
Probabilistic Metric Semantics for a Simple
Language with Recursion

Marta Kwiatkowska and Gethin Norman

School of Computer Science University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK

Abstract. We consider a simple divergence-free language RP for re-
active processes which includes prefixing, deterministic choice, action-
guarded probabilistic choice, synchronous parallel and recursion. We
show that the probabilistic bisimulation of Larsen & Skou is a congruence
for this language. Following the methodology introduced by de Bakker
& Zucker we give denotational semantics to this language by means of
a complete metric space of (deterministic) probabilistic trees defined in
terms of the powerdomain of closed sets. This new metric, although not
an ultra-metric, nevertheless specialises to the metric of de Bakker &
Zucker. Our semantic domain admits a full abstraction result with re-
spect to probabilistic bisimulation.

1 Introduction

Probabilistic and stochastic phenomena are important in many areas of comput-
ing, for example, distributed systems, fault tolerance, communication protocols
and performance analysis, and thus formal and automated tools for reasoning
about such systems are needed. This paper makes a contribution towards the
foundations of languages for specifying probabilistic systems, and thus furthers
understanding of the probabilistic phenomena which have so far proved trouble-
some to handle by conventional techniques, see e.g. the probabilistic powerdo-
main construction [9].

The recent trend in the semantics of programming languages has been to
supply a language with three pairwise “equivalent” semantics: operational, de-
notational and logical. Each semantics gives a different view of the language –
the operational focuses on the transition system, denotational on compositional-
ity, while the logical on the properties and satisfaction – and a statement of their
“equivalence” states how closely they are related. The work of Kozen [13] for a
while language with random assignment is a pre-cursor of this approach in the
area of probabilistic languages, but so far no framework encompassing the three
semantics has been proposed for a probabilistic extension of a process algebra.

In this paper we consider a probabilistic variant of a process algebra (a “re-
active” language in the terminology of [20]) based on CCS [17] and CSP [8].
The calculus contains recursion, deterministic choice and concurrency, but in-
stead of non-deterministic choice it has (action guarded) probabilistic choice.
W. Penczek and A. Szalas (Eds.), Proc. 21st International Symposium on Mathematical Foundations
of Computer Science (MFCS’96), volume 2324 of LNCS, pages 419–430, 1996.
c© Springer-Verlag Berlin Heidelberg 1996

The operational semantics of this language is given in terms of the probabilistic
transition systems and probabilistic bisimulation of Larsen & Skou [14]. The cal-
culus is provided with a denotational, metric-space semantics derived following
the techniques introduced by de Bakker & Zucker [5] for the non-probabilistic
case. We show the semantics to be fully abstract with respect to the probabilistic
bisimulation. Our result can be seen as complementing the framework of Larsen
& Skou who (without considering a calculus) give a logical characterization of
probabilistic bisimulation in terms of probabilistic modal logic.

Existing research in this area has focussed mainly on the operational side,
see e.g [2,4,6,10,12,15,19,21]. In [2,12,15,19] complete axiomatizations of the con-
structed probabilistic process calculi are given, with [15] dealing with a reactive
model and [2,12] generative models in the terminology of [20]. The probabilistic
powerdomain construction [9] has been applied to give domain-theoretic seman-
tics to certain languages, but as yet no fully abstract metric model has been
proposed. Fully abstract characterizations for testing equivalences are included
in [11,4,21]; denotational semantics is given in [11], but recursion is not consid-
ered. [18] introduces denotational semantics for probabilistic CSP in terms of
conditional probability measures on the space of infinite traces. A “metric” for
ε-bisimulation can be found in [6]; in contrast to ours, it does not satisfy the
axioms of a metric.

We omit most details of the proofs from this version of the paper.

2 Probabilistic Transition Systems and Bisimulation

We assume the reader has some knowledge of metric spaces and the methodology
for metric denotational semantics (see e.g. [5]).

