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Abstract. Numerical analysis based on uniformisation and
statistical techniques based on sampling and simulation are
two distinct approaches for transient analysis of stochastic
systems. We compare the two solution techniques when ap-
plied to the verification of time-bounded until formulae in the
temporal stochastic logic CSL, both theoretically and through
empirical evaluation on a set of case studies. Our study differs
from most previous comparisons of numerical and statistical
approaches in that CSL model checking is a hypothesis test-
ing problem rather than a parameter estimation problem. We
can therefore rely on highly efficient sequential acceptance
sampling tests, which enables statistical solution techniques
to quickly return a result with some uncertainty. We also pro-
pose a novel combination of the two solution techniques for
verifying CSL queries with nested probabilistic operators.

Key words: Model checking – Probabilistic verification –
Markov chains – Temporal logic – Transient analysis – Uni-
formisation – Hypothesis testing – Sequential analysis – Dis-
crete event simulation

1 Introduction

Continuous-time Markov chains (CTMCs) are an important
class of stochastic models, widely used in performance and
dependability evaluation. The temporal logic CSL (Contin-
uous Stochastic Logic) introduced by Aziz et al. [2,3] and
since extended by Baier et al. [6] provides a powerful means
to specify both path-based and traditional state-based perfor-
mance measures on CTMCs in a concise and flexible manner.
CSL contains a time-bounded until operator, the focus of this
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study, that allows one to express properties such as “the prob-
ability of n servers becoming faulty within15.07 seconds is
at most 0.01”.

Analysis of stochastic systems is typically carried out us-
ing eithernumericalor statistical solution techniques. Nu-
merical methods can often provide a higher accuracy than
statistical methods, whose results are probabilistic in nature.
However, numerical methods are far more memory intensive,
which often leaves statistical solution techniques as a last re-
sort [31,8].

The verification of time-bounded CSL formulae can be
reduced to transient analysis [5,6]. Efficient numerical so-
lution techniques, such as uniformisation [16,26,23,8], for
transient analysis of CTMCs have existed for decades and
are well-understood. Younes and Simmons [38] have pro-
posed a statistical approach for verifying time-bounded CSL
formulae, based on acceptance sampling and discrete event
simulation. The use of acceptance sampling is possible be-
cause CSL formulae only ask if a probability is above or be-
low some threshold. Previous comparisons of numerical and
statistical solution techniques have typically been based on
estimation problems. This study is concerned with hypoth-
esis testing problems, for which there exist highly efficient
sequentialacceptance sampling tests that make statistical so-
lution techniques look more favourable than in a comparison
with numerical techniques on estimation problems. For prob-
abilistic model checking, it would generally be a waste of ef-
fort to obtain a good estimate of a probability, only to realise
that it is far from the threshold.

We have implemented the statistical model checking al-
gorithm in YMER [35], which also includes numerical solu-
tion engines for time-bounded CSL formulae taken from the
PRISM tool [25,18]. PRISM, a probabilistic model checker
developed at the University of Birmingham, makes use of
symbolic data representation in order to reduce memory re-
quirements for numerical techniques.

Probabilistic model checking in general, and the two ap-
proaches implemented in PRISM and YMER, are described in
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Sect. 2, which includes a theoretical discussion of the com-
putational complexity for the two competing approaches. In
this section we also propose a combination of numerical and
statistical solution techniques to handle CSL formulae with
nested probabilistic operators. The idea of combining the two
techniques has been explored before [29,8], but not in the
context of nested CSL queries. The mixed solution technique
has also been implemented in YMER.

In Sect. 4, we present empirical results obtained using
YMER on a number of case studies, described in Sect. 3. This
serves as a practical comparison of the two approaches. The
empirical evaluation confirms the theoretical complexity re-
sults discussed in Sect. 2. It demonstrates that the complexity
of both the numerical and the statistical approach is typically
linear in the time-bound of the property, but that the statistical
approach scales better with the size of the state space. Fur-
thermore, the statistical approach requires considerably less
memory than the numerical approach, allowing us to verify
models far beyond the scope of numerical solution methods.
The principal advantage of numerical techniques based on
uniformisation is that increased accuracy in the result comes
at almost no price. The statistical solution method can very
rapidly provide solutions with some uncertainty, however re-
ducing the uncertainty is costly, making numerical techniques
more appropriate when very high accuracy in the result is re-
quired.

2 CTMCs and Probabilistic Model Checking

Probabilistic model checking refers to a range of techniques
for the formal analysis of systems that exhibit stochastic be-
haviour. The system is usually specified as a state transition
system, with probability values attached to the transitions.
In this paper, we consider the case where this model is a
continuous-time Markov chain (CTMC).

