that µ(s′)>0 and s′, E 6∈ Z0 for some s′ ∈ S. From Definition 17
there exists e = (l, g, p,X, l′) ∈ edges(l, g, p) such that s′ = (l′, v[X:=0]).
Because (l′, v[X:=0]), E 6∈ Z0, we have that (l, v), E 6∈ {(l, v), E | (v .
g ∧ inv(l)) ∧ (v, E . [X:=0]ζ l

′
Z0

)}. Using (17) it follows that (l, v), E 6∈
〈〈dpre(e, Z0)〉〉. Hence (l, v), E 6∈ ⋂

e∈edges(l,g,p)〈〈dpre(e, Z0)〉〉 which is a con-
tradiction.

(2) The argument in this case proceeds in a similar manner to the analogous
part of the proof of Lemma 27.

As these are the only case to consider (12) holds which completes the proof. 2

It remains to embed the expressions pre0Y(Y
′) and pre1Y(Y0, Y1) within the

fixpoints given in Proposition 25 and Proposition 26 respectively. Figure 4
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algorithm MaxU>0(U, V)

Z := [[false]]
repeat
Y := Z

Z := V ∨ (U ∧ dpre0(Y))
Z := Z ∨ tpreU∨V(Y)

until Z = Y

return Z

algorithm MaxU>1(U, V)

Z0 := [[true]]
repeat
Y0 := Z0
Z1 := [[false]]
repeat
Y1 := Z1
Z1 := V ∨ (U ∧ dpre1(Y0, Y1))
Z1 := Z1 ∨ tpreU∨V(Y0∧Y1)

until Z1 = Y1
Z0 := Z1

until Z0 = Y0
return Z0

Fig. 4. MaxU>0 and MaxU>1 algorithms

presents algorithms for computing these fixpoints using operations on symbolic
states, with MaxU>0([[φ]], [[ψ]]) therefore corresponding to {s, E | pmax

s,E (φ U ψ)>0},
and MaxU>1([[φ]], [[ψ]]) corresponding to {s, E | pmax

s,E (φ U ψ)>1}.

Using these results we set:

Until([[φ]], [[ψ]],6 0)
def
= [[true]] \MaxU>0([[φ]], [[ψ]])

Until([[φ]], [[ψ]], < 1)
def
= [[true]] \MaxU>1([[φ]], [[ψ]])

Release([[φ]], [[ψ]], > 0)
def
= [[true]] \MaxU>1([[¬φ]], [[¬ψ]])

Release([[φ]], [[ψ]],> 1)
def
= [[true]] \MaxU>0([[¬φ]], [[¬ψ]]) .

4.2.2 The Quantitative Case

In the case of computing quantitative maximum probabilities of until path for-
mulae we use the algorithm MaxU(·, ·,& λ) given in Figure 5. The algorithm
iteratively applies timed-predecessor, discrete-predecessor and conjunction op-
erations on symbolic states until a fixpoint is reached. The key observation is
that to preserve the probabilistic branching one must take the conjunctions
of symbolic states generated by edges from the same distribution. More pre-
cisely, one needs to identify the state sets from which multiple edges within
the support of the same distribution of the probabilistic timed automaton can
be used to reach previously generated state sets. Upon termination of the fix-
point algorithm, the set of generated symbolic states is used to construct a
finite-state probabilistic system which has sufficient information to compute
the maximum probability of interest using well-established finite-state proba-
bilistic model checking methods [17].
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algorithm MaxU(U, V,& λ)

1. Z := tpreU∨V(V)
2. for (l, g, p) ∈ prob
3. E(l,g,p) := ∅
4. end for
5. repeat
6. Y := Z

7. for y ∈ Y ∧ (l, g, p) ∈ prob ∧ e = (l, g, p,X, l′) ∈ edges(l, g, p)
8. z := U ∧ dpre(e, tpreU∨V(y))
9. if (z 6= ∅) ∧ (z 6∈ tpreU∨V(V))
10. Z := Z ∪ {z}
11. E(l,g,p) := E(l,g,p) ∪ {(z, (X, l′), y)}
12. for (z̄, (X̄, l̄′), ȳ) ∈ E(l,g,p)

13. if (z ∧ z̄ 6= ∅) ∧ ((X̄, l̄′) 6= (X, l′)) ∧ (z ∧ z̄ 6∈ tpreU∨V(V))
14. Z := Z ∪ {z ∧ z̄}
15. end if
16. end for
17. end if
18. end for
19. until Z = Y

20. construct PS = (Z, Steps) where (z, ρ) ∈ Steps if and only if
there exists (l, g, p) ∈ prob and E ⊆ E(l,g,p) such that

– z ∈ {z′ | (z′, e, z′′) ∈ E}
– (z′, e, z′′) ∈ E ⇒ z′ ⊇ z

– (z′1, e, z
′) 6= (z′2, e

′, z′′) ∈ E ⇒ e 6= e′

– E is maximal
– ρ(z′) =

∑{| p(X, l′) | (z, (X, l′), z′) ∈ E |} ∀z′ ∈ Z

21. return
∨{tpreU∨V(z) | z ∈ Z ∧ pmax

z (3 tpreU∨V(V)) & λ}

Fig. 5. Algorithm MaxU(·, ·,& λ)

We now explain the algorithm MaxU(·, ·,& λ) in more detail. Let φ U ψ be
the until path formula of interest. Then the parameters of the algorithm are
U = [[φ]], V = [[ψ]], &∈ {>, >}, and λ ∈ [0, 1]. Lines 1–4 deal with the initialisa-
tion of Z, which is set equal to the set of time predecessors of V, and the set of
edges E(l,g,p) associated with each probabilistic edge (l, g, p) ∈ prob. Lines 5–20
generate a finite-state graph, the nodes of which are symbolic states, obtained
by iterating timed and discrete predecessor operations (line 8), and taking
conjunctions (lines 12–16). The edges of the graph are partitioned into the
sets E(l,g,p) for (l, g, p) ∈ prob, with the intuition that (z, (X, l′), z′) ∈ E(l,g,p)

corresponds to a transition from any state in the symbolic state z to some
state in the symbolic state z′ when the outcome (X, l′) of the probabilistic
edge (l, g, p) is chosen. The graph edges are added in lines 11. Line 20 de-
scribes the manner in which the probabilistic edges of the probabilistic timed
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automaton are used in combination with the computed edge sets to construct
the probabilistic system PS. The states of PS are the symbolic states gener-
ated by the previous steps of the algorithm, and the probabilistic transition
relation of PS is constructed by grouping the graph edges generated by the
same probabilistic edge of the probabilistic timed automaton under study. Fi-
nally, in line 21, the maximum probability of reaching tpreU∨V(V) is computed
for each z ∈ Z. Note that we write z 6= ∅ if and only if z encodes at least one
state and formula clock valuation pair.

Note that the probabilistic transitions (z, ρ) ∈ Steps could feature sub-distributions ,
which are distributions for which

∑
z′∈Z ρ(z

′) < 1. The computation of max-
imum reachability properties can also be performed on finite-state systems
with sub-distributions. The following proposition states the correctness of our
algorithm.

Proposition 29 For any probabilistic timed automaton PTA, corresponding
timed probabilistic system TPS = (S,TSteps ,L′), PTCTL formulae φ and
ψ, &∈ {>, >} and λ ∈ [0, 1], if PS = (Z, Steps) is the probabilistic system
generated by MaxU([[φ]], [[ψ]],& λ), then for any s, E ∈ S×RZ

>0:

• pmax
s,E (φ U ψ)>0 if and only if s, E ∈ tpre[[φ∨ψ]](Z);

• if pmax
s,E (φ U ψ)>0, then pmax

s,E (φ U ψ) equals

max
{
pmax
z (3 tpre[[φ∨ψ]][[ψ]])

∣∣∣ z ∈ Z and s, E ∈ tpre[[φ∨ψ]](z)
}
.

Before we give the proof we require a number of definitions and lemmas. First
we define for any adversary A and finite path ω, an adversary, denoted A[ω],
which acts essentially as A assuming that the path ω has already occurred.

Definition 30 For a probabilistic system PS = (S, Steps ,L), adversary A of
PS and finite path ω, let A[ω] be the adversary such that for any finite path ω′

of PS:

A[ω](ω′)
def
=

A(ω
µ−→ ω′′) if ω′ is of the form last(ω)

µ−→ ω′′

A(ω′) otherwise.

Next, for any adversary A of TPS we introduce the sequence of functions
〈UA

n 〉n∈N. Intuitively, for s, E ∈ S×RZ
>0, the value UA

n (φ, ψ, s, E) equals the
probability of reaching from s, E , under the adversary A, a state which satisfies
ψ in at most n transitions, while passing through only states satisfying φ.
Since adversaries can choose on the basis of history, we first define UA

n more
generally, mapping from paths rather than states, then restrict to the case of
states (paths of length 0).
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Definition 31 For any, adversary A ∈ AdvTPS, E ∈ RZ
>0 and finite path

ω ∈ PathAfin where last(ω) = (l, v) and A(ω) = (t, µ):

• if there exists t′ 6 t such that (l, v+t′), E+t′ |= ψ and (l, v+t′′), E+t′′ |= φ∨ψ
for all t′′ 6 t′, then UA

0 (φ, ψ, (l, v), E) = 1;
• otherwise, UA

0 (φ, ψ, ω, E) = 0;

and for any n > 0:

• if there exists t′ 6 t such that (l, v+t′), E+t′ |= ψ and (l, v+t′′), E+t′′ |= φ∨ψ
for all t′′ 6 t′, then UA

n+1(φ, ψ, ω, E) = 1;
• else if (l, v+t′), E + t′ |= φ∧¬ψ for all t′ 6 t, then

UA
n+1(φ, ψ, ω, E) =

∑
(l′,v′)∈S

µ(l′, v′) · UA
n (φ, ψ, ω

t,µ−→ (l′, v′), E+t);

• otherwise, UA
n+1(φ, ψ, ω, E) = 0.

Lemma 32 For any A ∈ AdvTPS and s, E ∈ S×RZ
>0: 〈UA

n (φ, ψ, s, E)〉n∈N is a
non-decreasing sequence in [0, 1] converging to pAs,E(φ U ψ).