Let D be a set. A probability distribution with countable support on D is a
function f : D −→ [0, 1] such that the set s(f) = {d ∈ D | f(d) > 0} is countable
and

∑
d∈D f(d) = 1. Unless otherwise stated, by a probability distribution we

shall mean a probability distribution with countable support. Let D be a set,
and let µ(D) denote the family of probability distributions on D. Given any
probability distribution f , and a set D such that s(f) ⊆ D, f can be extended
to fD such that fD ∈ µ(D). When it is clear from the context what the set D is
we write f instead of fD.

Proposition 1. The family µ(D) of probability distributions on D is a metric
space with respect to the metric:

dµ(f, g) =
1
2

∑
p∈s(f)∪s(g)

| f(p)− g(p) | .

Furthermore, for all f and g ∈ µ(D), 0 ≤ dµ(f, g) ≤ 1.

We recall the notions of probabilistic transition systems and probabilistic
bisimulation introduced originally by Larsen & Skou [14]. A probabilistic transi-
tion system is a tuple S = (P,Act, Can, µ) where P is a set of processes (states),

Act is a set of observable actions, Can is an Act-indexed family of sets of pro-
cesses where Cana is the set of processes capable of performing the action a as
their initial move, µ is a family of probabilistic distributions, µp,a : P −→ [0, 1],
for a ∈ Act, p ∈ Cana, indicating the possible next states and their probabili-
ties after p has performed a, i.e. µp,a(q) = λ means that the probability that p
becomes q after performing a is λ.

Note that it is required that
∑

p′∈P µa,p(p′) = 1 since µp,a is a probability
distribution. A probabilistic transition can, for a given state p and action a, be
thought of as yielding a probabilistic distribution on the set of all processes P .
The notation for probabilistic transitions is as follows:

p
a−→λ p

′ whenever p ∈ Cana and µp,a(p′) = λ

p
a−→ p′ whenever p a−→λ p

′ for some λ > 0 .

It should be noted that Larsen and Skou’s definition models reactive systems in
the terminology of van Glabbeek et al [20]. In the reactive model for probabilistic
processes, a button-pressing experiment suceeds with probability 1, or else fails.
When successful, the process makes an internal state transition according to a
probability distribution associated with the depressed button. More formally,
in the reactive model the probabilities are action guarded, meaning there is a
(single) probability distribution for each process and action it can perform, thus
imposing determinism at the language level.

Definition 1. Let (P,Act, Can, µ) be a probabilistic transition system. A prob-
abilistic bisimulation R on P is an equivalence relation R ⊆ P × P such that
whenever pRq the following holds:

∀a ∈ Act ∀S ∈ P/R . p
a−→λ S ⇐⇒ q

a−→λ S

where P/R denotes the quotient of P by R and for any p ∈ P and S ∈ P/R

p
a−→λ S if and only if λ =

∑
s∈S µp,a(s). Two processes p and q are probabilistic

bisimilar (notation p ∼ q) if they are contained in a probabilistic bisimulation.
The largest probabilistic bisimulation is denoted by ∼.

3 Language RP and its Operational Semantics

We consider a divergence-free probabilistic process algebra based on CCS [17]
and CSP [8], referred to as RP, which includes recursion and deterministic choice,
but instead of the usual non-determinism has action-guarded probabilistic choice.
The language derives from the need to model reactive systems. We choose RP
instead of PCCS [6] as RP is more intuitive for reactive processes and avoids the
need for two types of transitions.

Let Act denote the set of actions (ranged over by a, b . . .), and X the set of
process variables (ranged over by x, y . . .), both sets being countable. The syntax
of all expressions is as follows:

q ::= 0 |x |
∑
i∈I

aµi
.qi | q1 ⊕ q2 where A(q1) ∩ A(q2) = ∅ | q1||q2 | fix x.q

where a ∈ Act, x ∈ X , 0 denotes the inactive process,
∑

i∈I aµi
.qi (where

a ∈ Act, I is an index set, and µi ∈ (0, 1] is a countable set of real numbers such
that

