
A Formal Analysis of
Bluetooth Device Discovery?

Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK

Abstract. This paper presents a formal analysis of the device discov-
ery phase of the Bluetooth wireless communication protocol. The per-
formance of this process is the result of a complex interaction between
several devices, some of which exhibit random behaviour. We use prob-
abilistic model checking and, in particular, the tool PRISM to compute
the best and worst case expected time for device discovery. We illus-
trate the utility of performing an exhaustive, low-level analysis to pro-
duce exact results in contrast to simulation techniques, where additional
probabilistic assumptions must be made. We demonstrate an example
of how seemingly innocuous assumptions can lead to incorrect perfor-
mance estimations. We also analyse the effectiveness of improvements
made between versions 1.1 and 1.2 of the Bluetooth specification.

1 Introduction

The use of formal methods for the verification and analysis of systems is be-
coming more and more prevalent in industry. Increasingly, these techniques are
being applied not just to ascertain correctness, but also to analyse quantitative
properties such as performance and reliability. In this paper, we demonstrate the
applicability of an automated formal verification technique called probabilistic
model checking to an analysis of the performance of the Bluetooth protocol.

Bluetooth is a wireless telecommunication technology, aimed in particular at
low-power devices communicating over short distances. It is becoming increas-
ingly prominent in devices such as mobile phones, PDAs and laptop computers.
To cope with interference, Bluetooth is based on frequency-hopping technology.
This means that, before any communication can take place, an initialisation pro-
cedure must be carried out, comprising discovery of devices in the vicinity and
then exchange of information to synchronise hopping sequences. From a user’s
point of view, this process affects both the waiting-time and the power usage.
Hence, our analysis focuses on this aspect of the protocol.

As will be demonstrated shortly, the time required for completion of the Blue-
tooth initialisation process is the result of a non-trivial interaction between two
devices, motivating the need for a formal, automated analysis. Furthermore, it
includes a randomised back-off procedure to resolve contention between devices,
and an effective analysis thus needs to be able to reason about the stochastic
? Supported by FORWARD and EPSRC grants GR/S46727 and GR/S11107.

2 Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

nature of the system. We use probabilistic model checking and in particular the
tool PRISM. This process involves construction of a formal probabilistic model
from a high-level description of the system, followed by calculation of one or
more probabilistic properties, formally expressed in probabilistic temporal logic.

In contrast to approaches based on discrete-event simulation, for which analy-
ses of Bluetooth have already been attempted, formal approaches such as prob-
abilistic model checking involve an exhaustive analysis. We construct the full
model and use it to compute actual performance values, rather than derive es-
timations from a large number of simulations. As we will show later, this means
we can examine worst-case behaviour rather than simplifying with probabilistic
assumptions and generating average values. Furthermore, we can identify pre-
cisely the situations that lead to these worst-case scenarios. We will also give an
example of a situation where making additional probabilistic assumptions leads
to inaccuracies in the performance results obtained.

2 Probabilistic Model Checking and PRISM

Probabilistic model checking is an automated technique for the formal verifica-
tion of systems that exhibit stochastic behaviour. It is based on the construction
and analysis of a mathematical model of the system, usually from a specification
in some high-level description language. This model generally comprises a set of
states, representing all the possible configurations of the system, the transitions
that can occur between these states, and information about when and with what
probability each transition will occur.

In this paper, the modelling formalism we use is discrete-time Markov chains
(DTMCs), where time is modelled as discrete steps and the probability of making
each transition is given by a discrete probability distribution. Other model types
commonly used are continuous-time Markov chains (CTMCs), Markov decision
processes (MDPs), and probabilistic timed automata (PTAs); see [9] for more
detailed information about these. We use the probabilistic model checking tool
PRISM [7,2]. This allows construction of models via specification in a high-
level description language, based on the parallel composition of several modules
described in a guarded command notation. We will illustrate the workings of
this language in more detail later in the paper.

Models constructed in PRISM are analysed by formally specifying properties
in temporal logic. This allows reasoning, for example, about “the probability
of shutdown occurring within 24 hours” or “the long-run probability that the
system is stable”. In addition, by assigning real-valued costs (or, conversely, re-
wards) to states and transitions of the model, we can also reason about, for
example, “expected time” or “expected power consumption”. PRISM automat-
ically ascertains values for these properties by performing probabilistic model
checking, which includes both graph-based analysis and numerical computation.
For the case of DTMCs, the latter usually constitutes solving a linear equation
system of size equal to the number of states in the model, for which PRISM uses
iterative numerical solution methods.

A Formal Analysis of Bluetooth Device Discovery 3

A significant amount of work has gone into the development of efficient,
symbolic implementation techniques for numerical computation. These use data
structures based on binary decision diagrams (BDDs) to allow compact storage
and manipulation of extremely large models. We rely heavily on this efficiency
for the case study presented in this paper.