Next, for any adversary B of a probabilistic system PS, we define a sequence
of functions 〈RB

n 〉n∈N, where RB
n (F, s) equals the probability, of reaching, from

s under the adversary B, a state in F in at most n steps.

Definition 33 Let PS = (S, Steps) be a probabilistic system. For any subset of
states F , adversary B ∈ AdvPS and π ∈ PathBfin , if last(π) = s and B(π) = ρ,
let:

RB
0 (F, π) =

 1 if s ∈ F

0 otherwise

and for any n > 0:

RB
n+1(F, π) =


1 if s ∈ F∑

s′∈S
ρ(s′) · RB

n (F, π
ρ−→ s′) otherwise.

Lemma 34 For any probabilistic system PS = (S, Steps), adversary B ∈
AdvPS, state s ∈ S and subset of states F ⊆ S: 〈RB

n (F, s)〉n∈N is a non-
decreasing sequence in [0, 1] converging to pAs (3 F ).

We are now in a position to prove Proposition 29.

Proof of Proposition 29. Let PS = (Z, Steps) be the probabilistic system
generated by MaxU([[φ]], [[ψ]],& λ) and {E(l,g,p) |(l, g, p) ∈ prob} the set of edges
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used in this construction. We split the proof into proving a sequence of prop-
erties: (a), (b), (c) and (d).

(a) If (z, (X, l′), z′) ∈ E(l,g,p) and (l, v), E ∈ z, then the following conditions
hold:
- (l, v), E |= φ∨ψ;
- v . inv(l)∧g;
- (l′, v[X:=0]), E ∈ tpre[[φ∨ψ]](z

′).

The result follows from the definition of dpre and tpre (see Section 4.1).

(b) For any s, E ∈ S×RZ
>0, p

max
s,E (φ U ψ) > 0 if and only if s, E ∈ tpre[[φ∨ψ]](z)

for some z ∈ Z.

The proof follows by induction on the shortest path to reach a state
satisfying ψ passing through only φ states.

The main step in the proof involves showing, for all n ∈ N, the following
correspondence between the values of UA

n for A ∈ AdvTPS and RB
n for B ∈

AdvPS.

(c) For any B ∈ AdvPS, z ∈ Z and (l, v), E ∈ tpre[[φ∨ψ]](z), there exists A ∈
AdvTPS such that

UA
2n(φ, ψ, (l, v), E) > RB

n (tpre[[φ∨ψ]][[ψ]], z) .

(d) For any A ∈ AdvTPS and (l, v), E ∈ S×RZ
>0, if pmax

(l,v),E(φ U ψ) > 0, then
there exists z ∈ Z with (l, v), E ∈ tpre[[φ∨ψ]](z) and B ∈ AdvPS such that

RB
n (tpre[[φ∨ψ]][[ψ]], z) > UA

n (φ, ψ, (l, v), E) .

It follows from (b), Lemma 32 and Lemma 34 that to prove Proposition 29
it is sufficient to show that (c) and (d) hold. We now prove (c) and (d) by
induction on n ∈ N.

Proof of (c). Consider any B ∈ AdvPS, z ∈ Z and (l, v), E ∈ tpre[[φ∨ψ]](z). If
n = 0, then from Definition 33 we have the following two cases to consider.

• If RB
0 (tpre[[φ∨ψ]][[ψ]], z) = 1, then z ∈ tpre[[φ∨ψ]][[ψ]] and by definition of tpre

there exists t ∈ R>0 such that (l, v+t), E+t |= ψ and (l, v+t′), E+t′ |= φ∨ψ
for all t′ 6 t. Therefore letting A be the adversary such that A(l, v) =
(t, µ(l,v+t)), it follows that:

UA
2·0(φ, ψ, (l, v), E) = 1 = RB

0 (tpre[[φ∨ψ]][[ψ]], z) .

• If RB
0 (tpre[[φ∨ψ]][[ψ]], z) = 0, then choosing any A ∈ AdvTPS we have:

UA
2·0(φ, ψ, (l, v), E) > 0 = RB

0 (tpre[[φ∨ψ]][[ψ]], z) .
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Since these are the only cases to consider (c) holds when n = 0.

Next, suppose that (c) holds for some n ∈ N and consider UA
2(n+1)(φ, ψ, (l, v), E).

If z ∈ tpre[[φ∨ψ]][[ψ]] the result follows as in the case for n = 0. We are therefore
left to consider the case when z 6∈ tpre[[φ∨ψ]][[ψ]].

By construction, B(z) = ρ for some (z, ρ) ∈ Steps , and from the construction
of PS, there exists (l, g, p) ∈ prob and set of edges Eρ ⊆ E(l,g,p) such that
z = (l, ζ) for some ζ ∈ Zones(X ∪ Z) and for any z′ ∈ Z:

ρ(z′) =
∑

(z,(X,l′),z′)∈Eρ

p(X, l′) . (20)

From Definition 33 we have:

RB
n+1(tpre[[φ∨ψ]][[ψ]], z) =

∑
z′∈Z

ρ(z′) · RB
n (tpre[[φ∨ψ]][[ψ]], z

ρ−→ z′)

=
∑
z′∈Z

ρ(z′) · RB[z
ρ−→z′]

n (tpre[[φ∨ψ]][[ψ]], z′) by Definition 30

=
∑

(z,(X,l′),z′)∈Eρ

p(X, l′) · RB[z
ρ−→z′]

n (tpre[[φ∨ψ]][[ψ]], z′) by (20). (21)

Since (l, v), E ∈ tpre[[φ∨ψ]](z), it follows that there exists t ∈ R>0 such that
(l, v+t), E+t ∈ z and ((l, v), (t, µ(l,v+t))) ∈ TSteps . Now, for any (z, (X, l′), z′) ∈
Eρ using (a) we have that (l′, (v+t)[X:=0]), E+t ∈ tpre[[φ∨ψ]](z

′). Therefore, by

induction, for any e = (z, (X, l′), z′) ∈ Eρ there exists AX,l
′ ∈ AdvTPS such

that:

UAX,l′

2n (φ, ψ, (l′, (v+t)[X:=0]), E + t) > RB[z
ρ−→z′]

n (tpre[[φ∨ψ]][[ψ]], z′) . (22)

Let A ∈ AdvTPS be the adversary such that

• A(l, v) = (t, µ(l,v+t));

• A
(
(l, v)

t,µ(l,v+t)−−−−−→ (l, v+t)
)

= (0, µ) where for any (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=(v+t)[X:=0]

p(X, l′); (23)

• for any e = (z, (X, l′), z′) ∈ Eρ:

A[(l, v)
t,µ(l,v+t)−−−−−→ (l, v+t)

0,µ−→ (l′, (v+t)[X:=0])] = AX,l
′
.

Note that, the existence of the above distributions follows from Definition 17.
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It then follows from Definition 31 and the construction of A that:

UA
2(n+1)(φ, ψ, (l, v), E)

=
∑

(l′,v′)∈support(µ)

p(X, l′) · UAX,l′

2n (φ, ψ, (l′, v′), E+t)

=
∑

(X,l′)∈support(p)

p(X, l′) · UAX,l′

2n (φ, ψ, (l′, (v+t)[X:=0]), E+t) by (23)

>
∑

(z,(X,l′),z′)∈Eρ

p(X, l′) · UAX,l′

2n (φ, ψ, (l′, (v+t)[X:=0]), E+t)

by construction of Eρ

>
∑

(z,(X,l′),z′)∈Eρ

p(X, l′) · RB[z
ρ−→z′]

n (tpre[[φ∨ψ]][[ψ]], z′) by (22)

= RB
n+1(tpre[[φ∨ψ]][[ψ]], z) by (21)

and since z and B are arbitrary, (c) holds by induction.

Proof of (d). Consider any A ∈ AdvTPS and (l, v), E ∈ S×RZ
>0 such that

pmax
(l,v),E(φ U ψ) > 0. When n = 0, by Definition 31 we have the following two

possibilities.

• UA
0 (φ, ψ, (l, v), E) = 1: in this case there exists t ∈ R>0 such that (l, v+t), E+t |=

ψ and (l, v+t′), E+t′ |= φ∨ψ for all t′ 6 t. By definition of tpre it follows
that (l, v), E ∈ tpre[[φ∨ψ]][[ψ]], and, by construction of Z, there exists z ∈ Z
such that z ∈ tpre[[φ∨ψ]][[ψ]] and (l, v), E ∈ tpre[[φ∨ψ]](z). Combining these facts
we have:

RB
0 (tpre[[φ∨ψ]][[ψ]], z) = 1 = UA

0 (φ, ψ, (l, v), E)

for all B ∈ AdvPS.
• UA

0 (φ, ψ, (l, v), E) = 0: choosing any B ∈ AdvPS and z ∈ Z such that
(l, v), E ∈ tpre[[φ∨ψ]](z) (the existence of z follows from (b)) we have:

RB
0 (tpre[[φ∨ψ]][[ψ]], z) > 0 = UA

0 (φ, ψ, (l, v), E) .

Since these are the only cases to consider, (d) holds when n = 0.

Now suppose that (d) holds from some n ∈ N and consider UA
n+1(φ, ψ, (l, v), E).