∑
i∈I µi = 1) denotes probabilistic choice, q1 ⊕ q2 denotes deterministic

choice (we require that the sets of initial actions of q1 and q2 are disjoint), q1||q2
denotes synchronous parallel, and fixx.q denotes recursion. In the case of I finite
we also write aµ1 .q1 + aµ2 .q2 + ...aµn

.qn. Formally, the set A(q) of initial actions
of q is defined inductively by setting A(0) = A(x) = ∅, A(

∑
i∈I aµi

.qi) = {a},
A(fixx.q) = A(q), and A(q1⊕q2) = A(q1||q2) = A(q1)∪A(q2). We only consider
the subset of the guarded expressions E defined over syntax:

p ::= 0 |
∑
i∈I

aµi .qi | p1 ⊕ p2 where A(p1) ∩ A(p2) = ∅ | p1||p2 | fix x.p .

Observe that prefixing is a special case of probabilistic choice: a.p is equivalent to
a1.p, meaning that after a is performed the process becomes p with probability 1.
The syntactic restriction on the choice operator is necessary to draw comparisons
with Larsen and Skou’s formalism [14]. The operational semantics is as follows:

Act ∑
i∈I

aµi
.pi

a−→µ pj

j ∈ I and µ =
∑

pi=pj

µi

Sum1
p1

a−→µ q

p1 ⊕ p2
a−→µ q

Sum2
p2

a−→µ q

p1 ⊕ p2
a−→µ q

Par p1
a−→µ1 q1 and p2

a−→µ2 q2
p1||p2

a−→µ1µ2 q1||q2
Rec p {fix x.p/x} a−→µ q

fix x.p
a−→µ q

where q{p/x} denotes the result of changing all free occurences of x in q by p,
with change of bound variables to avoid clashes. Following the usual conven-
tion, we define the set RP of (guarded) processes of the language as the set of
expressions in E with no free variables.

Proposition 2. Probabilistic bisimulation is a congruence for the language RP,
i.e. it is preserved by all contexts of the language.

Furthermore, the equational laws below, derived following Milner [16], char-
acterise RP:

(⊕1) p1 ⊕ p2 = p2 ⊕ p1

(⊕2) p1 ⊕ (p2 ⊕ p3) = (p1 ⊕ p2)⊕ p3

(⊕3) p⊕ 0 = p
(Par1) p1||p2 = p2||p1

(Par2) p||0 = p
(Rec1) fix x.p = p {fix x.p/x}
(Rec2) q = p {q/x} ⇒ q = fix x.p
(Act)

∑
i∈I aµi

.pi =
∑

i∈I\J aµi
.pi + aµ.p

where p ∈RP and J ⊆ I such that for all j ∈ J we have pj = p and µ =
∑

j∈J µj .
It follows from the Rec laws that fixed points are unique up to bisimulation.

4 A Metric for Probabilistic Computations

We first turn our attention to probabilistic computations, which should be
thought of as suitable generalizations of sequential computations (= sequences of
steps) of de Bakker & Zucker [5]. As in the non-probabilistic case, a probabilistic
process will be represented by a certain set of such computations.

Intuitively, a probabilistic computation step will be represented by a pair
consisting of an action and a probabilistic distribution, i.e. an element of the set
A × µ(D), where D is assumed to be the set of all probabilistic computations.
Thus, each such step p = (a, f), for some f ∈ µ(D) and a ∈ A, can be viewed
as the process which can perform the action a and become a process q ∈ D
with probability f(q). To allow for termination we also require a distinguished
element p0 to model the inactive process. This gives:

D ∼= {p0} ∪A× µ(D)

as the candidate for a domain equation for probabilistic computations.
We proceed by applying the techniques of [5] to derive an inductively defined

collection of metric spaces (Dn, d), n = 0, 1, . . ., where the elements of the spaces
model finite probabilistic computations. Informally, D0 ⊆ D1 ⊆ . . . ⊆ Dn . . .
form a sequence of sets, where as n increases the number of probabilistic pro-
cesses which are modelled increases, with Dn modelling the processes capable of
performing one probabilistic action at a time up to the depth n. Formally:

Definition 2 ((Finite probabilistic computations)). Let Dn, n = 0, 1, . . . ,
be a collection of carrier sets defined inductively by:

D0 = {p0} and Dn+1 = {p0} ∪A× µ(Dn)

where A is a set of actions. Let Dω =
⋃

n Dn denote bounded computations.