The PRISM tool has already been successfully used to perform analysis of and
identify interesting behaviour in a wide range of case studies. This includes the
study of “quality of service” properties for components of real-time probabilistic
communication protocols such as IEEE 1394 FireWire, IEEE 802.3 CSMA/CD,
Zeroconf and IEEE 802.11 wireless LANs. It has also been used to verify ran-
domised distributed algorithms for leader election, self-stabilisation, mutual ex-
clusion, consensus and Byzantine agreement, and probabilistic security proto-
cols for anonymity, fair exchange and contract signing. Finally, PRISM has been
applied to analysing the performance and reliability of many different types of
applications: dynamic power management schemes, NAND multiplexing for nan-
otechnology, queueing systems, computer networks, manufacturing processes and
embedded systems. The reader is invited to consult the web site [2] for detailed
information and corresponding publications about all of these.

3 Device Discovery in Bluetooth

Bluetooth is a short-range, low-power, open standard for implementing wireless
personal area networks. Since it uses the unlicensed 2.4GHz Industry Scientific
and Medical band (a set of frequencies almost globally available), there is a
potential problem of interference from other devices using this band. To resolve
this, Bluetooth uses a frequency hopping scheme, where devices alternate rapidly
among the 79 available frequencies in a pseudo-random fashion.

In order to communicate, Bluetooth devices organise themselves into small
networks called piconets, comprising one master and up to 7 slave devices, in
which the frequency hopping sequences are synchronised and controlled by the
master. In this paper, we focus on the issue of piconet creation, the performance
of which is crucial because no communication between devices can occur until it
is complete. It also has considerably higher power consumption than other parts
of the protocol [6], prevents existing device connections from operating and may
cause interference to other nearby piconets.

Piconet formation has two steps: firstly, the inquiry process, where a mas-
ter device discovers neighbouring slave devices; and secondly, the page process,
where connections between them are established. During the first step, informa-
tion about slave clock times is exchanged for the purposes of synchronisation.
This can be used during the second step, which is hence much faster. We there-
fore concentrate on the inquiry process. We now describe in more detail the
procedure executed by an inquiring device (a master trying to discover slaves)
and a scanning device (a potential slave device who wants to be discovered).

4 Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

3.1 The Inquiring Device

An inquiring device attempts to detect potential slaves in the proximity by
broadcasting inquiry packets on a previously agreed sequence of 32 of the 79
available frequencies and scanning for replies. This process continues until some
specified bound on the number of replies received or the total time is exceeded.

Like all Bluetooth devices, the inquiring device has a 28 bit free-running
clock, which ticks every 312.5µs. On two consecutive 312.5µs time slots, it sends
on two sequential frequencies. During the next two time slots, the device scans
for a reply on these same two frequencies, i.e. each scan occurs 625µs after the
corresponding send (in fact, a 10µs margin is added to the start and end of the
scan in case replying devices are not completely synchronised). The device now
proceeds to send and scan on the next pair of frequencies in the same fashion.
This procedure is illustrated in Figure 1.

312.5µs312.5µs 312.5µs 312.5µs 312.5µs 312.5µs 312.5µs 312.5µs

freq1 freq2 freq1 freq2 freq3 freq4 freq3 freq4

Send Send Scan Scan Send Send Scan Scan

Fig. 1. Timing of the inquiring device’s behaviour

The 32 frequencies used for the inquiry procedure are split into two trains,
A and B, of 16 frequencies each. The sequence in which the master device sends
and scans on these frequencies is determined by its 28 bit clock, denoted CLK,
according to the following formula:

freq = [CLK16−12 + k + (CLK4−2,0 − CLK16−12) mod 16] mod 32

where CLKi−j denotes bits i, . . . , j of CLK, and k is an offset to select whether
train A or B is used. The inquiring device swaps between train A and B every
2.56 seconds: the time to send and scan on 16 frequencies is 10ms and each train
is repeated 256 times. Furthermore, every 1.28 seconds (every time the 12th bit
of CLK changes), a frequency is swapped between train A and B. The whole list
of frequencies is shown in Figure 2. Each line of this table is repeated 128 times,
taking 1.28 seconds. To simplify the presentation, we have assumed k = 1 for
train A and k = 17 for train B, i.e. initially trains A and B comprise frequencies
1 . . . 16 and 17 . . . 32, respectively.

3.2 The Scanning Device

Bluetooth devices that want to be discovered enter the inquiry scan substate and
periodically scan for inquiry packets on the same 32 frequencies that the inquiring
device is transmitting on. To ensure that the frequencies used eventually coincide
and that messages are successfully received, the hopping rate of scanning devices

A Formal Analysis of Bluetooth Device Discovery 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 20 21 22 23 24 25 26 27 28 29 30 31 32

17 18 19 20 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 24 25 26 27 28 29 30 31 32

17 18 19 20 21 22 23 24 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 28 29 30 31 32

17 18 19 20 21 22 23 24 25 26 27 28 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 22 23 24 25 26 27 28 29 30 31 32

17 18 19 20 21 22 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 26 27 28 29 30 31 32

17 18 19 20 21 22 23 24 25 26 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 30 31 32

17 18 19 20 21 22 23 24 25 26 27 28 29 30 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 16

Fig. 2. Frequency sequences for the inquiring device

is much slower than that of the inquiring device. The frequency of each scanning
device, known as its phase, cycles through the 32 frequencies in order, according
to the value of its clock and changes every 1.28s.