If UA
n+1(φ, ψ, (l, v), E) = 0, then choosing any B ∈ AdvPS and z ∈ Z such that

(l, v), E ∈ tpre[[φ∨ψ]](z) (the existence of z follows from (b)) we have:

RB
n+1(tpre[[φ∨ψ]][[ψ]], z) > 0 = UA

n+1(φ, ψ, (l, v), E)

as required. It therefore remains to consider the case when UA
n+1(φ, ψ, (l, v), E) >

0. From Definition 17 and Definition 31 we have the following possibilities.

• A(l, v) = (t, µ(l,v+t)) and there exists t′ 6 t such that (l, v+t′), E+t′ |= ψ
and (l, v+t′′), E+t′′ |= φ∨ψ for all t′′ 6 t′. By definition of tpre it follows
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that (l, v), E ∈ tpre[[φ∨ψ]][[ψ]], and hence

RB
n+1(tpre[[φ∨ψ]][[ψ]], z) = 1 = UA

n+1(φ, ψ, (l, v), E)

for all B ∈ AdvPS.
• A(l, v) = (t, µ(l,v+t)) such that (l, v+t′), E+t′ |= φ∧¬ψ for all t′ 6 t. In this

case we have

UA
n+1(φ, ψ, (l, v), E) = UA

n (φ, ψ, (l, v)
t,µ(l,v+t)−−−−−→ (l, v+t), E+t) .

and the result follows by induction and Lemma 34.
• A(l, v) = (0, µ). Then by Definition 31 we have:

UA
n+1(φ, ψ, (l, v), E) =

∑
(l′,v′)∈S

µ(l′, v′) · UA
n (φ, ψ, (l, v)

0,µ−→ (l′, v′), E)

and (l, v), E |= φ∧¬ψ. Now, from Definition 17, there exists (l, g, p) ∈ prob
such that v . g and for any (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X &
v′=v[X:=0]

p(X, l′) .

Therefore, by Definition 31 and Definition 30:

UA
n+1(φ, ψ, (l, v), E)

=
∑

(X,l′)∈support(p)

p(X, l′) · UA[X,l′]
n (φ, ψ, (l′, v[X:=0]), E) (24)

where, to ease notation, we use A[X, l′] to denote the adversary A[(l, v)
0,µ−→

(l′, v[X:=0])].
Now consider any (X, l′) ∈ support(p) such that UA[X,l′]

n (φ, ψ, l′, v[X:=0]), E) >
0. By definition (l, g, p,X, l′) ∈ edges. By induction and Lemma 32 there ex-
ists (l′, ζ ′X,l′) ∈ Z and adversaryB(X,l′) such that (l′, v[X:=0]), E ∈ tpre[[φ∨ψ]](l

′, ζ ′X,l′)
and

RB(X,l′)

n (tpre[[φ∨ψ]][[ψ]], (l′, ζ ′X,l′)) > UA[X,l′]
n (φ, ψ, (l′, v[X:=0]), E) . (25)

Since (l, v), E |= φ∧¬ψ, letting:

(l, ζX,l′) = dpre((l, g, p,X, l′), tpre[[φ∨ψ]](l
′, ζ ′X,l′)),

it follows that ((l, ζX,l′), (X, l
′), (l′, ζ ′X,l′)) ∈ E(l,g,p), (l, ζX,l′) ∈ Z and (l, v), E ∈

(l, ζX,l′). Therefore, from the construction of PS, by setting z equal to:(
l,

∧
{ζX,l′ | (X, l′) ∈ support(p) and pmax

(l′,v[X:=0]),E(φ U ψ) > 0}
)
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we have z ∈ Z and (l, v), E ∈ z. Furthermore, by construction of PS there
exists (z, ρ) ∈ Steps such that for any (l′, ζ ′) ∈ Z:

ρ(l′, ζ ′) >
∑

(X,l′)∈support(p), ζ′=ζX,l′ &

U
A[X,l′]
n (φ,ψ,(l′,v[X:=0]),E)>0

p(X, l′). (26)

Now, setting B to be the adversary of PS such that B(z) = ρ and B[z
ρ−→

(l′, ζ ′X,l′)] = B(X,l′), by Definition 33 we have:

RB
n+1(tpre[[φ∨ψ]][[ψ]], z) =

∑
z′∈Z

ρ(z′) · RB
n (tpre[[φ∨ψ]][[ψ]], z

ρ−→ z′)

>
∑

(X,l′)∈support(p)&

U
A[X,l′]
n (l′,v[X:=0]),E)>0

p(X, l′) · RB
n (tpre[[φ∨ψ]][[ψ]], z

ρ−→ (l′, ζ ′X,l′)) by (26)

=
∑

(X,l′)∈support(p)&

U
A[X,l′]
n (l′,v[X:=0]),E)>0

p(X, l′) · RB(X,l′)

n (tpre[[φ∨ψ]][[ψ]], (l′, ζ ′X,l′)) by construction

>
∑

(X,l′)∈support(p)&

U
A[X,l′]
n (l′,v[X:=0]),E)>0

p(X, l′) · UA[X,l′]
n (φ, ψ, (l′, v[X:=0]), E) by (25)

=
∑

(X,l′)∈support(p)

p(X, l′) · UA[X,l′]
n (φ, ψ, (l, v[X:=0]), E) rearranging

= UA
n+1(φ, ψ, (l, v), E) by (24).

Since these are all the cases to consider, (d) holds by induction as required. 2

Using this result, for λ ∈ (0, 1), we set:

Until([[φ]], [[ψ]],. λ)
def
= [[true]] \MaxU([[φ]], [[ψ]], 6. λ)

Release([[φ]], [[ψ]],& λ)
def
= [[true]] \MaxU([[¬φ]], [[¬ψ]],& 1− λ) .

4.2.3 Example

We now return to the PTA in Example 16 and verify the property z.P<λ[φ U ψ],
where φ = true and ψ = sr∧(z<6), which involves computing the maximal
probability of a message being correctly delivered before 6 time units have
elapsed. In particular, we consider this maximum probability when starting
from the location di with the clock x equal to 0. In this example, we do not
distinguish between the name of a location and the atomic proposition with
which it is labelled.

According to our methodology, the set of states satisfying P<λ[φ U ψ] is given
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(si, 26x63∧z<6)

(si, 26x63∧z<4)

(si, 26x63∧z<2)

0.9
(di, 16x62)

(di, 16x62∧z<3)

(di, 16x62∧z<5)

target set tpre[[true]][[sr∧(z<6)]] = {(sr, z<6)}

0.90.90.950.95

0.05

0.05

0.95

0.1

0.1

Fig. 6. Probabilistic system generated by MaxU([[true]], [[sr∧(z<6)]],> 1−λ)

by: [[true]]\MaxU( [[φ]], [[ψ]],> λ). Applying MaxU([[true]], [[sr∧(z<6)]],> λ) the
probabilistic system given in Figure 6 is generated where the darker arrows cor-
respond to those edges generated by time and discrete predecessor operations
(line 11 of Figure 5) and the lighter arrows are those generated in the construc-
tion of the probabilistic system (line 20 of Figure 5). Appendix A presents the
computations performed by MaxU in the construction of the states and edges
of this probabilistic system. From Proposition 29 we have that, starting from
di with x equal to 0, the maximum probability of satisfying true U (sr∧(z<6))
is 0.99525, corresponding to the maximum probability of (di, 16x62 ∧ z<3)
reaching the target set in the probabilistic system given in Figure 6.

4.3 Computing Maximum Release Probabilities

In this section we present methods for calculating the set of states satisfying
a formula of the form P.λ[φ V ψ] and P&λ[φ U ψ] which, from (6) and (7),
reduce to the computation of pmax

s,E (φ V ψ) or pmax
s,E (¬φ V ¬ψ) for all state and

formula clock valuation pairs s, E . We first consider computing the set of state
and formula clock valuation pairs {s, E | pmax

s,E (φ V ψ)>1} which we achieved
by derive a probabilistic analogue of (4). More precisely, by replacing the ∃
operator with ¬P<1[·] (recall that ¬P<1[·] stands for ‘it is not the case that
all adversaries satisfy the path formula with probability less than 1’, which
in turn can be translated as ‘there exists an adversary satisfying the path
formula with probability 1’). We then arrive at the following proposition.

Proposition 35 For any positive integer c ∈ N and PTCTL formulae φ, ψ,
if z ∈ Z does not appear in either φ or ψ, then the set {s, E | pmax

s,E (φ V ψ)>1}
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is given by the fixpoint

gfp Y.
(
ψ ∧ z.¬P<1

[
Y U

(
(Y ∧φ) ∨ (z>c)

)] )
.

Proof. Consider any positive integer c ∈ N, PTCTL formulae φ, ψ, and for-
mula clock z ∈ Z which does not appear in either φ or ψ. To ease notation we
use pmax

>1 (φ V ψ) to denote the set of state and formula clock valuation pairs
{s, E | pmax

s,E (φ V ψ)>1}, and for any X ⊆ S×RZ
>0 let:

G1(X, c)
def
= ψ ∧ z.¬P<1[X U ((X∧φ) ∨ (z>c))] .

The proposition is proved by showing:

(1) the set pmax
>1 (φ V ψ) is a fixpoint of G1(·, c);

(2) if G1(Y, c) = Y , then Y ⊆ pmax
>1 (φ V ψ).

First, since, for any X ⊆ S×RZ
>0, X ⊇ [[z.¬P<1[X U ((X∧φ) ∨ (z>c))]]] it

follows that X ⊇ G1(X, c) for all X ⊆ S×RZ
>0. Therefore, to prove that

pmax
>1 (φ V ψ) is a fixpoint it is sufficient to show that:

G1

(
pmax

>1 (φ V ψ), c
)
⊇ pmax

>1 (φ V ψ) .

By definition of φ V ψ (see Section 3.3) the following properties hold.

• For any s, E ∈ S×RZ
>0, if s, E |= φ∧ψ, then ω, E |= φ V ψ for all paths

ω ∈ Path ful(s).

Therefore, if s, E |= φ∧ψ, it follows that s, E ∈ pmax
>1 (φ V ψ), and hence

s, E |= (φ∧ψ) ∨ (z>c) ⇒ s, E |= ( pmax
>1 (φ V ψ) ∧ φ ) ∨ (z>c) .

Using this result and Definition 19 it follows that for any s, E ∈ S×RZ
>0:

s, E |= z.¬P<1

[
pmax

>1 (φ V ψ) U
(

(φ∧ψ) ∨ (z>c)
) ]

⇒ s, E |= z.¬P<1

[
pmax

>1 (φ V ψ) U
( (
pmax

>1 (φ V ψ) ∧ φ
)
∨ (z>c)

) ]
. (27)

• For any s, E ∈ S×RZ
>0 and ω ∈ Path ful(s), if ω, E |= φ V ψ, then s, E |= ψ.