For simplicity, we consider any f ∈ µ(Dn) as the extension of f to Dω, i.e.
fDω

∈ µ(Dω), with the subscript often dropped. We now explain the intuition
behind our metric on probabilistic computations Dω: the distance is set to 1 if
the computations differ on the initial action, and to a (possibly infinite) sum
derived from the distances between the resulting distributions otherwise. The
latter involves the notion of a truncation on distributions, which we now define.

Definition 3. Let f ∈ µ(Dω). For k ∈ IN define the kth truncation of f , f [k] ∈
µ(Dk), as follows. The support of f [k] is given by s(f [k])

def
=

⋃
{ p[k] | p ∈ s(f) },

and for any q ∈ Dk,

f [k](q) =
{

0 if q 6∈ s(f [k])∑
{f(p) | p ∈ s(f) and p[k] = q} otherwise

where for p ∈ Dω the auxiliary truncation on probabilistic computations, p[k] ∈
Dk, is defined inductively on k ∈ IN by putting p[0] = p0 for all p and

p[k + 1] =
{

p0 if p = p0

(a, f [k]) if p = (a, f) for some a ∈ A and f ∈ µ(Dω) .

�
�

�
�=

Z
Z

Z
Z~

�
�

�
�=

Z
Z

Z
Z~

�
�

�
�=

Z
Z

Z
Z~

?

? ? ?

?

r
r r

rrr
r

r
r r
r r

r
r

rp[3] p[2] p[1] p[0]

a a
1
2

1
2

b b
2
3

1
3

a a
1
2

1
2

1
c

1
c

1
b

1
c

a
1

Fig. 1. An illustration of truncations.

The truncation of probabilistic distributions (and respectively of probabilis-
tic computations, which we omit for reasons of space) satisfies the following
properties useful in proofs of properties of our metric, as truncations are an in-
tegral part of its definition. These properties are, moreover, reminiscent of the
properties of projection spaces of Große-Rhode and Ehrig [7].

Proposition 3.

(a) If f ∈ µ(Dn) then f [k] ∈ µ(Dk) when 0 ≤ k ≤ n and f [k] = fDk
when k ≥ n

(b) If f ∈ µ(Dω) then for all k,m (f [m])[k] = f [min{m, k}]
(c) For all f, g ∈ µ(Dω) and k ∈ IN dµ(f [k], g[k]) ≤ dµ(f, g)
(d) For all f, g ∈ µ(Dω)if f [m] = g[m] then f [k] = g[k] for all 0 ≤ k ≤ m .

We now define a metric on probabilistic computations. In the non-trivial case
of computations starting with the same action, the distance is set to an infinite
sum of distances between the truncations of the two distributions, with each
summand weighted by the depth of the truncation in inverse proportion.

Definition 4. Let (Dn)n∈IN, Dω be the carrier sets defined in Definition 2.
Define the metric d by induction on the structure of elements of Dn by putting
d(p0, p0) = 0, d(p0, (a, f)) = 1, d((a, f), p0) = 1, and

d((a, f), (ã, g)) =

1 if a 6= ã∑∞

k=0 2−(k+1)dµ(f [k], g[k]) otherwise .

Lemma 1. Let (Dω, d) be as above, then 0 ≤ d(p, q) ≤ 1 for all p, q ∈ Dω.

We now prove the following for Dω, and simultaneously for each Dn.

Theorem 1. (Dω, d) is a metric space.

Proof. 1. We show d(p, q) = 0 if and only if p = q. In the non-trivial case
of p 6= q the result follows by definition of d except when p = (a, f) and
q = (a, g): since p 6= q we must have f 6= g, and thus from dµ being a
metric and Proposition 3(a) we have that dµ(f [m], g[m]) = dµ(f, g) 6= 0 for
m = minn{s(f), s(g) ⊆ Dn}, and thus d(p, q) 6= 0 as required.