The scanning device listens continuously on its current frequency during an
inquiry scan window of 11.25ms, long enough for the inquiring device to transmit
on an entire train of 16 frequencies. The scanning device then sleeps, before
scanning again. This process is repeated periodically. There is some flexibility in
the specification [3] as to the length of this period. For our purposes, we have
chosen the value 0.64s.

If the scanning device successfully hears a message, by listening on the right
frequency at the right time (when the inquiring device is transmitting a packet),
it will switch to the inquiry response substate, in which it waits 2 time slots
(i.e. 625µs) and then sends a reply on the same frequency. A contention problem
arises when two devices in inquiry scan try to reply to the same inquiry packet.
In this case, the two replies collide and are both lost. To avoid repetition of such a
problem, after sending a reply, a device draws a random number N ∈ [0, . . . , 127]
and waits for 2·N time slots before going back to the inquiry scan substate. Note
that the maximum random wait is sometimes higher than 127 but, according to
the specification [3], this is an appropriate value for our scan period of 0.64s.
After each successful receive, the scanning device also adds one to its phase.
Figure 3 summarises the steps of the overall process and the time spent in each.

4 Modelling in PRISM

From the description in the previous section, it should be clear that the per-
formance of the Bluetooth inquiry process, i.e. the time required for messages

6 Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

sleep

628.75ms
scan

max 11.25ms
response

0.625ms

random wait

N × 0.625ms

N = Rand[0..127]

hear reply

Fig. 3. Timing of the scanning device’s behaviour

to be successfully sent and received, is the result of the interaction between two
non-trivial sequences of events. This motivates the need for the construction and
analysis of a formal model. We now describe how this can be achieved using the
tool PRISM and its high-level model description language.

We consider a single inquiring device and a single scanning device, which in
this section we refer to as the sender and receiver , respectively. The clocks of both
devices are digital, whose time is incremented in discrete steps, corresponding to
312.5µs slots, and whose drift can be assumed to be negligible during the relative
short inquiry process. Since the behaviour of the receiver is probabilistic, the
model we construct is a discrete-time Markov chain (DTMC). Note that, as we
will discuss later, the model contains no nondeterminism and we can thus avoid
using a Markov decision process (MDP).

4.1 Modelling the Sender (Inquiring Device)

The behaviour of the sender was described in Section 3.1 and illustrated in
Figures 1 and 2. The corresponding PRISM code is shown in Figure 4. In the
PRISM language, a model’s description comprises a number of modules, each
corresponding to a component of the system being modelled. We specify the
sender with a single module.

The initial part of a module definition lists a set of finite-ranging variables
which determine the possible states that the module can be in. The first variable
of the sender module is s, which keeps track of which step of the protocol the
sender is on: when s=1, it sends two sequential messages on a pair of odd/even
frequencies; when s=2, it scans for a reply on the same two frequencies. The four
variables f , c, o and rep keep track of which frequency is currently being used
and the position in the frequency sequence of Figure 2. Their exact meaning
can be inferred from the comments in Figure 4. The last variable rec counts the
number of replies received.

The behaviour of a module is described by a set of guarded commands of the
following form:

[action] guard → update;

The guard is a predicate over the module’s variables (and in fact the variables
of all other modules). When the guard is satisfied, the behaviour of the module
is determined by the update, given in terms of how the values of the module’s
variable should change. The first guarded command of the sender module, for
instance, states that if s=1 and f is odd then f is incremented by 1 and, if
f =c, the value of o is reversed (we use the C-style question mark operator for

A Formal Analysis of Bluetooth Device Discovery 7

const int mrep=128; // maximum number of replies
const int mrec; // number of repetitions of each frequency sequence
formula hear reply = (freq=f +16∗o); // true when the sender hears a reply
formula even=(c=2,4,6,8,10,12,14,16);

module sender

s : [1..2]; // local state (1 = sending, 2 = listening)
f : [1..16]; // current frequency modulo 16
o : [0..1]; // used to calculate current frequency (actual frequency = f + o∗16)
c : [1..16]; // used to work out frequency sequences
rep : [1..mrep]; // number of repetitions of current sequence
rec : [0..mrec]; // number of replies received

// sending
[time] s=1 ∧ f =1,3,5,7,9,11,13,15 → (f ′=f +1)∧(o′=(f =c) ? 1−o : o);
[time] s=1 ∧ f =2,4,6,8,10,12,14,16 → (s′=2)∧(f ′=f−1)∧(o′=(f =c−1) ? 1−o : o);
// receiving
[time] s=2 ∧ f =1,3,5,7,9,11,13,15 → (f ′=f +1)∧(o′=(f =c) ? 1−o : o);
[time] s=2 ∧ f =2,4,6,8,10,12,14 → (s′=1)∧(f ′=f +1)∧(o′=(f =c) ? 1−o : o);
[time] s=2 ∧ f =16 ∧ rep<mrep → (s′=1)∧(f ′=1)∧(o′=(f =c) ? o : 1−o)∧(rep′=rep+1);
[time] s=2 ∧ f =16 ∧ rep=mrep