A CTMC C is a tuple〈S,R, L〉 whereS is a finite set of
states, R : S × S → [0,∞) is therate matrixandL : S →
2AP is a labelling function, mapping each state to a subset of
the set of atomic propositionsAP . For any states ∈ S, the
probability of leaving states within t time units is given by
1− e−E(s)·t whereE(s) =

∑
s′∈S R(s, s′). E(s) is known

as theexit rate. If R(s, s′) > 0 for more than ones′ ∈ S,
then there is aracebetween the transitions leavings, where
the probability of moving tos′ in a single step equals the
probability that the delay corresponding to moving froms to
s′ “finishes before” the delays of any other transition leaving
s. A pathof the CTMC is a sequence of states, between each
of which there is a non-zero probability of making a transi-
tion. A path of the CTMC can be seen as a single execution
of the system being modelled.

In probabilistic model checking, properties of the system
to be verified are specified in a temporal logic. For CTMCs,
we use the temporal logic CSL [2,3,6], an extension of CTL.
The syntax of CSL is defined as

Φ ::= >
∣∣ a ∣∣ Φ ∧ Φ

∣∣ ¬Φ
∣∣ P./ θ

[
Φ U6t Φ

] ∣∣ S./ θ [Φ] ,

whereθ ∈ [0, 1], t ∈ [0,∞], ./ ∈ {<,6,>, >} anda is an
atomic proposition from the setAP used to label states of the
CTMC. We useΦ U Ψ as a short-form forΦ U6∞ Ψ . Other
logic operators, such as disjunction and implication, can be
obtained using standard logic equivalence rules.

A states of a CTMC satisfies the formulaP./ θ [ϕ], de-
noteds |= P./ θ [ϕ], if P (s, ϕ) ./ θ, whereP (s, ϕ) is the
probability that a path starting in states satisfies the path
formula ϕ. Here, a path formulaϕ is eitherΦ U6t Ψ for
t ∈ [0,∞), meaning that formulaΨ is satisfied withint time
units and formulaΦ is satisfied up until that point, orΦ U Ψ ,
meaning thatΦ U6t Ψ holds for somet ∈ [0,∞). The value
P (s, ϕ) is defined in terms of the probability measure over
paths starting in states, as defined by Baier et al. [6]. The
S./ θ [Φ] operator describes the behaviour of the CTMC in
the steady-stateor long-run. The precise semantics of this
and the other CSL operators can be found in [6]. In this pa-
per, we will focus our attention on CSL formulae of the form
P./ θ

[
Φ U6t Ψ

]
with finite time-boundt.

2.1 Numerical Probabilistic Model Checking

The numerical model checking approach for verifying a time-
bounded until formulaP./ θ

[
Φ U6t Ψ

]
in a states ∈ S is

based on first computing the probabilityP (s, Φ U6t Ψ), and
then testing ifP (s, Φ U6t Ψ) ./ θ holds.

First, as initially proposed by Baier et al. [5], the problem
is reduced to the computation of transient probabilities on a
modified CTMC. For a CTMCC = (S,R, L), we construct
the CTMCC′ = (S,R′, L) by making all states satisfying
¬Φ ∨ Ψ absorbing, i.e. removing all of their outgoing transi-
tions. Hence,R′ is obtained fromR by removing all entries
from the appropriate rows. The probabilityP (s, Φ U6t Ψ) in
the CTMCC is now equal to the probability of, in the CTMC
C′, being in a state satisfyingΨ at time t having started in
states.

The computation of this probability is carried out via a
process known asuniformisation(also known asrandomisa-
tion), originally proposed by Jensen [16]. We construct the
uniformiseddiscrete-time Markov chain (DTMC) ofC′. The
probability transition matrixP of C′ equalsI+ (R′−E′)/q,
whereI is the identity matrix,E′ is a diagonal matrix contain-
ing exit rates ofC′, i.e.E′(s, s′) equalsE′(s) if s = s′ and0
otherwise, andq > max{E′(s) | s ∈ S} is theuniformisation
constantof the CTMCC′.