2. d(p, q) = d(q, p) by definition of d and dµ a metric on all Dn, n ∈ IN.
3. The inequality d(p, q) + d(q, r) ≥ d(p, r) follows from Lemma 1 in all cases

except p = (a, f), q = (a, g) and r = (a, h), in which case it holds since dµ is
a metric. ut

It should be noted that our metric is not an ultra-metric. An ultrametric can
be defined in terms of truncations in the standard way, see [3], but it results in
different convergence as demonstrated in the example below.

p q r

?

?

?

???

a
1

b

a
1

b
1

�
�

�
�=

Z
Z

Z
Z~

1
c

1
c

1

a a r
r

r
rr

r
r

r
r r r

(1− ε)ε

Fig. 2. ‘Smooth’ metric d (this paper) vs ‘discrete’ ultrametric of [3]

Example 1. Consider the processes in Figure 2. We have that:

d(p, q) =
ε

2
, d(p, r) =

(1− ε)
2

and d(q, r) =
1
2

and hence as ε → 0 the distance d(p, q) → 0 while d(p, r) → 1
2 . On the other

hand, in the metric of [3], the distances between p and q, and between p and r,
are 1

2 for any ε ∈ (0, 1).

Our metric nevertheless specialises to the metric of de Bakker & Zucker [5].
To see this consider a restriction, for each n ∈ IN, of the set µ(Dn) to the set of
point distributions of Dn, i.e. the set { ηp | p ∈ Dn } where

ηp(q) =
{

1 if p = q
0 otherwise

and inductively we denote {p0} ∪ A × {ηp | p ∈ Dη
n} by Dη

n+1. Intuitively, if
p = (a, ηq) ∈ Dη

n then the probability of p performing the action a and becoming
q is 1, and the probability of p becoming any other process is 0. This can be
compared with de Bakker and Zucker’s construction of simple processes, where
the elements are of the form p = p0 or p = (a, q), for a action and q process. We
have the following.

Proposition 4. The metric d coincides with the metric of de Bakker & Zucker
on the subspace Dη

ω of Dω, i.e. for all p, q in Dη
ω:

d(p, q) =

0 if p = q

21−m otherwise where m = mink{ p[k] 6= q[k] } .

We now apply the standard completion technique to derive the domain D of
probabilistic computations as consisting of Dω together with all limit points p =
limn→∞ pn, with 〈pn〉n a Cauchy sequence in Dω, such that pn ∈ Dn ∀n ∈ IN.

Definition 5. Define the space (D, d) of probabilistic computations as the met-
ric completion of (Dω, d).

We show that d satisfies the required domain equation by constructing isometric
embeddings. Categorical techniques of [1] have not been used as it is unclear how
to define a functor to represent this construction; this is due to the fact that our
metric is not defined inductively in correspondence with the inductively defined
metric spaces.

Theorem 2. D satisfies the domain equation D ∼= {p0} ∪A× µ(D).

Proof. Let D̀
def
= {p0} ∪A× µ(D).

1. First define ψ : D̀ → D by

ψ(p̀) =
{
p0 if p̀ = p0

limn→∞ pn otherwise

where, assuming p̀ = (a, g) for some a ∈ A and g ∈ µ(D), pn = (a, fn) with
fn+1 = g[n] for n ∈ IN. This is well-defined as pn ∈ Dn and the sequence
(pn)n can be shown to be Cauchy with respect to d. Finally, we demonstrate
that that ψ is an isometry.

2. For the opposite direction, we define the map φ : D → D̀ by

φ(p) =
{
p0 if p = p0

(a, g) otherwise

where, assuming wlog p = limn→∞ pn with 〈pn〉n Cauchy, pn = (a, fn) for
some a ∈ A and fn ∈ µ(Dn−1) for all n ≥ 1, g : D → [0, 1] is defined by
g(q) = limn→∞ fn(q) for q ∈ D. To show that this is well-defined, i.e. p̀ ∈ D̀,
we show limn→∞ fn(q) exists for all q ∈ D and g ∈ µ(D), i.e.