→ (s′=1)∧(f ′=1)∧(rep′=1)∧(o′=(even) ? 1−o : o)∧(c′ = (c = 16) ? 1 : c+1);
[reply] s=2 ∧ hear reply ∧ rec<mrec → (rec′=rec+1);
[reply] s=2 ∧ !hear reply → (rec′=rec);

endmodule

Fig. 4. PRISM module representing the sender

conditional evaluation). This corresponds to the sender finishing transmitting
on an odd frequency and changing to the subsequent even frequency.

Contained in the square brackets at the start of each guarded command is
an (optional) action label . This is used to synchronise with other modules in the
PRISM model. More precisely, in a state of the entire model (which is a paral-
lel composition of all modules), transitions of modules corresponding to guards
labelled with identical actions will occur simultaneously in a single global transi-
tion. One example is the time action, which labels many of the commands. Since
we can assume that Bluetooth devices all operate at the same clock-speed, we
model time elapsing in a synchronous fashion. For each 312.5µs time slot which
passes, all modules synchronise on a time action, with the transition of each
module reflecting the changes that occur in that time slot. All other commands
(some of which are synchronous, see e.g. the reply action used in Figure 4, and
some of which are asynchronous) are assumed to correspond to an instantaneous
change in state.

The code also illustrates other features of PRISM such as the use of constants
(e.g. mrep), which allow definitions of fixed values to be kept separate (and
possibly left undefined until run-time), and formulas (e.g. hear reply), which
allow complex expressions to be defined once and then reused.

4.2 Modelling the Receiver (Scanning Device)

The behaviour of a receiver was previously summarised in Figure 3. For conve-
nience, the corresponding PRISM model comprises two modules: receiver (Fig-

8 Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

ure 5), the main part of the receiver’s behaviour; and receiver frequency (Fig-
ure 6) which keeps track of the frequency that the receiver will use next time it
starts a scan (determined by the device’s clock).

const int sleep=2012; // duration (slots) of receiver sleep (628.75ms)
const int scan=36; // duration (slots) of receiver scan (11.25ms)
formula hear = (s=1)∧(freq=f +16∗o); // true when the receiver hears a message

module receiver

r : [0..3]; // local state (0 = sleep, 1 = scan, 2 = reply, 3 = wait random delay)
freq : [0..32]; // frequency scanning on (0 = not scanning)
y : [0..sleep]; // local clock

// sleep
[time] r=0 ∧ y>0 → (y′=y−1); // let time pass
[] r=0 ∧ y=0 → (r ′=1)∧(freq′=phase)∧(y′=scan); // move to scan
// scan
[] r=1 ∧ hear → (r ′=2)∧(y′=2); // hear a message (move to reply)
[time] r=1 ∧ y>0 ∧ ¬hear → (y′=y−1); // let time pass
[] r=1 ∧ y=0 ∧ ¬hear → (r ′=0)∧(freq′=0)∧(y′=sleep); // scan finished (sleep)
// reply
[time] r=2 ∧ y>0 → (y′=y−1); // let time pass
[reply] r=2 ∧ y=0 → 1/128 : (r ′=3)∧(freq′=0)∧(y′=0) // reply and make random choice

+1/128 : (r ′=3)∧(freq′=0)∧(y′=2) // of the delay until next scan

.

.

.
+1/128 : (r ′=3)∧(freq′=0)∧(y′=254);

// wait random time
[time] r=3 ∧ y>0 → (y′=y−1); // let time pass
[] r=3 ∧ y=0 → (r ′=1)∧(freq′=phase)∧(y′=scan); // delay finished (scan)

endmodule

Fig. 5. PRISM module representing the receiver

The format of the guarded command notation used has already been ex-
plained in the previous section. One new feature is the method for specifying
probabilistic choice. This can be seen in Figure 5 in the command labelled with
the guard “r=2∧ y=0”. Several possible updates are given, each with an associ-
ated probability. Here, this represents the receiver drawing the random number
N (see Section 3.2).

Note that these two modules again have commands labelled with the time
and reply actions, which causes all three modules to make these transitions
synchronously. Note also that some commands in the receiver module have no
action label. This means that they occur independently from the other modules.
However, the fact that this is the only module with such commands, combined
with the fact that the behaviour of each individual module is always deterministic
(i.e. all of its guards are disjoint), means that the overall model contains no
nondeterminism, and is hence suitable for representation as a DTMC.