Thus, for any s, E ∈ S×RZ
>0 we have:

s, E ∈ pmax
>1 (φ V ψ) ⇒ s, E |= ψ . (28)

• As the satisfaction of PTCTL is with respect to divergent adversaries, for
any s, E ∈ pmax

>1 (φ V ψ), there exists an adversary A such that, from s, E
with probability 1, one remains in pmax

>1 (φ V ψ) until either a state satisfying
φ∧ψ is reached or more than c time units pass.
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Therefore, since the clock z does not appear in φ or ψ, for any s, E ∈ S×RZ
>0:

s, E ∈ pmax
>1 (φ V ψ)

⇒ s, E [z:=0] |= ¬P<1

[
pmax

>1 (φ V ψ) U
(

(φ∧ψ) ∨ (z>c)
)]
. (29)

Now, by definition of G1:

G1(p
max
>1 (φ V ψ), c)

= ψ ∧ z.¬P<1

[
pmax

>1 (φ V ψ) U
( (
pmax

>1 (φ V ψ) ∧ φ
)
∨ (z>c)

) ]
⊇ ψ ∧ z.¬P<1

[
pmax

>1 (φ V ψ) U
(

(φ∧ψ) ∨ (z>c)
) ]

by (27)

⊇ ψ ∧ pmax
>1 (φ V ψ) by (29) and Definition 19

= pmax
>1 (φ V ψ) by (28)

and hence pmax
>1 (φ V ψ) is a fixpoint of G1(X, c).

To complete the proof it remains to show that, if G1(Y, c) = Y , then Y ⊆
pmax

>1 (φ V ψ) which we prove by contradiction. Therefore, suppose that there
exists Y ⊆ S×RZ

>0 such that G1(Y, c) = Y and Y \ pmax
>1 (φ V ψ) 6= ∅. Now

for any s, E ∈ Y \ pmax
>1 (φ V ψ), and (divergent) adversary A, since s, E 6∈

pmax
>1 (φ V ψ), under A starting from s, E the probability of satisfying φ V ψ

is less than 1, and therefore the probability of satisfying the dual formula
¬φ U ¬ψ is greater than 0. More precisely, there exists a path ω ∈ PathAful(s)
such that ω, E |= ¬φ U ¬ψ, and since z does not appear in either φ or ψ, we
have ω, E [z:=0] |= ¬φ U ¬ψ. Hence, there exists some duration tA ∈ R>0 such
that at some point along this path ¬ψ ∧ (z=tA) is true and at all preceding
points ¬φ∨¬ψ is true.

However, since s, E ∈ Y , and therefore s, E ∈ G1(Y, c), it follows that there
exists an adversary such that with probability 1 from s, E [z:=0] one remains in
Y while z 6 c unless a state in Y which satisfies φ is reached. Since the above
holds for any s′, E ′ ∈ Y and z does not appear in φ or ψ, iterating the result n
times, we can construct an adversary A′ such that, from s, E , with probability
1 one remains in Y while z 6 n · c unless a state in Y which satisfies φ is
reached. Furthermore, since Y = G1(Y, c) it follows that Y ⊆ ψ, and hence
under A′, for any n ∈ N, with probability 1, from s, E one remains in states
satisfying ψ while z 6 n · c unless a state satisfying φ∧ψ is reached. From the
reasoning of the preceding paragraph, there exists some duration tA′ and path
ω′ ∈ PathA

′

ful(s) such that at some point along this path ¬ψ ∧ (z=tA′) is true
and at all preceding points ¬φ∨¬ψ is true. However, considering any n ∈ N
such that n · c > tA′ (which exists since c > 0) leads to a contradiction. 2

Using Proposition 35, the algorithm for calculating the set of state and formula
clock valuation pairs {s, E | pmax

s,E (φ V ψ)>1} is presented in Figure 7. As in
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algorithm MaxV>1(c, U, V)

Z:=[[true]]
repeat
Y:=Z

Z:=V ∧ z.MaxU>1(Y, (U∧Y) ∨ [[z>c]])
until Z = Y

return Z

algorithm NonZeno

Z:=[[true]]
repeat
Y:=Z

Z:=z.MaxU>1([[true]], Y∧ [[z=1]])
until Z = Y

return Z0

Fig. 7. MaxV>1(c, U, V) and NonZeno algorithms

the non-probabilistic case (when applying (3)), the choice of the value of c
may affect the number of iterations performed in the computation. Intuitively,
as c is increased, the number of iterations required by the ‘inner’ loop (the
computation performed in one call to MaxU>1) may increase, while the number
of iterations performed by the ‘outer’ loop (calls to the algorithm MaxU>1)
may decrease.

Unfortunately we cannot use the same approach for calculating the set of state
and formula clock valuation pairs {s, E | pmax

s,E (φ V ψ)>0}, i.e. in (4) replace ∃
with ¬P60[·]. This is because the greatest fixpoint in this case yields the set
of state and formula clock valuation pairs for which, under some divergent
adversary, there exists a path which satisfies φ V ψ, which does not imply that
the probability of satisfying φ V ψ is greater than zero.

Instead, we employ the following proposition, which together with Proposi-
tion 35 provides us with a method for calculating {s, E | pmax

s,E (φ V ψ)>0} and
computing quantitative maximum release probabilities.

Proposition 36 For any probabilistic timed automaton PTA, corresponding
timed probabilistic system TPS = (S,TSteps ,L′), state and formula clock val-
uation pair s, E ∈ S×RZ

>0 and PTCTL formulae φ, ψ:

pmax
s,E (φ V ψ) = pmax

s,E

(
ψ U ¬P<1[φ V ψ]

)
.

Proof. Consider any probabilistic timed automaton PTA, corresponding timed
probabilistic system TPS = (S,TSteps ,L′) and PTCTL formulae φ and ψ.
We begin by showing that for any state and formula clock valuation pair
s, E ∈ S×RZ

>0:

pmax
s,E (φ V ψ) = pmax

s,E

(
ψ U

(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

) )
. (30)

First, given an adversary A ∈ AdvTPS, let A′ be the adversary which be-
haves as A unless a state and formula clock valuation pair s′, E ′ satisfying
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¬P<1[2(¬φ∧ψ)] is reached, in which case A′ behaves like the adversary Amax

for which:
pA

max

s′,E ′
(
2 (¬φ∧ψ)

)
= 1 .

The existence of Amax follows from the fact that s′, E ′ |= ¬P<1[2(¬φ∧ψ)] and
Lemma 22. Using Lemma 8, for any s, E ∈ S×RZ

>0 and A′′ ∈ AdvTPS, we have
that:

pA
′′

s,E(2 (¬φ∧ψ)) = 1 ⇔ ∀ω ∈ PathA
′′

ful (s). ω, E |= 2 (¬φ∧ψ) ,

and hence, by construction of A′, for any s, E ∈ S×RZ
>0 and path ω ∈

PathA
′

ful(s), if ω, E |= ψ U
(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

)
, then ω, E |= φ V ψ.

Therefore, for any s, E ∈ S×RZ
>0:

pA
′

s,E(φ V ψ) > pA
′

s,E

(
ψ U

(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

) )
= pAs,E

(
ψ U

(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

) )
by construction of A′.

Since this construction was for an arbitrary adversary A ∈ AdvTPS and state
and formula clock valuation pair s, E ∈ S×RZ

>0 it follows that:

pmax
s,E (φ V ψ) > pmax

s,E

(
ψ U

(
(φ∧ψ)∨¬P<1[2(¬φ∧ψ)]

) )
∀s, E ∈ S×RZ

>0. (31)

We now show that the reverse inequality holds. Let R be the region graph of
PTA and the PTCTL formula

θ = P∼λ[φ V ψ] ∧ P∼λ[Ψ U ((Φ∧Ψ) ∨ ¬P<1[2 (¬Φ∧Ψ)])]

(see Proposition 21). Now, for any adversary A ∈ AdvTPS and state and for-
mula clock valuation pair s, E ∈ S×RZ

>0 there exists an adversary B ∈ AdvR
of the region graph R and PCTL formulae Φ and Ψ, such that:

pAs,E(φ V ψ) = pBr (Φ V Ψ)

6 pBr
(

Ψ U
(
(Φ∧Ψ) ∨ ¬P<1[2 (¬Φ∧Ψ)]

) )
by Lemma 10

= pAs,E
(
ψ U

(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

) )
by Proposition 21.

Since this was for an arbitrary adversary A ∈ AdvTPS and state and formula
clock valuation pair s, E ∈ S×RZ

>0 we have:

pmax
s,E (φ V ψ) 6 pmax

s,E

(
ψ U

(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

) )
∀s, E ∈ S×RZ

>0,

which together with (31) proves the correctness of (30).

Next, from (30) it follows that for any state and formula clock valuation pair
s, E ∈ S×RZ

>0:

s, E |= ¬P<1

[
ψ U

(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

) ]
⇔ s, E |= ¬P<1[φ V ψ] .

(32)
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Before we give the final step of the proof we require the following property:
for any PTCTL formulae θ1, θ2 and s, E ∈ S×RZ

>0:

pmax
s,E (θ1 U θ2) = pmax

s,E (θ1 U ¬P<1[θ1 U θ2]) . (33)

which follows from Proposition 21 and Lemma 5.

Now, for any s, E ∈ S×RZ
>0, from (30):

pmax
s,E (φ V ψ) = pmax

s,E

(
ψ U

(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

) )
= pmax

s,E

(
ψ U ¬P<1

[
ψ U

(
(φ∧ψ) ∨ ¬P<1[2(¬φ∧ψ)]

) ] )
by (33)

= pmax
s,E

(
ψ U ¬P<1[φ V ψ]

)
by (32)

as required. 2

Proposition 36 provides us with a method for obtaining the maximum prob-
ability of satisfying a release formula: first we obtain the set of states sat-
isfying ¬P<1[φ V ψ], then we obtain the maximum probability of satisfying
φ U ¬P<1[φ V ψ] (which we have shown in Section 4.2). More precisely, we set
Until([[φ]], [[ψ]],& λ) to:

• [[true]] \MaxV>1(c, [[¬φ]], [[¬ψ]]) if & = > and λ=0;

• [[true]] \MaxU>0

(
[[¬ψ]],MaxV>1(c, [[¬φ]], [[¬ψ]])

)
if & = > and λ=1;

• [[true]] \MaxU
(
[[¬ψ]],MaxV>1(c, [[¬φ]], [[¬ψ]]), 6& 1−λ

)
if λ ∈ (0, 1);

and Release([[φ]], [[ψ]],. λ) equal to:

• [[true]] \MaxV>1(c, [[φ]], [[ψ]]) if . = < and λ=1;

• [[true]] \MaxU>0

(
[[ψ]],MaxV>1(c, [[φ]], [[ψ]])

)
if . = 6 and λ=0;

• [[true]] \MaxU
(
[[ψ]],MaxV>1(c, [[φ]], [[ψ]]),. λ

)
if λ ∈ (0, 1).