It then follows thatP (s, Φ U6t Ψ) can be computed si-
multaneously for all statess ∈ S by computing the vector of
probabilities

P (Φ U6t Ψ) =
∞∑

k=0

γ(k, q·t) ·
(
Pk · Ψ

)
, (1)

whereγ(k, q·t) is thekth Poisson probability with parameter
q·t (i.e.γ(k, q·t) = e−q·t · (q·t)k/k!), andΨ characterises the
set of states satisfyingΨ (i.e.Ψ(s) = 1 if s |= Ψ , and0 other-
wise). If we are only interested in verifyingP./ θ

[
Φ U6t Ψ

]
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in a single states, then we only need to carry out the summa-
tion in (1) for P (s, Φ U6t Ψ), which in practice can save us
both memory and time. However, as pointed out by Katoen
et al. [17], the asymptotic time complexity is the same when
computing the entire vectorP (Φ U6t Ψ). In this paper, we
only compute the entire vector for nested probabilistic for-
mulae.

In practice, the infinite summation in (1) is truncated from
the left and the right by using the techniques of Fox and
Glynn [10] so that the truncation error is bounded by an a
priori error toleranceε. This means that if̂P (Φ U6t Ψ) is the
solution vector obtained with truncation, then

0 6 P (s, Φ U6t Ψ)− P̂ (s, Φ U6t Ψ) 6 ε ∀s ∈ S . (2)

The left and right truncation points, denotedLε andRε re-
spectively, depend on the truncation errorε. Note that, since
iterative squaring is generally not attractive for sparse matri-
ces due to fill-in [30,26], the matrix productsPk are typically
computed in an iterative fashion:Pk · Ψ = P ·

(
Pk−1 · Ψ

)
.

Thus, although the left truncation pointLε allows us to skip
the firstLε terms of (1), we still need to computePk · Ψ for
k < Lε, making the total number of iterations required by the
algorithmRε. The value ofRε is q·t + k

√
2q·t + 3/2, where

k is o
(√

log(1/ε)
)

[10]. This means that the number of iter-
ations grows very slowly asε decreases. For large values of
q·t, the number of iterations is essentiallyO(q·t). Each iter-
ation involves a matrix-vector multiplication and each such
operation takesO(M) time, whereM is the number of non-
zero entries in the rate matrixR. The time complexity for
the numerical solution technique is thereforeO(q·t·M) (cf.
[23]).

2.1.1 Steady-State Detection

To potentially reduce the number of iterations required by
the numerical model checking algorithm, we can use on-the-
fly steady-state detection in conjunction with uniformisation
[26,23]. If the uniformised DTMC reaches steady-state after
ks < Rε iterations, thenPk · Ψ = Pks · Ψ for all k > ks,
which means that we can computêP (Φ U6t Ψ) as follows
using onlyks iterations:

P̂ (Φ U6t Ψ) =
ks∑

k=Lε

γ(k, q·t) ·
(
Pk · Ψ

)
+

(
1−

ks∑
k=Lε

γ(k, q·t)

)
·
(
Pks · Ψ

)
.

(3)

We can ensure that a steady-state vector actually exists by
choosingq strictly greater thanmax{E(s) | s ∈ S} [26,23].

Malhotra et al. [23] derive an error bound for (3) under the
assumption that the steady-state point can be detected exactly
within a given error tolerance. LetΠ∗ denote the true steady-
state vector. Malhotra et al. claim that if‖Pks ·Ψ−Π∗‖ 6 ε/4
for Lε < ks < Rε, then the same error bound as in (2) is
guaranteed. The error analysis is flawed, however, in that it
results in an error region twice as wide as the original error

region. This is a result of the error due to steady-state detec-
tion being two-sided, while the truncation error is one-sided.
To guarantee an error region of widthε instead of2ε, it is nec-
essary to bound‖Pks · Ψ −Π∗‖ by ε/8 instead ofε/4. This
correction yields the error bounds−ε/4 6 P (s, Φ U6t Ψ)−
P̂ (s, Φ U6t Ψ) 6 3ε/4 for all s ∈ S.

In practice, the true steady-state vectorΠ∗ is not known
a priori, so instead we stop when the norm of the difference
between successive iterates is sufficiently small (at mostε/8
by the above analysis), as suggested by Malhotra et al. [23].

2.1.2 The Sequential Stopping Rule

To potentially reduce the number of iterations even further,
we note that the CSL queryP./ θ

[
Φ U6t Ψ

]
does not require

that we computeP (s, Φ U6t Ψ) with higher accuracy than is
needed to determine whetherP (s, Φ U6t Ψ) ./ θ holds. In
the following analysis we restrict./ to > as the other three
cases are essentially the same.