A Formal Analysis of Bluetooth Device Discovery 9

const int z max=4096; // time slots until frequency changes (1.28 seconds)

module receiver frequency

phase : [0..32]; // phase (next frequency for receiver)
z : [1..z max]; // clock for phase

// update frequency: one time slot elapses
[time] z<z max → (z ′=z+1);
[time] z=z max → (z ′=1)∧(phase′=(phase<32) ? phase+1 : 1);
// update frequency: something is sent by the receiver
[reply] true → (phase′=(phase<32) ? phase+1 : 1)

endmodule

Fig. 6. PRISM module that computes the phase of the receiver

4.3 Reducing Model Complexity

The PRISM code in Figures 4–6 is intended to provide a clear description of our
model. In fact, we have made a number of subsequent optimisations, which we
describe in this section.1 The changes made provide an extremely useful increase
in efficiency. It is worth noting that one simplification we could not perform was
to reduce the model by scaling down some of the large constants for lengths of
delays and cycles. This is because important events also occur at the level of
individual time slots.

The first and most effective optimisation we performed is based on the fact
that, when there is only one receiver, and when this receiver enters its sleep
state, the behaviour of the whole system is totally deterministic: the receiver
will come out of sleep exactly 2012 time units later. The corresponding shift of
the sender along its sequence of frequencies in this period and the change in
phase of the receiver are relatively easy to compute. We can thus compact all
2012 transitions of this sleeping process into a single transition. This reduces the
maximum value of the clock y from 2012 to 254 (maximum random delay).

In fact, we can extend this optimisation. At the beginning of a scan, it is
possible to determine, from the current state, whether a message will be suc-
cessfully heard during the scan. In cases where it will not, we can skip the scan
and incorporate the 36 time slots that would have been spent into the subse-
quent 2012 slot sleep transition. Furthermore, this makes the total jump in this
case 2048 slots which, being a multiple of the train length, makes computing the
sender’s next frequency much easier.

Lastly, we note that, because of the regular alternation between send and
scan of the sender, and the fact that a receiver always replies to a successfully
detected message after exactly two time slots, we can be sure that the replies
will always be successfully received by the sender. Hence, the formula hear reply
in Figure 4 and indeed the last guarded command can be removed.

1 The final version of the code can be found at:
www.cs.bham.ac.uk/~{}dxp/prism/casestudies/bluetooth.html.

www.cs.bham.ac.uk/~{}dxp/prism/casestudies/bluetooth.html

10 Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

5 Experimental Results

Our primary concern is the performance of the Bluetooth inquiry process, i.e.
the time required for a master device to successfully receive replies from listening
slave devices. This is affected by the number of times the receiver sleeps before
successfully scanning the right frequency at the right time, and the random
delays selected. More specifically, since the protocol is probabilistic in nature, we
compute the expected time for the inquiry process to complete, with completion
occurring when the number of replies received reaches a predetermined bound.

We performed an analysis of the model described in the previous section with
a prototype extension of the PRISM 2.0 model checker, which allows us to assign
costs to states and transitions of the model and then compute, for example, the
expected cumulated cost before reaching some set of states. In our model the
cost we measure is time. We assign a cost of 1 to all time actions and 0 to all
others.2 Our experiments were performed on a 1GB 2.80GHz workstation.

The first issue we must address is the initial configuration of the model.
We cannot assume that the sender and receiver both start in some fixed state
because this is unrealistic. For efficiency reasons, we restrict ourselves to the
case where the sender is already transmitting inquiry packets and a receiver
begins scanning after some unknown delay, which is a reasonable scenario. We
can hence fix the initial state of the receiver (i.e. variables r , freq , and y). We
can also fix rec=0 in the sender module since this cannot increase until after the
receiver begins scanning. Note that we cannot fix the actual phase of the receiver
since this is determined by its clock, whose value could be anything when it
first begins scanning. This leaves us with 2·16·2·16·128·4096·32=17, 179, 869, 184
possible initial states.

Since formal verification aims to be exhaustive, we must consider all of these,
although clearly it is not feasible to treat each one separately. Fortunately, we
can deal with this in PRISM by building a single DTMC with multiple initial
states and then examining the results of model checking for all these states.3

Initially, this single model proved too large for the workstation we were using.
However, by partitioning the set of all initial states into classes (we fix variable
phase, giving 32 sets of 536, 870, 912 states each), we reduce the problem to 32
separate instances of model checking, each of which was feasible.

As we will see from the results in the following paragraphs, though, despite
this partitioning (and despite the reductions in model complexity described in
Section 4.3), this still results in models with extremely large state spaces. In-
tuitively, this is because the Bluetooth devices execute complicated sequences
of events, comprising both actions that take a large number of time-slots and
those performed in a single slot. Fortunately, there remains a certain degree of
regularity in the process and we are able to exploit this using PRISM’s sym-

2 As described in Section 4.3, we actually sometimes accumulate multiple time steps
into a single step. The costs of these transitions are modified accordingly.

3 In fact, this required a modification to PRISM, but only a trivial one: the tool always
computes results for all states in the model anyway.

A Formal Analysis of Bluetooth Device Discovery 11

bolic (BDD-based) implementation. With an approach based on explicit data
structures (e.g. sparse matrices) this would not be feasible.