4.3.1 Example

We now return to the PTA in Example 16 and verify the property z.P>λ[φ U ψ],
where φ = true and ψ = (sr∧(z<6)), which involves computing the minimal
probability of a message being correctly delivered before 6 time units have
elapsed is greater than λ. This is achieved through the computation of the
maximum probability for the dual release formula false V ¬(sr∧(z<6)), that
is, computing the maximum probability of remaining in states where either
the message has not been delivered or the clock z is greater than or equal to 6.
Similarly to Example 4.2.3, we consider these probabilities when starting from
the location di with the clock x equal to 0 and do not distinguish between the
name of a location and the atomic proposition with which it is labelled.
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(si, 26x63∧z>3)

(di, 16x62)

(si, 26x63)

0.1 0.05

0.10.1

0.05

0.05

(di, 16x62∧z>3)

target set tpre[[¬ψ]]∨Z(Z) = {(sr, z>6), (si, x63∧z>x+3), (di, x62∧z>x+4)}

Fig. 8. Symbolic states and edges generated by MaxU([[¬ψ]], Z,> 1−λ)

According to our methodology, the set of states satisfying P>λ[φ U ψ] is given
by the following set of symbolic states:

[[true]] \MaxU
(

[[¬ψ]],MaxV>1(c, [[¬φ]], [[¬ψ]]),> 1−λ
)
.

Therefore, we first compute MaxV>1(c, [[¬φ]], [[¬ψ]]), the set of states for which
the maximum probability of remaining in states where either the message has
not been delivered or the clock z is greater than or equal to 6 is one, which
returns (for any positive integer value of c) the set of symbolic states

Z = {(sr, z>6), (si, x63 ∧ z>x+3), (di, x62 ∧ z>x+4)} .

The details on the computations performed in the construction of this set of
symbolic states can be found in Appendix B and Appendix C.

Next, applying MaxU([[¬ψ]], Z,> 1−λ) returns the probabilistic system given
in Figure 8. Appendix D presents the computations performed by MaxU in
the construction of the states and edges of this probabilistic system. Now
(di, 16x62) is the only symbolic state of the probabilistic system given in
Figure 8 for which the time predecessor set includes a state and formula clock
valuation pair (di, x = 0), E such that E(z) = 0. Therefore, using Proposi-
tion 29, from location di with x equal to 0 the maximum probability of satis-
fying ¬ψ U (¬P<1[¬φ V ¬ψ]) equals the maximum probability of (di, 16x62)
reaching tpre[[¬ψ]]∨Z(Z), and hence equals 0.005.

Finally, using Proposition 36, we have that starting from di with x equal to
0, the minimum probability of correctly delivering before 6 time units have
elapsed equals 1− 0.005 = 0.995.
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4.4 Checking Non-Zenoness

We now present a method to check that the probabilistic timed automaton
under study is non-zeno. In the non-probabilistic case checking non-zenoness
corresponds to finding the greatest fixpoint gfp Y. (z.(true ∃U ((z=1) ∧ Y ))).
The states satisfying this expression are those from which there exists a diver-
gent path. For probabilistic timed automata, we can replace ∃ with ¬P<1[·],
i.e replace ‘there exists a path that reaches (z=1) ∧ Y ’ with ‘there exists an
adversary which reaches (z=1) ∧ Y with probability 1’. Following this ap-
proach, the algorithm for calculating the set of non-zeno states is given in
Figure 7. A probabilistic timed automaton is then non-zeno if and only if the
algorithm NonZeno returns the set of symbolic states [[true]]. Formally, we
have the following proposition.

Proposition 37 A probabilistic timed automaton PTA is non-zeno if and only
if {(l, inv(l)), E | l ∈ L and E ∈ RZ

>0} is characterised by the fixpoint

gfp Y.
(
z.¬P<1[3 ((z=1) ∧ Y )]

)
.

Proof. Consider any probabilistic timed automaton PTA and corresponding
timed probabilistic system TPS = (S,TSteps ,L). To ease notation we let Snz

denote the set of state and formula clock valuation pairs:{
s, E ∈ S×RZ

>0

∣∣∣ ∃A ∈ AdvTPS.
(
ProbAs {ω ∈ PathAful(s) |ω is divergent} = 1

) }
.

Letting Gnz(X) = z.¬P<1[3 (z=1)∧X], we prove the proposition by showing
that:

(1) the set Snz is a fixpoint of Gnz(·);
(2) if Gnz(Y ) = Y , then Y ⊆ Snz.

To prove that Snz is a fixpoint of Gnz(·) we show that both Snz ⊆ Gnz(Snz)
and Snz ⊇ Gnz(Snz).

• For any s, E ∈ Snz, by construction there exists an adversary A ∈ AdvTPS

such that ProbAs {ω ∈ PathAful(s) |ω is divergent} = 1, and hence, with prob-
ability 1, under the adversary A one time unit will elapse and we will reach
a state in Snz. It follows that s, E [z:=0] |= ¬P<1[3 (z=1)∧Snz], and since
s, E ∈ Snz was arbitrary, Snz ⊆ Gnz(Snz).

• For any s, E ∈ Gnz(Snz), by construction there exists an adversary A under
which, with probability 1, from s one reaches a state in Snz after 1 time unit.
Therefore consider the adversary which behaves as A except that when a
state in Snz is reached: in such a case the adversary lets time diverge with
probability 1 (such a choice exists by the definition of Snz). It follows that,
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under this adversary, time diverges from s with probability 1, and hence
s, E ∈ Snz. Hence, since s, E ∈ Gnz(Snz) was arbitrary, Snz ⊇ Gnz(Snz).

It therefore remains to show that for any set of state and formula clock val-
uation pairs Y , if Gnz(Y ) = Y , then Y ⊆ Snz. The proof is by contradic-
tion: suppose that there exists a set of state and formula clock valuation pairs
Y ⊆ S×RZ

>0 such thatGnz(Y ) = Y and Y \Snz 6= ∅. Now, for any s, E ∈ Y \Snz,
since Gnz(Y ) = Y , there exists an adversary for which from s with probability
1 one reaches a state in Y after 1 time unit. Iterating this fact, we have that,
for any n ∈ N, there exists an adversary which with probability 1 lets n time
units elapse. Therefore s, E ∈ Snz which is a contradiction. 2

Similarly to [7], the algorithm can be used to convert a ‘zeno’ probabilis-
tic timed automaton into a non-zeno automaton by strengthening invariants.
More precisely, supposing NonZeno returns Z, we can construct a new invari-
ant condition by letting invnz(l) = ζ lZ for each location l of the automaton
under study.

4.5 Termination

As in [7], the termination of the model checking algorithms introduced in this
paper relies on the fact that only a finite number of zones can be generated
by the algorithms. More precisely, from inspection of the definitions of the
operations on symbolic states presented in Section 4.1, the zones of the sym-
bolic states computed during our model-checking algorithms will refer only to
constants less than or equal to the maximal constant appearing in the proba-
bilistic timed automaton PTA (either in a guard or invariant condition), and
the PTCTL formula φ (and the parameter c when either of the algorithms
MaxV>1 and NonZeno are called). Furthermore, the computed symbolic states
will refer only to the clocks of PTA and φ (and one additional clock when
either of the algorithms MaxV>1 and NonZeno are called). Hence, only a fi-
nite number of symbolic states can be computed during the execution of the
algorithms.

That the algorithms of Section 4.2, Section 4.3 and Section 4.4 terminate is
a consequence of the following facts. Firstly, the algorithms for qualitative
PTCTL formulae and checking non-zenoness (those presented in Figure 4 and
Figure 7) correspond to a (possibly nested) fixpoint expression on a monotonic
function mapping between sets of symbolic states. Similarly, the algorithm for
quantitative formula of Figure 5 corresponds to least fixpoint expressions on a
monotonic function mapping between sets of sets of symbolic states. Then, as
the number of possible symbolic states is finite, termination of the algorithms
is guaranteed.
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5 Case Studies

In this section we report on a prototype implementation of the algorithms of
Section 4, together with its application to two case studies: the CSMA/CD
communication protocol [19], and the IEEE1394 FireWire root contention
protocol [20]. We include only the results for the generation of the finite-state
probabilistic system, and not the verification of this system which is performed
by the probabilistic model-checking tool PRISM, and is therefore standard.
Further details are available from the PRISM web page [34].

We confirm the results with those obtained using the digital clocks approach
in PRISM [10,8] and, when possible, the ‘forward reachability’ approach [3,15].
The comparison with the digital clocks approach is feasible because the mod-
els are ‘closed’ and ‘diagonal-free’ (they do not feature either strict inequali-
ties or comparisons between clocks in their zones), and hence are amenable to
discrete-time analysis; however, our algorithms are applicable to general prob-
abilistic timed automata. When calculating minimum probabilities of deadline
properties, for comparison we also use an alternative method introduced in [8],
as explained by the following remark.