∑
q∈D g(q) = 1

and g has countable support. Finally, we show that φ is an isometry. ut

5 Domain Equation for Reactive Processes

Observe that the probabilistic computations (the elements of D) are represented
either by p0 (termination), or are limits limn→∞ pn of Cauchy sequences of (fi-
nite) computations, where the limit is of the form (a, limn fn), and thus initially
can only perform the action a. To allow choice it is necessary to use sets of el-
ements of D as denotations for probabilitic processes. As we wish to maintain
consistency with Larsen & Skou’s approach, we mimic the syntactic restrictions
in the semantic domain by requiring that such sets must satisfy the following
reactiveness condition.

Definition 6. Let X ⊆ Dω. X is said to satisfy the reactiveness condition if,
for any p, q ∈ Dω where p = (a, f) and q = (ã, g), if p, q ∈ X then it must be the
case that either a 6= ã or p = q.

The above guarantees, for any a ∈ A, the existence of at most one element of
the form (a, f) in the set X, and so the probability of performing an a transition
for any one of these sets is either 1 or 0.

To extend our metric to sets of probabilistic computations we use the Haus-
dorff distance. As before, we introduce a sequence of metric spaces (Pn, d)n

n ∈ IN.

Definition 7. Let (Pn, d) n = 0, 1, . . . be a collection of metric spaces defined
inductively by

P0 = {p0} and Pn+1 = {p0} ∪ Pr (A× µ(Pn))

where A is a set of actions and Pr denotes the powerset operator restricted to
the subsets which satisfy the reactiveness condition. Put Pω =

⋃
n Pn and then

define d on Pω (or on any Pn where n ∈ IN) to be the Hausdorff distance with
respect to d as defined on Dω. Let (P, d) denote the completion of (Pω, d).

Observe that for any X ∈ Pω we have that X ∈ Pr(A × µ(Pn)) for some
n ∈ IN. Then for any distinct elements p, q ∈ X such that p = (a, f) and
q = (â, g) with a 6= â, we have by definiton of the metric d that d(p, q) = 1. It
follows that X is closed, since the only Cauchy sequences included in X are the
trivial ones. Thus, Pω ⊆ Pc(Dω), and from the completion techniques it follows
that P ⊆ Pc(D), and hence d is indeed a metric on Pω.

Moreover, Hahn’s Theorem can be used in the proof of the following.

Theorem 3. Let Prc(A× µ(P)) denote the closed subsets of (A× µ(P)) satis-
fying the reactiveness condition. Then

P ∼= {p0} ∪ Prc (A× µ(P)) .

The theorem is proved by an adaptation of a similar result in [5] for the
non-probabilistic case. We note that truncations on f ∈ µ(Pω) are defined as for
D, and we define the truncation function on P inductively by putting X[n] =
{ p[n] | p ∈ X } for any X ⊆ A× µ(P).

6 Denotational Semantics

We have obtained P as a solution of a domain equation (assuming A = Act),
and can now give denotational semantics for our language RP. The next step is
to define the semantic operators on P .

Definition 8. The degree of a process p ∈ P is defined inductively by putting
deg(p0) = 0, deg(p) = n if p ∈ Pn \ Pn−1 for some n ≥ 1, and deg(p) = ∞
otherwise. We then say a process p is finite if deg(p) = n for some n ∈ IN and
infinite otherwise.

Thus, each p ∈ P is either finite, or it is infinite, in which case p = lim pn, (pn)n

Cauchy, with each pn of degree n. We now define the operators “∪” and “||” on
P to model deterministic choice and synchronous parallel; this is achieved by
first defining the operators on finite processes and then extending the definition
to limits of Cauchy sequences.