5.1 Time for a Single Reply

We first present results for the time required for the receiver to successfully send
a single reply. In fact, since the receiver does not make a random choice until after
it first replies to a message, the expected time computed is in this case the exact
(deterministic) time required. The 32 models we constructed each contained
approximately 3.4 × 109 states, required less than a minute to construct, and
took 1–2 seconds to analyse.

We hence computed the expected time to send a message for all possible
initial configurations. Using PRISM, we were able to extract information about
the best and worst case scenarios. The minimum time is 635µs (2 slots), which
corresponds to the cases when the receiver starts listening on the frequency that
the sender is currently sending messages on, and therefore the receiver sends a
reply after waiting 2 slots. The maximum time is 2.5716s (8,229 slots) and is
achieved in 860,160 of the possible initial states. This maximum time results
when the receiver does not hear the sender until it scans for the fifth time and
therefore sleeps 4 times. We now give an example execution which illustrates
exactly how this can arise.

Example 1. Suppose that the receiver starts its first scan on frequency 1 and
that its phase is about to change. Suppose also that the sender is performing its
last repetition of the first of the following frequency sequences:

1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
17 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 21 22 23 24 25 26 27 28 29 30 31 32

and has already sent on frequency 1 during this repetition. During this scan,
the sender will finish the sequence and start the following one which does not
contain 1. The receiver will not hear anything during this scan and will therefore
enter sleep. When the receiver wakes, the sender will still be using the second
frequency sequence and the receiver will now be scanning on frequency 2 (as
its phase was about to change when it first scanned), and therefore the receiver
will not hear anything and sleep again. In fact, since the sender’s subsequent
frequency sequence does not contain 2 or 3, the receiver will not hear anything
on either of these two sequences as, during this time, the receiver will be scanning
on 1, 2 or 3. Only when the receiver wakes for the fourth time will its scan be
successful on frequency 3 because the sender will start using the fourth sequence.

In Figure 7(a) we have plotted the time until the sender hears a reply against
the number of initial states that result in this time. The discontinuities in the
graph are to be expected and follow from the fact that, when the receiver does
not hear anything during a scan (36 time slots), it sleeps for 2,012 slots before
scanning again. Since, in the worst case, the receiver sleeps 4 times before hearing
something from the sender, there are 5 peaks in the graph corresponding to the

12 Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x 10
8

time to hear one reply (sec)

nu
m

be
r

of
 s

ta
te

s

1.92 1.925 1.93

(a) distribution over initial states

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

T (sec)

pr
ob

 h
ea

r
a

re
pl

y
by

 ti
m

e
T

(b) cumulative distribution

Fig. 7. Time for the sender to hear a reply from the receiver

K n = 1 n = 1 (v.1.1) n = 2 n = 2 (derived)

0 0.500305 0.461240 0.455379 0.250305
1 0.633575 0.596265 0.590829 0.383657
2 0.759062 0.731585 0.728684 0.526981
3 0.879674 0.857913 0.855329 0.681114
4 1 0.984295 0.984218 0.849408
5 1 0.988269 0.988294 0.911750
6 1 0.992398 0.992514 0.956496
7 1 0.996294 0.996519 0.985521
8 1 1 1 1

Table 1. Probability of sleeping K times before sending n replies

receiver sleeping from 0 up to 4 times. The inset in Figure 7(a) illustrates one
of these peaks more clearly. The width of each peak is 11.25ms (36 slots).

If we make the assumption that, when the receiver first starts to listen, there
is a uniform distribution on the set of possible initial configurations, we can
calculate the cumulative probability distribution function for the time for the
sender to hear a reply (see Figure 7(b)). Furthermore, from this distribution,
Column 2 of Table 1 shows the probability that the receiver sleeps at most K
times before sending its first reply to the sender.

5.2 Time for Two Replies

For the case where the sender waits until two replies have been received, the 32
constructed models each have approximately 5.6× 1010 states and took roughly
80 minutes to build and 165 minutes to model check. The minimum expected
time, over all possible initial configurations, for the sender to hear two replies
is 0.0456s (146.0 slots). The maximum is 5.177 seconds (16,565 slots) and 518

A Formal Analysis of Bluetooth Device Discovery 13

of the possible initial states result in this. This is possible since the receiver can
sleep up to 8 times before sending its second reply. We now extend Example 1
to illustrate how such a scenario can occur.

Example 2. Example 1 demonstrated the receiver sleeping 4 times and then
finally hearing the sender when it is on frequency 3 in the sequence:

1 2 3 4 21 22 23 24 25 26 27 28 29 30 31 32

After the receiver scans, it increases its phase by 1 and waits a random delay
before scanning again. During this random delay the phase will increase again
and the receiver will next scan on frequency 5. Since this frequency does not
appear on the above sequence and the sender has just started using it, he will
not hear anything during this scan and the next one (still using this sequence),
and will therefore sleep twice. When the receiver wakes again he will scan on
frequency 6 and since the sender’s subsequent frequency sequences will be:

1 2 3 4 5 22 23 24 25 26 27 28 29 30 31 32
17 18 19 20 21 22 7 8 9 10 11 12 13 14 15 16

it follows that the receiver will sleep an additional 2 times before finally hearing
(for the second time) from the sender while scanning on frequency 7.