Remark 38 We observe that certain deadline properties referring to mini-
mum probability can be expressed in terms of properties referring to maxi-
mum probability. Consider a property z.P>λ[3(φ ∧ (z6D))] and assume that
φ is reachable with probability 1 for all adversaries and states. We adjust the
model so that states in which φ is true are forced to make a transition to
a sink-location; furthermore, we allow the model to make a transition to a
different, ‘deadline exceeded’ sink-location, denoted exceeded, as soon as the
value of the clock z exceeds D [8] (provided that we are not in a state sat-
isfying φ). We define the labelling of the location exceeded so that φ is not
true in this location, and, because exceeded is a sink, φ cannot become true
after it is entered. Then, given any adversary A, state s and formula clock
valuation E, we have that pAs,E(3(φ ∧ (z6D))) = 1 − pAs,E(3 exceeded), and
s, E |= z.P>λ[3 (φ ∧ (z 6 D))] if and only if s, E |= P61−λ[3 exceeded].
Hence, we are able to reduce the computation of a minimum probability to a
maximum probability in such situations.

5.1 Implementation

In this section we briefly summarise our prototype implementation of the
model-checking algorithms given in Section 4. It is important to note that
the aim of our implementation is to validate the algorithms presented for
model checking probabilistic timed automata against PTCTL, rather than
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to devise an efficient implementation; the latter will be the subject of future
work. Note that, to perform the final step of the algorithm MaxU (line 22 of
Figure 5), that is to compute maximum reachability probabilities on a finite-
state probabilistic system, we export the problem to the probabilistic symbolic
model checker PRISM [35,34].

The main step in the implementation of our techniques is the representation of
(sets of) symbolic states and the operations required on them. More precisely,
since a symbolic state is a pair (l, ζ) where l ∈ L and ζ is a zone, we require
a method for representing zones and performing operations on zones.

Difference Bound Matrices (DBMs) [18] are a well known data-structure for
the representation of convex zones and are used in the model checkers Up-
paal [13] and Kronos [14]. As the operations required by our algorithm can
introduce non-convexity, we also represent non-convex zones. Following the
approach presented in [36,37,28], we represent non-convex zones by lists of
DBMs; that is, we represent a non-convex zone ζ by a list of convex zones
ζ1, . . . , ζn such that ζ = ζ1 ∪ · · · ∪ ζn. It thus follows that a symbolic state can
be represented by a location and a list of DBMs. Recall that [28] presents al-
gorithms (used by Kronos [38]) for the operations we require when zones are
represented as lists of DBMs. Based on [28], we have implemented, in Java, a
prototype DBM package and the operations on lists of DBMs required by our
model-checking algorithms. Note that the equality checking performed by the
algorithms MaxV>1, MaxU>1 and NonZeno reduces to an inclusion test based
on whether a least or greatest fixpoint is being performed.

5.2 CSMA/CD protocol

We proceed to describe the application of our prototype implementation to
the first case study. The CSMA/CD (Carrier Sense, Multiple Access with
Collision Detection) protocol is designed for networks with a single channel
and specifies the behaviour of stations with the aim of minimising simultaneous
use of the channel (data collision). The basic structure of the protocol is as
follows: when a station has data to send, it listens to the medium, after which,
if the medium was free (no other station is transmitting), the station starts to
send its data. On the other hand, if the medium was sensed busy, the station
waits a random amount of time, based on the number of failed transmissions
of the packet, and then repeats this process. The model we consider here is a
probabilistic extension of the timed automata model given in [39]. We consider
the case when there are two stations trying to send data at the same time.
The overall model is given by the parallel composition of three probabilistic
timed automata, representing the medium and two stations trying to send
data. The following parameters are taken from the IEEE standard 802.3 for
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Fig. 9. A probabilistic timed automaton modelling the medium.

10 Mbps Ethernet [19].

• Propagation delay of the channel σ = 26µs.
• Time to send a data packet (plus the propagation delay) λ = 808µs.
• Length of one time slot (used in the randomised truncated binary exponen-

tial backoff process) slotTime = 2 · σ.

Our model of the protocol is obtained from three probabilistic timed automata
sub-models which are composed in parallel using synchronisation on com-
mon, probabilistic edge labelling events. The formal definition of event-labelled
probabilistic timed automata, and of their parallel composition is presented
in [8]. We proceed to explain our probabilistic timed automata sub-models in
turn.

The Medium The probabilistic timed automaton representing the medium
is given in Figure 9. The medium is initially ready to accept data from any
station (event sendi for i ∈ {1, 2}). Once a station starts sending its data there
is an interval of time (at most σ), representing the time it takes for a signal to
propagate between the stations, in which the medium will accept data from
the other station (possibly resulting in a collision). After this interval, if the
other station tries to send data it will get the busy signal (busyi). If a collision
occurs, there is a delay (again at most σ) before the stations realise there has
been a collision, after which the medium will become free (represented by the
event cd). If the stations do not collide, then when a station finishes sending
its data (event endi) the medium becomes idle.

Note that the guard (y 6 σ) on the transitions from TRANSMIT to COLLIDE
differs from that of the model of [39], in which the inequality is strict. The
reason we have made this change is to allow us to use the integer semantics ap-
proach where, unlike in the model checking algorithms presented in this paper,
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only non-strict inequalities are allowed in the probabilistic timed automaton
under study.

The Stations In Figure 10 we have presented the probabilistic timed au-
tomata model of a station. Note that, as in [39], we assume that only pack-
ets of equal length are sent. Observe also that we use bounded-range, natural
numbered variables within the model description. Such variables can be repre-
sented within the probabilistic timed automaton framework by encoding their
values within ‘copies’ of locations (one copy for each possible valuation of the
variables). We can then permit random assignment to such variables, because
such assignment corresponds to probabilistic choice between the copies of a
location.

A station starts in location INIT with the values of its clock xi and its discrete
variables bc and backoff equal to zero. The behaviour of the station commences
by the sending of data (event sendi). If there is no collision, then, after λ time
units, the station finishes sending its data (event endi). On the other hand, if
there is a collision (event cd), the station attempts to retransmit the packet
where the scheduling of the retransmission is determined by a truncated binary
exponential backoff process. The delay before retransmitting is is measured as
an integer number of time slots (each of length slotTime). The number of
slots that the station waits after the nth transmission failure is chosen as a
uniformly distributed random integer in the range:

0, 1, 2, . . . , 2bc+1−1

where bc = min(n, bcmax ) and bcmax is the constant referring to the trunca-
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Table 1. Statistics for MaxV>1 as c varies, when verifying the CSMA/CD protocol
bcmax c P>1[3 done] z.P&λ[3(done ∧ z62000)]

time iterations time iterations

(sec) MaxV>1 MaxU>1 (sec) MaxV>1 MaxU>1

1 1,048 966 7,409 269.6 132 1,062

10 106.7 99 755 31.94 15 126

26 48.38 40 321 21.60 9 94

30 44.31 35 281 27.75 9 94

40 34.06 27 218 18.20 7 78

50 29.88 22 184 18.67 6 70

1 60 88.01 21 168 201.2 8 91

70 79.83 18 150 199.3 8 91

80 72.39 16 141 182.4 7 84

90 72.17 15 123 179.5 7 84

100 66.20 13 121 189.3 7 84

200 57.18 7 87 83.67 6 90

808 474.9 4 89 659.5 5 115

1 2,058 1,070 7,830 660.9 236 1,899

10 223.1 109 800 78.58 26 219

26 126.6 44 347 93.48 13 136

30 142.4 38 303 86.36 12 128

40 109.6 29 237 73.51 10 108

50 94.77 24 201 64.65 8 92

2 60 213.6 22 177 270.7 8 91

70 179.3 19 157 270.9 8 91

80 149.5 16 136 272.4 8 88

90 158.3 16 130 271.2 8 88

100 115.6 14 117 256.7 8 88

200 232.6 9 93 1,101 7 94

808 21,682 5 147 103,134 6 217

tion point of the backoff process. The slot length and the randomly-chosen inte-
ger are combined within the probabilistic assignment backoff := RAND(bc).
Once backoff time units have elapsed, if the medium appears free the station
resends the data (event send), while if the medium is sensed busy (event busy)
the station repeats this process.

Note that, to simplify the model, we have removed the limit on the number of
times a station attempts to retransmit a packet as specified in the standard.
For our experiments we consider the cases when bcmax is either 1 or 2.

5.2.1 Model Checking

The first property we check is that the minimum probability that both stations
correctly deliver their packets is 1; that is, we verify P>1[3 done] where done
is the atomic proposition labelling these states where both stations are in the
location DONE. From Section 4.3, the verification of such a property requires
a call to the algorithm MaxV>1 within a call to MaxU>0; more precisely, the
set of states satisfying P>1[3 done] is given by:

[[true]] \MaxU>0

(
[[¬done]],MaxV>1(c, [[false]], [[¬done]])

)
.
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Table 2. Model sizes (and generation times in seconds) for CSMA/CD protocol
bcmax D z.P∼λ[3(done ∧ z6D)] P.λ[3exceeded] digital clocks

(µs) maximum [∼ = .] minimum [∼ = &] [10,8]

1000 71 (1.177) 351 (40.96) 362 (11.44) 1,876,105

1200 191 (11.70) 351 (41.29) 362 (11.49) 2,671,305

1400 311 (26.51) 351 (41.98) 362 (11.48) 3,546,505

1600 431 (55.65) 351 (41.64) 362 (11.46) 4,501,705

1800 617 (76.68) 441 (45.65) 440 (14.76) 5,528,692

1 2000 725 (84.33) 591 (57.52) 562 (20.08) 6,570,692

2200 861 (98.82) 783 (69.67) 722 (37.24) 7,612,692

2400 997 (120.5) 975 (97.70) 882 (75.31) 8,654,692

2600 1,129 (145.3) 1,143 (133.7) 1,022 (103.0) 9,696,692

2800 1,263 (174.2) 1,335 (188.1) 1,182 (182.7) 10,738,692

3000 1,399 (239.8) 1,527 (278.3) 1,342 (261.2) 11,780,692

1000 91 (2.176) 724 (232.6) 737 (171.8) 4,170,287

1200 423 (178.0) 724 (242.3) 737 (169.0) 5,813,169

1400 759 (833.4) 724 (260.5) 737 (163.0) 7,535,969

1600 1,095 (192.6) 724 (244.5) 737 (164.0) 9,338,769

1800 1,834 (337.8) 1,203 (1,430) 1,208 (589.9) 11,211,180

2 2000 2,615 (600.6) 1,760 (5,646) 1,751 (1,374) 13,072,580

2200 3,019 (655.9) 2,170 (6,455) 2,145 (2,104) 14,930,180

2400 3,415 (706.7) 2,578 (9,326) 2,537 (3,301) 16,787,780

2600 3,795 (773.9) 2,935 (12,335) 2,880 (5,144) 18,645,380

2800 4,183 (8,762) 3,343 (15,153) 3,272 (7,875) 20,502,980

3000 4,579 (9,852) 3,751 (16,936) 3,664 (9,835) 22,360,580

The algorithm MaxV>1 returns no symbolic states, and thus the MaxU>0 al-
gorithm also trivially returns no symbolic states, which implies that all states
satisfy P>1[3 done].