Definition 9. Let p ∈ P , X,Y ∈ Prc(A × µ(P)) with finite degree, (pi)i, (qi)i

Cauchy sequences of finite processes.
(a) (union) Put p ∪ p0 = p0 ∪ p = p, X ∪ Y is the set theoretic union of X and
Y , and define (limi pi) ∪ (limj qj) = limk(pk ∪ qk).
(b) (parallel) Put p||p0 = p0||p = p, and define

X||Y =

{x||y |x ∈ X, y ∈ Y & d(x, y) < 1} if there exists x ∈ X and y ∈ Y
such that d(x, y) < 1

p0 otherwise

where for x = (a, f) and y = (a, g) put x||y def
= (a, f ||g) with

(f ||g)(p) def
=

{
f(p1)g(p2) if p = p1||p2

0 otherwise

for any p ∈ P , and define (lim pi)||(lim qj)
def
= limk(pk||qk).

Lemma 2. For all X, X̃ and Y ∈ P with finite degree

d(X ∪ Y, X̃ ∪ Y) ≤ d(X, X̃) and d(X||Y, X̃||Y) ≤ d(X, X̃) .

Theorem 4. ∪ and || are well defined and continuous operators on P subject
to the restriction that X ∪ Y satisfies the reactiveness condition.

Recall that E denotes the (guarded) expression with free variables, while
RP is the set of closed (guarded) expressions. As usual, in order to handle the
variables x of E , we introduce the semantic mapM : E → (E → P) parametrised
by environments E, ranged over by ρ, defined by E = X → P . In addition, we
shall require an auxiliary function Φ : ([0, 1]× P)∞ → (P → [0,∞)), defined as
follows: for any p = 〈(µi)i, (pi)i〉i∈I ∈ ([0, 1] × P)∞, Φ(p) = fp where for any
q ∈ P

fp(q) =
{

0 if q 6= pi for all i ∈ I∑
j∈J µj otherwise where J = { j | j ∈ I and q = pj } .

We now define denotational metric semantics for RP expressions E . Recursive
processes are defined as limits of Cauchy chains of unfoldings of the map M.

Definition 10 ((Denotational semantics)). Define M : E → (E → P) in-
ductively on the structure of elements of E as follows:

M(0)(ρ) = {p0}
M(

∑
i∈I aµi .pi)(ρ) = {(a, Φ(〈(µi)i, (M(pi)(ρ))i〉i∈I))}

M(p1 ⊕ p2)(ρ) = M(p1)(ρ) ∪M(p2)(ρ)
M(p1||p2)(ρ) = M(p1)(ρ)||M(p2)(ρ)
M(fix x.p)(ρ) = limk→∞Mk(p)(ρ)

where M0(p)(ρ) = p0 and Mk+1(p)(ρ) = M(p)(ρ{Mk(p)(ρ)/x})[k + 1] .

The well-definedness of the semantic map follows from the lemma below.

Lemma 3. Let fix x.p ∈ E, and let the sequence qk denote Mk(p)(ρ), k ∈ IN.
Then qk+1[k] = qk for all k ∈ IN.

7 Full Abstraction

Finally, we obtain that P is a fully abstract model of the language RP with
respect to probabilistic bisimulation. The result follows from Lemma 4 below.

Lemma 4. For all a ∈ A and p ∈RP:

1. p a−→ if and only if there exists (a, f) ∈M(p).
2. For any q ∈RP if SM(q) = {q̃ | q̃ ∈ RP and M(q̃) = M(q)} then we have

p
a−→µ SM(q) if and only if f(M(q)) ≥ µ.

3. If f(r) > 0 for some r ∈ P then if Sr = {q | q ∈ RP and M(q) = r} then
p

a−→µ Sq if and only if f(q) ≥ µ.

Theorem 5. Let M : E → (E → P) be the semantic map of Definition 10.
Then for all p, q ∈RP,

p ∼ q if and only if M(p) = M(q) .

8 Conclusions and Further Work

We have derived a metric space model for a probabilistic extension of a process
calculus, which can be further extended with an asynchronous concurrency op-
erator by following, to a large extent, the techniques introduced by de Bakker
& Zucker [5].