In Figure 8 we have plotted, for the expected time for the receiver to reply
to two messages, both the distribution over the states and the cumulative distri-
bution function (where, as in Section 5.1, in this case we assume that there is a
uniform probabilistic choice as to the state of the system when the receiver first
scans). As in Figure 7, the discontinuities are due to the time that the receiver
spends in sleep: in Figure 8(a) there are 9 peaks – the last 4 being considerably
smaller than the first 5 but still visible – which correspond to the cases when the
receiver sleeps from 0 to 8 times before sending its second reply. The inset in this
case illustrates that, for some initial states, the expected time is not included
within these peaks.

In Figure 8(b) we have also included a second cumulative distribution func-
tion, derived from the earlier distribution of Figure 7(b), under the assumption
that the time to hear the second message is independent of the time to hear the
first message. This derivation is obtained by taking the convolution of two copies
of the distribution in Figure 7(b) together with a distribution representing the
random delay made by the receiver between sending the first reply and begin-
ning its next scan. The rightmost two columns of Table 1 show the probabilities,
extracted from these graphs, of sleeping at most K times before sending two
replies. Interestingly, these results demonstrate that the assumption that the
time to reply to the second message is independent of the time to reply to the
first is incorrect, i.e. leads to inaccurate results. More precisely, the results show
that if the receiver sleeps before sending its first reply, it is less likely to sleep
the second time.

We have also attempted to compute probabilities for higher numbers of
replies. However, in these cases, partitioning into 32 models is not feasible. We
have been able to generate results for up to 5 replies by partitioning the initial
states more finely, but this means that the total number of verifications required
grows considerably and hence we have not completed an exhaustive analysis.

14 Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

0 1 2 3 4 5
0

0.5

1

1.5

2

x 10
8

expected time to hear two replies (sec)

nu
m

be
r

of
 s

ta
te

s

2.5 2.52 2.54 2.56 2.58 2.6

(a) distribution over initial states

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

T (sec)

pr
ob

. t
im

e
to

 h
ea

r
2

re
pl

ie
s

≤
T

exact
derived

(b) cumulative distribution

Fig. 8. Time for the sender to hear two replies from the receiver

5.3 Comparison with Bluetooth Version 1.1

Finally, we have also carried out a comparison of the most recent version (1.2) of
the Bluetooth specification (as described so far in this paper) and the previous
version 1.1. The main difference in terms of the protocol is that, in version 1.1,
the receiver only sends replies to every second message received. We modified
our model to reflect these changes and recomputed the expected time for the
inquiry process. The results can be found in Table 1. Unsurprisingly, we see that
the time for one reply in version 1.1 and for two replies in version 1.2 are very
similar. However, we successfully illustrate that, as was intended, version 1.2
indeed results in improved expected times.

6 Related Work

Thanks to the ongoing growth in popularity of Bluetooth technology, an increas-
ing amount of research is being carried out in order to analyse and improve its
efficiency. There is, however, a limited amount of work regarding the inquiry
process of the protocol. To our knowledge, this paper is the first application of
formal verification to the area: the most common form of analysis being used is
simulation, with tools such as ns-2 [4] and BlueHoc [1]; see for example [11,5].

Elsewhere, attempts have also been made to compute the time required for
inquiry analytically. Two examples include [10] and [12]. In the former, the em-
phasis is primarily on the issue of scatternet formation, but they also discuss
a symmetric variation of the Bluetooth inquiry process, and consider analytic
expressions for the completion time, comparing them to that of the standard
asymmetric version. The latter considers the standard version, but for an ar-
bitrary number of devices, rather than just two. The authors also complement
this with results from a discrete-event simulation. Both papers, however, take a
far more simplistic approach to modelling the inquiry process than us. Firstly,

A Formal Analysis of Bluetooth Device Discovery 15

they assume that the sender uses a single train of 32 frequencies which remains
constant throughout, drastically reducing the complexity of its behaviour. They
therefore also assume that the receiver will always be able to listen to all fre-
quencies in a short period, and thus never need to sleep. Hence, in their analysis,
they take the frequency synchronisation delay to be uniformly distributed.

A more comprehensive analysis was recently presented in [8]. In similar fash-
ion, the authors produce an analytic expression for the probability distribution
function of the time to complete an inquiry and then use this to validate a
discrete-event simulation of the same model. Like us, they consider the correct
behaviour in terms of trains (although some simplifications are still required in
order to derive an analytic expression), and hence the model is much closer to
ours. The most significant difference is that whereas we aim for an exact/worst-
case analysis, considering all possible overlaps between the sender and receiver,
they assume an equiprobable distribution between these in order to derive a
probability function. This, combined with the fact that they use different pa-
rameters to those used here (both are compliant with the official specification),
means that a detailed comparison of the two sets of results is impractical. Unfor-
tunately, the publication describing the derivation of the distribution function
is not yet available. In future, we plan to carry out a more comprehensive com-
parison of this work with our own.