Let P̂ k(s, Φ U6t Ψ) denote the accumulated probability
up until and including iterationk. Because each term in (1)
is non-negative, we havêP i(s, Φ U6t Ψ) > P̂ k(s, Φ U6t Ψ)
for all i > k. Therefore ifP̂ k(s, Φ U6t Ψ) > θ holds for
somek < Rε, then we can answer the queryP> θ

[
Φ U6t Ψ

]
affirmatively after onlyk iterations instead ofRε (or ks) iter-
ations.

For early termination with a negative result, we can use
the upper bound on the right Poisson tail provided by Fox and
Glynn [10] fork > 2+bq ·tc to determine ifP> θ

[
Φ U6t Ψ

]
is false before completingRε iterations. LetT̂ be the upper
bound on the right Poisson tail. If̂P k(s, Φ U6t Ψ) + T̂ < θ,
then we know already afterk iterations thatP> θ

[
Φ U6t Ψ

]
is false.

We now have a sequential stopping rule for our algorithm,
but note that the potential savings are limited by the fact that
the positive part of the rule applies first afterLε iterations and
the negative part first after2 + bq·tc iterations, and bothLε

andRε are of the same order of magnitude asq·t. We will see
later that the sequential component of the statistical approach
is much more significant.

2.1.3 Symbolic Representation

PRISM uses binary decision diagrams (BDDs) [7] and multi-
terminal BDDs (MTBDDs) [9,4,11] to construct a CTMC
from a model description in the PRISM language, a variant
of Alur and Henzinger’s Reactive Modules formalism [1]. For
numerical computation though, PRISM includes three sepa-
rateenginesmaking varying use of symbolic methods.

The first engine uses MTBDDs to store the model and it-
eration vector, while the second uses conventional data struc-
tures for numerical analysis: sparse matrices and arrays. The
latter nearly always provides faster numerical computation
than its MTBDD counterpart, but sacrifices the ability to save
memory by exploiting structure. A third,hybrid, engine pro-
vides a compromise by storing the models in an MTBDD-like
structure, which is adapted so that numerical computation can
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be carried out in combination with array-based storage for
vectors. This hybrid approach is generally faster than MTB-
DDs, while handling larger systems than sparse matrices, and
hence is the one used in this paper. For further details and
comparisons between the engines see [19,24].

2.2 Statistical Probabilistic Model Checking

Statistical techniques, involving Monte Carlo simulation and
sampling, have been in use for decades to analyse stochastic
systems. Younes and Simmons [38] show how discrete event
simulation and acceptance sampling can be used to verify
properties of general discrete event systems expressed as CSL
formulae not includingP./ θ [Φ U Φ] and S./ θ [Φ]. We fo-
cus here onP> θ

[
Φ U6t Ψ

]
, noting thatP6 θ

[
Φ U6t Ψ

]
≡

¬P> θ

[
Φ U6t Ψ

]
, and also that> (<) is practically indistin-

guishable from> (6) to any acceptance sampling test. The
same can of course be said of numerical approaches as well
due to the use of finite precision floating-point arithmetic.

Given a CTMCC, a states of C, and a CSL formula
P> θ [ϕ], we wish to test whether the probabilityP (s, ϕ), for
the remainder of this section simply denotedp, is above or
below the thresholdθ. We can formulate this as the problem
of testing the hypothesisH : p > θ against the alternative hy-
pothesisK : p < θ. In this section, we discuss how to solve
such a problem using statistical hypothesis testing.

2.2.1 Statistical Hypothesis Testing

Let Xi be a random variable representing the verification of
the path formulaϕ over a path forC drawn at random from
the set of paths starting in states. If we chooseXi = 1 to
represent the fact thatϕ holds over a random path, andXi =
0 to represent the opposite fact, thenXi is aBernoulli variate
with parameterp, i.e. Pr[Xi = 1] = p andPr[Xi = 0] =
1− p. An observation ofXi, denotedxi, is the verification of
ϕ over a specific pathσi. If σi satisfies the path formulaϕ,
thenxi = 1, otherwisexi = 0. In our case, an observation is
obtained by generating a sample path,σi, using discrete event
simulation, and then testing ifσi satisfiesϕ. Note that we can
perform simulation at the level of the PRISM language and
never need to generate the underlying CTMC.

Whenever we consider statistical approaches for solving
hypothesis testing problems, we generally have to tolerate
that any test procedure we use can accept a false hypothesis,
but this is satisfactory so long as the probability of error is
sufficiently low. In particular, the test procedure should limit
the probability of accepting the hypothesisK whenH holds
(known as a type I error, or false negative) toα, and the prob-
ability of acceptingH whenK holds (a type II error, or false
positive) should be at mostβ, with α + β 6 1. Figure 1 plots
the probability of acceptingH as a function ofp, denotedLp,
for a hypothetical acceptance sampling test with ideal perfor-
mance in the sense that the type I error is exactlyα and the
type II error is exactlyβ. The parametersα andβ determine
thestrengthof an acceptance sampling test.