In Table 1 we give the model-checking statistics for MaxV>1 as we vary the
parameter c (where 26 and 808 are the smallest and largest non-zero constants
appearing in the model). The results presented show that, as c increases, the
number of iterations of the MaxV>1 algorithm decreases, while the number
of iterations required by each call to the algorithm MaxU>1 increases (recall
that the MaxU>1 algorithm is called once in each iteration of the MaxV>1

algorithm). As in the non-probabilistic case [40], further investigations and
case studies are needed to establish if there is any way of finding a ‘good’
choice for the parameter c in advance.

The remaining properties we consider are the maximum and minimum proba-
bilities that both stations deliver their packets by time D; that is, the property
z.P∼λ[3(done ∧ (z6D))]. In Table 2 we have presented the model sizes (and
generation times) of the finite-state probabilistic system generated by our im-
plementation and, for comparison, the size of the model constructed using
the digital clocks approach [10,8] (there are no generation times in this case
as the digital semantics leads directly to a finite-state system). The results
show a significant decrease in the model size when compared to the digi-
tal clocks approach. Comparing the results for z.P>λ[3(done ∧ (z6D))] and
P6λ[3exceeded], we see that using Remark 38 can decrease both the states
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Fig. 11. The probabilistic timed automaton Ip1.

and generation time. Table 1 includes the model-checking statistics for the
MaxV>1 algorithm when verifying z.P∼λ[3(done ∧ (z62000))], and we see a
similar pattern to that obtained for P>1[3 done].

5.3 FireWire root contention protocol

We consider the abstract probabilistic timed automaton model Ip1 (see Fig-
ure 11), which is a probabilistic extension of the classical timed automaton I1

of [41], as studied in [15,8]. The IEEE1394 FireWire root contention protocol
concerns the election of a leader between two contending nodes of a network.
The protocol consists of a number of rounds in which each of the contending
nodes flips a coin; given the result of the coin flip, a node may decide to wait
for a short amount of time or a long amount of time. After this amount of
time has elapsed, a node then checks to see if the other node has already
deferred, and declares itself to be the leader if so; otherwise, this node de-
fers. Intuitively, in the case in which the result of the two nodes’ coin flips
are different, the ‘faster’ node defers to the ‘slower’ node, the latter of which
then becomes leader, signalling the end of protocol execution. However, if the
results of the coin flips are the same, the communication delay between the
two nodes means that it is possible that both nodes attempt to defer to the
other, requiring another round of the protocol.

The timing constraints are derived from those given in the standard when
the communication delay is 360ns. The properties we consider concern the
minimum probability to elect a leader with and without a deadline, that is,
the properties P>λ[3 elect] and z.P>λ[3(elect ∧ (z6D))].
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Table 3. Statistics for MaxV>1 as c varies, when verifying Ip1
c P>1[3 elect] z.P&λ[3(elect∧z610000)]

time iterations time iterations

(sec) MaxV>1 MaxU>1 (sec) MaxV>1 MaxU>1

10 23.66 372 1597 7.800 50 304

100 2.804 39 171 2.141 11 70

360 1.246 13 67 1.692 7 55

1,670 0.679 5 30 1.641 5 46

2,000 0.764 4 30 1.566 4 42

3,000 0.514 4 23 1.312 4 41

4,000 0.495 3 22 1.083 3 32

5,000 0.520 3 24 1.063 3 34

6,000 0.532 3 25 1.078 3 35

7,000 0.570 3 27 1.123 3 37

8,000 0.577 3 28 1.143 3 38

9,000 0.612 3 30 1.180 3 40

10,000 0.621 3 31 1.199 3 41

When verifying P>λ[3 elect], the algorithm MaxV>1 returns no symbolic states,
which implies that the probability is 1 in all states. In Table 3 we give the
model-checking statistics for the MaxV>1 algorithm as the value of c changes
(360 and 1670 are the smallest and largest non-zero constants appearing in the
model). As for the CSMA/CD case study, we see that increasing c decreases
the number of iterations required by MaxV>1, while increasing the iterations
performed by each call to the algorithm MaxU>1.

In Table 4 we have reported on the size and generation times in seconds
when verifying z.P>λ[3(elect ∧ (z6D))] for a range of deadlines. As for the
CSMA/CD case study, we can use Remark 38 and instead verify P6λ[3exceeded]
on a modified model. Additionally, in Table 4 we include the results ob-
tained when applying the forwards approach [3,15] and using digital clocks
[10,8]. Note that the approach of [3,15] cannot be used to calculate the min-
imum probability of eventually electing a leader. The results show that the
use of the algorithms presented in this paper leads to a smaller state space
than the other approaches. Comparing the results obtained when verifying
z.P>λ[3(elect∧ (z6D))] and P6λ[3exceeded], we see that the direct approach
leads to a smaller state space and, for large deadlines, is faster than the ap-
proach based on Remark 38. The generation times for our prototype imple-
mentation are considerably greater than those obtained with the forwards
approach. This is due to the fact that the latter are generated with the opti-
mised tool Kronos, and also to the fact that the operations on state sets in
the forwards approach are simpler than those used in the techniques given in
this paper (in particular, the forwards approach does not generate non-convex
zones, and does not require the computation of nested fixpoints). However, re-
call that the forwards approach can be used only to compute an upper bound
on the maximal probability of reaching a state set; instead our techniques can
compute exact probabilities for a richer class of properties.
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Table 4. Model sizes (and generation times in seconds) when verifying Ip1
D z.P&λ[3(elect∧z6D)] P.λ[3exceeded] forwards digital clocks

(103ns) [15] [10,8]

2 15 (2.71) 25 (0.203) 53 (0.00) 68,056

4 25 (3.01) 47 (0.261) 131 (0.00) 220,565

6 47 (3.05) 47 (0.431) 216 (0.01) 375,765

8 81 (2.42) 126 (0.803) 372 (0.02) 530,965

10 126 (2.70) 183 (0.979) 526 (0.03) 686,165

20 528 (12.1) 643 (16.8) 1,876 (0.09) 1,462,165

30 1,206 (113.5) 1,380 (179.2) 4,049 (0.20) 2,238,165

40 2,168 (1,032) 2,395 (1,523) 7,034 (0.46) 3,014,165

50 3,426 (6,465) 3,714 (8,880) 10,865 (1.23) 3,790,165

60 4,964 (26,997) 5,308 (34,986) 15,511 (2.74) 4,566,165

6 Conclusions

We have presented the theoretical foundations for the symbolic model check-
ing of probabilistic timed automata and PTCTL and validated them through
a prototype implementation using DBMs. For quantitative formulae, our al-
gorithm is expensive, as, in the worst case, the MaxU algorithm constructs
the powerset of the region graph, which itself is exponential in the largest
constant used in zones and the number of clocks. However, for the case stud-
ies considered, we observe much smaller state spaces than this upper bound,
which confirms that the algorithms are feasible in practice. Note that we do
not construct a partition of the state space (as in [42], for example), but rather
a (property dependent) set of overlapping symbolic states to avoid potentially
expensive disjunction operations on zones within MaxU.

Future work will address the efficient symbolic implementation of the pre-
sented algorithms, adaptations to probabilistic polyhedral hybrid automata
and symbolic probabilistic systems [43] (a probabilistic formulation of the
symbolic transition systems of [44]) and a comparison of our approach with
state partitioning techniques, for example [42], extended to the probabilistic
setting.
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A MaxU([[true]], [[sr∧(z<6)]],& λ)

Z := {(sr, z<6)}
repeat

Y := Z

begin for
z = (sr, z<6) [two edges (from si and di) taking predecessors]

y1 = (si, 26x63 ∧ z<6)
Esi,g,p = {(si, 26x63 ∧ z<6), (sr, {x}), (sr, z<6))}
y2 = (di, 16x62 ∧ z<6)
Edi,g,p = {(di, 16x62 ∧ z<6), (sr, {x}), (sr, z<6))}

end for
Z := {(sr, z<6), (si, 26x63 ∧ z<6), (di, 16x62 ∧ z<6)}

Y := Z

begin for
z = (si, 26x63 ∧ z<6) [two edges (from si and di) taking predecessors]

y1 = (si, 26x63 ∧ z<4)
Esi,g,p = Esi,g,p ∪ {(si, 26x63 ∧ z<4), (si, {x}), (si, 26x63 ∧ z<6))}
y2 = (di, 16x62 ∧ z<5)
Edi,g,p = Edi,g,p ∪ {(di, 16x62 ∧ z<5), (si, {x}), (si, 26x63 ∧ z<6))}

z = (di, 16x62 ∧ z<6) [no edges]
end for
Z := {(sr, z>6),

(si, 26x63 ∧ z<6), (si, 26x63 ∧ z<4),
(di, 16x62 ∧ z<6), (di, 16x62 ∧ z<5)}

Y := Z

begin for
z = (si, 26x63 ∧ z<4) [two edges (from si and di) taking predecessors]

y1 = (si, 26x63 ∧ z<2)
Esi,g,p = Esi,g,p ∪ {(si, 26x63 ∧ z<2), (si, {x}), (si, 26x63 ∧ z<6))}
y2 = (di, 16x62 ∧ z<3)
Edi,g,p = Edi,g,p ∪ {(di, 16x62 ∧ z<3), (si, {x}), (si, 26x63 ∧ z<6))}

z = (di, 16x62 ∧ z<5) [no edges]
end for
Z := {(sr, z>6),

(si, 26x63 ∧ z<6), (si, 26x63 ∧ z<4), (si, 26x63 ∧ z<2),
(di, 16x62 ∧ z<6), (di, 16x62 ∧ z<5), (di, 16x62 ∧ z<3)}