It is also worth noting that all of the related work mentioned above is based
on either version 1.0 or 1.1 of the specification. In this paper, we focus on the
most up-to-date version, 1.2.

7 Discussion and Conclusion

In this paper, we have presented a formal analysis of the performance of Blue-
tooth device discovery, using probabilistic model checking and the tool PRISM.
We showed how this permits an exhaustive analysis of a low-level model of the
specification. This allows us to examine the best and worst case expected times
for the inquiry process and identify exactly how these situations can occur.

We are, however, limited to a certain extent by the huge size of the proba-
bilistic models that we need for this process. Techniques based on discrete-event
simulation are far less susceptible to this phenomenon, but have two disadvan-
tages: firstly, they compute only approximations to the numerical results we
obtain; and secondly, they sometimes require additional probabilistic assump-
tions (in this case study, on the initial configuration of the Bluetooth devices).
It would be advantageous to compare or even combine the two approaches. One
interesting application of the results in this paper might be to use our exact re-
sults to improve the accuracy of a simulation of Bluetooth performed at a higher
level. We plan to investigate this area further.

There are also several other directions in which we we would like to extend
this work. Two examples are: increasing the number of messages received and
increasing the number of receivers. The latter introduces several new dimen-
sions such as collision of messages between devices and tracking which replies

16 Marie Duflot, Marta Kwiatkowska, Gethin Norman and David Parker

correspond to which receivers. We would also like to address power consump-
tion issues (which are particularly relevant since Bluetooth is aimed at portable
low-power devices where battery life is crucial). This can be achieved using the
existing support for cost-based analysis in PRISM. Lastly, it would be interest-
ing to study the effect of noise and/or interference on the inquiry procedure.
Since all of these areas lead to an increase in model size, we will almost certainly
need to consider additional techniques, such as combination with simulation (as
discussed above) or abstraction and symmetry reduction methods.

References

1. BlueHoc - An open-source Bluetooth simulator:
www-124.ibm.com/developerworks/opensource/bluehoc.

2. PRISM web site. www.cs.bham.ac.uk/˜dxp/prism.
3. Specification of the Bluetooth system, version 1.2, Bluetooth SIG, 2003, www.

bluetooth.com.
4. The Network Simulator - ns-2: www.isi.edu/nsmam/ns.
5. Basagni, S., Bruno, R., and Petrioli, C. Device discovery in Bluetooth networks:

A scatternet perspective. In Proc. Networking 2002, volume 2345 of LNCS, pages
1087–1092. Springer, 2002.

6. Kasten, O. and Langheinrich, M. First experiences with Bluetooth in the Smart-Its
distributed sensor network. In Proc. PACT’01, 2001.

7. Kwiatkowska, M., Norman, G., and Parker, D. PRISM 2.0: A tool for probabilistic
model checking. In Proc. 1st International Conference on Quantitative Evaluation
of Systems (QEST’04), 2004. To appear.

8. Peterson, B., Baldwin, R., and Kharoufeh, J. A specification-compatible Blue-
tooth inquiry simplification. In Proc. Hawaii Int. Conference on System Sciences
(HICSS’04), 2004.

9. Rutten, J., Kwiatkowska, M., Norman, G., and Parker, D. Mathematical Tech-
niques for Analyzing Concurrent and Probabilistic Systems, volume 23 of CRM
Monograph Series. American Mathematical Society, 2004.

10. Salonidis, T., Bhagwat, P., Tassiulas, L., and LaMaire, R. Proximity awareness
and ad hoc network establishment in Bluetooth. Technical Report TR 2001-10,
Institute of Systems Research, University of Maryland, 2001.

11. Siegemund, F. and Rohs, M. Rendezvous layer protocols for Bluetooth-enabled
smart devices. In Proc. Conference on Architecture of Computing Systems - Trends
in Network and Pervasive Computing (ARCS’02). Springer, 2002.

12. Záruba, G. and Gupta, V. Simplified Bluetooth device discovery - Analysis and
simulation. In Proc. Hawaii Int. Conference on System Sciences (HICSS’04), 2004.

www-124.ibm.com/developerworks/opensource/bluehoc
www.bluetooth.com
www.bluetooth.com
www.isi.edu/nsmam/ns

	A Formal Analysis of Bluetooth Device Discovery
	Introduction
	Probabilistic Model Checking and PRISM
	Device Discovery in Bluetooth
	The Inquiring Device
	The Scanning Device

	Modelling in PRISM
	Modelling the Sender (Inquiring Device)
	Modelling the Receiver (Scanning Device)
	Reducing Model Complexity

	Experimental Results
	Time for a Single Reply
	Time for Two Replies
	Comparison with Bluetooth Version 1.1

	Related Work
	Discussion and Conclusion