Although the continuity of prefixing (and also of the asynchronous concur-
rency operator) fails in our model, our metric is ‘smooth’ (as apposed to the
‘discrete’ metric of [3]), and hence closer in spirit to the probabilistic powerdo-
main construction. It remains to be seen if a suitable combination of our metric
and the standard metric which yields continuity can be found. Finally, we in-
tend to consider the addition of non-deterministic choice and apply our results
to existing probabilistic process calculi, e.g. PCCS [6].

Acknowledgements: We would like to thank Achim Jung, Michael Huth,
Christel Baier and Reinhold Heckmann for discussions and suggestions.

References

1. P.H.M.America and J.J.M.M.Rutten. Solving reflexive domain equations in a cat-
egory of complete metric spaces, JCSS, 39, no.3, 1989.

2. J.C.M.Baeten, J.A.Bergstra and S.A.Smolka. Axiomatising probabilistic processes:
ACP with generative probability, Proc. Concur’92, LNCS, 630, Springer, 1992.

3. C.Baier and M.Kwiatkowska. Domain equations for probabilistic processes, pre-
print.

4. I.Christoff. Testing equivalences and fully abstract models for probabilistic pro-
cesses, Proc. Concur’90, LNCS, 458, Springer, 1990.

5. J.W.de Bakker and J.I.Zucker. Processes and the denotational semantics of con-
currency, Information and Control, 1/2, 1984.

6. A.Giacalone, C.-C.Jou and S.A.Smolka. Algebraic reasoning for probabilistic con-
current systems, In Proc. Programming Concepts and Methods, IFIP, 1990.

7. M.Große-Rhode and H.Ehrig. Transformation of combined data type and process
specifications using projection algebras, LNCS, 430, Springer, 1989.

8. C.A.Hoare. Communicating sequential processes, Prentice Hall, 1985.
9. C.Jones. Probabilistic non-determinism, PhD Thesis, University of Edinburgh,

1990.
10. B.Jonsson and K.G.Larsen. Specification and refinement of probabilistic processes,

Proc. IEEE Logic in Computer Science (LICS), 1991.
11. B.Jonsson and Wang Yi. Compositional testing preorders for probabilistic pro-

cesses, Proc. IEEE Logic in Computer Science (LICS), 1995.
12. C.-C.Jou and S.Smolka. Equivalences, congruences and complete axiomatizations

for probabilistic processes, Proc. Concur’90, LNCS, 458, Springer, 1990.
13. D.Kozen. Semantics of probabilistic programs, Proc. IEEE Symposium on Foun-

dations of Computer Science (FOCS), 1979.
14. K.G.Larsen and A.Skou. Bisimulation through probabilistic testing, Information

and Computation, 94, 1991.
15. K.G.Larsen and A.Skou. Compositional verification of probabilistic processes,

Proc. Concur’92, LNCS, 630, Springer, 1992.
16. R.Milner. Calculi for synchrony and asynchrony, TCS, 25(3), 1983.
17. R.Milner. Communication and concurrency, Prentice Hall, 1989.
18. K.Seidel. Probabilistic communicating processes, TCS, 152, 1995.
19. C.Tofts. A synchronous calculus of relative frequency, Proc. Concur’90, LNCS,

458, Springer, 1990.
20. R.J.van Glabbeek, S.A.Smolka, B.Steffen and C.Tofts. Reactive, generative and

stratified models of probabilistic processes, Proc. Concur’92, LNCS, 630, Springer,
1992.

21. S.Yuen, R.Cleaveland, Z.Dayar and S.A.Smolka. Fully abstract characterizations
of testing preorders for probabilistic processes, Proc. Concur’94, LNCS, 836,
Springer, 1994.

	Probabilistic Metric Semantics for a Simple Language with Recursion
	Introduction
	Probabilistic Transition Systems and Bisimulation
	Language RP and its Operational Semantics
	A Metric for Probabilistic Computations
	Domain Equation for Reactive Processes
	Denotational Semantics
	Full Abstraction
	Conclusions and Further Work