Y := Z

begin for
z = (si, 26x63 ∧ z<2) [two edges (from si and di) taking predecessors]

y1 = (si, false)
y2 = (di, false)

z = (di, 16x62 ∧ z<3) [no edges]
end for
Z := {(sr, z>6),

(si, 26x63 ∧ z<6), (si, 26x63 ∧ z<4), (si, 26x63 ∧ z<2),
(di, 16x62 ∧ z<6), (di, 16x62 ∧ z<5), (di, 16x62 ∧ z<3)}

end repeat
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B MaxV>1(c, [[false]], [[si∨di∨z>6]])

Z := [[true]]
repeat

Y := Z

Z := [[si∨di∨z>6]] ∧ y.MaxU>1(Y, ([[false]] ∧ Y)∨[[y>c]])
= [[si∨di∨z>6]] ∧ y.MaxU>1([[true]], [[y>c]])
= [[si∨di∨z>6]]

Y := Z

Z := [[si∨di∨z>6]] ∧ y.MaxU>1(Y, ([[false]] ∧ Y)∨[[y>c]])
= [[si∨di∨z>6]] ∧ y.MaxU>1(Y, [[y>c]])
= [[si∨di∨z>6]] ∧ y.{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)),

(di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6), (si, x63∧(z>x+3∨x<3−c)), (di, x62∧(z>x+4∨x<2−c))}

Y := Z

Z := [[si∨di∨z>6]] ∧ y.MaxU>1(Y, ([[false]] ∧ Y)∨[[y>c]])
= [[si∨di∨z>6]] ∧ y.MaxU>1(Y, [[y>c]])
= [[si∨di∨z>6]] ∧ y.{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>c∨y>x+2·c−3)),

(di, x62∧(z>x+4∨y>c∨y>x+2·c−2))}
= {(sr, z>6), (si, x63∧(z>x+3∨x<3−2·c)), (di, x62 ∧ (z>x+4∨x<2−2·c))}

repeating n− 2 times such that n·c > 3 and (n−1)·c < 3 (which exists as c> 0)

Y := Z

Z := [[si∨di∨z>6]] ∧ y.MaxU>1(Y, ([[false]] ∧ Y)∨[[y>c]])
= [[si∨di∨z>6]] ∧ y.MaxU>1(Y, [[y>c]])
= [[si∨di∨z>6]] ∧ y.{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>c∨y>x+n·c−3)),

(di, x62∧(z>x+4∨y>c∨y>x+n·c−2))}
= {(sr, z>6), (si, x63∧(z>x+3∨x<3−n·c)), (di, x62∧(z>x+4∨x<2−n·c))}
= {(sr, z>6), (si, x63∧z>x+3), (di, x62∧z>x+4)}

endrepeat
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C MaxU>1([[si∨di∨z>6]], [[y>c]])

Z0 := [[true]]
repeat
Y0 := Z0, Z1 := [[false]]
repeat
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]] ∧ [[false]])
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨[[false]] = [[y>c]]

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]]∧{(si, 26x63∧y>c), (di, 16x62∧y>c)})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+(c−3)), (di, x62∧y>x+(c−2))}
= {(sr, z>6∨y>c), (si, x63∧y>x+(c−3)), (di, x62∧y>x+(c−2))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63 ∧ (y>c−3∨z>6)), (di, 16x62 ∧ (y>c−3∨z>6))})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+(c−3)), (di, x62∧y>x+(c−2))}
= {(sr, z>6∨y>c), (si, (26x63 ∧ (y>c−3∨z>6))∨(x63 ∧ y>x+(c−3)),

(di, (16x62 ∧ (y>c−3∨z>6))∨(x62 ∧ y>x+(c−2))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63 ∧ (y>c−3∨z>6)), (di, 16x62 ∧ (y>c−3∨z>6))})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−6∨z>x+3), (di, x62 ∧ (y>x+c−5∨z>x+4))}
= {(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−6∨z>x+3), (di, x62 ∧ (y>x+c−5∨z>x+4))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63 ∧ (y>c−6∨z>3)), (di, 16x62 ∧ (y>c−6∨z>3))})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−6∨z>x+3), (di, x62 ∧ (y>x+c−5∨z>x+4))}
= {(sr, z>6∨y>c), (si, (26x63 ∧ (y>c−6∨z>3)))∨(x63 ∧ (y>x+c−6∨z>x+3))),

(di, (16x62 ∧ (y>c−6∨z>3))∨(x62 ∧ (y>x+c−5∨z>x+4)))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63 ∧ (y>c−6∨z>3)), (di, 16x62 ∧ (y>c−6∨z>3))})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−9∨z>x), (di, x62 ∧ (y>x+c−8∨z>x+1))}
= {(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−9∨z>x), (di, x62 ∧ (y>x+c−8∨z>x+1))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63), (di, 16x62)})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63 ∧ (y>x+c−9∨z>x), (di, x62 ∧ (y>x+c−8∨z>x+1))}
= {(sr, z>6∨y>c), (si, (26x63)∨(x63 ∧ (y>x+c−9∨z>x))),

(di, (16x62)∨(x62 ∧ (y>x+c−8∨z>x+1)))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63), (di, 16x62)})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63), (di, x62)}
= {(sr, z>6∨y>c), (si, x63), (di, x62)}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63), (di, 16x62)})
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63), (di, x62)}
= {(sr, z>6∨y>c), (si, x63), (di, x62)}

endrepeat
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Z0 := {(sr, z>6∨y>c), (si, x63), (di, x62)}
Y0 := Z0, Z1 := [[false]]
repeat
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]] ∧ [[false]])
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨[[false]] = [[y>c]]

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧y>c)∨(di, 16x62∧y>c)}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}
= {(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}
= {(sr, z>6∨y>c), (si, (26x63∧z>6)∨(x63∧y>x+c−3)),

(di, (16x62∧z>6)∨(x62∧y>x+c−2))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}

end repeat

Z0 := {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}
Y0 := Z0, Z1 := [[false]]
repeat
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1)) = [[y>c]]∨([[si∨di∨z>6]] ∧ [[false]])
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1) = Z1∨[[false]] = [[y>c]]

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧y>c)∨(di, 16x62∧y>c)}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}
= {(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧y>x+c−3), (di, x62∧y>x+c−2)}
= {(sr, z>6∨y>c), (si, (26x63∧z>6)∨(x63∧y>x+c−3)),

(di, (16x62∧z>6)∨(x62∧y>x+c−2))}
Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}

Y1 := Z1
Z1 := [[y>c]]∨([[si∨di∨z>6]] ∧ pre1(Y0, Y1))

= [[y>c]]∨([[si∨di∨z>6]] ∧ {(si, 26x63∧(z>6∨y>c))∨(di, 16x62∧(z>6∨y>c))}
Z1 := Z1∨tpre[[si∨di∨z>6]]∨[[y>c]](Y0∧Y1)

= Z1∨{(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62∧(z>x+4∨y>x+c−2))}
= {(sr, z>6∨y>c), (si, x63∧(z>x+3∨y>x+c−3)), (di, x62 ∧ (z>x+4∨y>x+c−2))}

end repeat
Z0 := Z1

end repeat
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D MaxU([[si∨z>6]], {(sr, z>6), (si, x63 ∧ z>x+3), (di, x62 ∧ z>x+4)},& λ)

Z := {(sr, z>6), (si, x63 ∧ z>x+3), (di, x62 ∧ z>x+4)}
repeat
Y := Z

begin for
z = (sr, z>6) [two edges (from si and di) taking predecessors]

y1 = (si, 26x63 ∧ z>6) [subset of target set]
y2 = (di, 16x62 ∧ z>6) [subset of target set]

z = (si, x63 ∧ z>x+3) [two edges (from si and di) taking predecessors]
y3 = (si, 26x63 ∧ z>3)
Esi,g,p = Esi,g,p ∪ {(si, 26x63 ∧ z>3), (si, {x}), (si, x63 ∧ z>x+3))}
y4 = (di, 16x62 ∧ z>3)
Edi,g,p = Edi,g,p ∪ {(di, 16x62 ∧ z>3), (si, {x}), (si, x63 ∧ z>x+3))}

z = (di, x63 ∧ z>x+4)
[no edges]

end for
Z := {(sr, z>6), (si, x63 ∧ z>x+3), (si, 26x63 ∧ z>3), (di, x62 ∧ z>x+4), (di, 16x62 ∧ z>3)}
Y := Z

begin for
z = (si, 26x63 ∧ z>3) [two edges (from si and di) taking predecessors]

y1 = (si, 26x63)
Esi,g,p = Esi,g,p ∪ {(si, 26x63), (si, {x}), (si, 26x63 ∧ z>3))}
y2 = (di, 16x62)
Edi,g,p = Edi,g,p ∪ {(di, 16x62), (si, {x}), (si, 26x63 ∧ z>3))}

z = (di, 16x62 ∧ z>3) [no edges]
end for
Z := {(sr, z>6), (si, x63 ∧ z>x+3), (si, 26x63 ∧ z>3), (si, 26x63),

(di, x62 ∧ z>x+4), (di, 16x62 ∧ z>3), (di, 16x62)}
Y := Z

begin for
z = (si, 26x63)

[two edges (from si and di) taking predecessors]
y1 = (si, 26x63)
Esi,g,p = Esi,g,p ∪ {(si, 26x63), (si, {x}), (si, 26x63))}
y2 = (di, 16x62)
Edi,g,p = Edi,g,p ∪ {(di, 16x62), (si, {x}), (si, 26x63))}

z = (di, 16x62) [no edges]
end for
Z := {(sr, z>6), (si, x63 ∧ z>x+3), (si, 26x63 ∧ z>3), (si, 26x63),

(di, x62 ∧ z>x+4), (di, 16x62 ∧ z>3), (di, 16x62)}
end repeat
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