The above problem formulation is flawed, however, since,
in the case wherep is equal to the thresholdθ, we simultane-
ously require the hypothesisH to be accepted both with prob-
ability at least1−α and with probability at mostβ. For this to
work, we need to have1− α = β, which means that we can-
not control the two error probabilities independently. In order
to obtain the desired control over the two error probabilities,
we relax the hypothesis testing problem by introducing two
thresholdsp0 andp1, with p0 > θ > p1. Instead of testing
H againstK, we choose to test the hypothesisH0 : p > p0

against the alternative hypothesisH1 : p 6 p1. We require
that the probability of acceptingH1 whenH0 holds is at most
α, and the probability of acceptingH0 whenH1 holds is at
mostβ. Figure 2 shows the typical performance characteris-
tic of a realistic acceptance sampling test. If the value ofp is
betweenp0 andp1, we are indifferent with respect to which
hypothesis is accepted, and both hypotheses are in fact false
in this case. The region(p1, p0) is referred to as theindiffer-
ence regionand it is shown as a gray area in Fig. 2.

For CSL model checking, the two thresholdsp0 andp1

can be defined in terms of a single thresholdθ and the half-
width of the indifference regionδ, i.e.p0 = θ + δ andp1 =
θ−δ. TestingH0 againstH1 can then be interpreted as testing
the hypothesisH : p > θ against the alternative hypothesis
K : p < θ, as originally specified, where acceptance ofH0

results in acceptance ofH and acceptance ofH1 results in
acceptance ofK. The probability of acceptingH is therefore
at least1 − α if p > θ + δ and at mostβ if p 6 θ − δ. If
|p − θ| < δ, then the test gives no bounds on the probability
of accepting a false hypothesis. In this case, however, we say
that p is sufficiently close to the thresholdθ so that we are
indifferent with respect to which of the two hypotheses,H or
K, is accepted. By narrowing the indifference region, we can
get arbitrarily close to the ideal performance shown in Fig. 1.

2.2.2 The Sequential Probability Ratio Test

We use Wald’ssequential probability ratio test[32] to test
the hypothesisH0 : p > p0 against the alternative hypothesis
H1 : p 6 p1. The sequential probability ratio test does not use
a predetermined number of observations, but instead deter-
mines after each observation if another observation is needed
or if the information currently available is sufficient to accept
a hypothesis so that the test has the prescribed strength. A sta-
tistical procedure that takes observations into account as they
are made is called asequentialprocedure.

The sequential probability ratio test is carried out as fol-
lows. At themth stage of the test, i.e. after makingm obser-
vationsx1, . . . , xm, we calculate the quantity

p1m

p0m
=

m∏
i=1

Pr[Xi = xi|p = p1]
Pr[Xi = xi|p = p0]

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

,

wheredm =
∑m

i=1 xi. The quantitypjm is the probability
of the observation sequencex1, . . . , xm given thatPr[Xi =
1] = pj making the computed quantity a ratio of two proba-
bilities, hence the phraseprobability ratio in the name of the
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p0 θ 1

L p

0

β

1 − α

1

Fig. 1. Probability,Lp, of accepting the hypothesisH : p > θ as a function
of p for a hypothetical statistical test.

p0 p1 p0 1

L p

0

β

1 − α

1

Fig. 2. Probability,Lp, of accepting the hypothesisH0 : p > p0 as a func-
tion of p for a statistical test with indifference region.

test. HypothesisH0 is accepted if

p1m

p0m
6 B (4)

and hypothesisH1 is accepted (i.e.H0 is rejected) if

p1m

p0m
> A (5)

whereA andB, with A > B, are chosen so that the probabil-
ity is at mostα of acceptingH1 whenH0 holds, and at most
β of acceptingH0 whenH1 holds. Otherwise, additional ob-
servations are made until either (4) or (5) is satisfied.

FindingA andB that gives strength〈α, β〉 is non-trivial.
In practice we chooseA = (1 − β)/α andB = β/(1 − α),
which results in a test that very closely matches the prescribed
strength. Let the actual strength of this test be〈α′, β′〉. Wald
[32] shows that the following inequalities hold:

α′ 6
α

1− β
(6)

β′ 6
β

1− α
(7)

This means that ifα andβ are small, which typically is the
case in practical applications, thenα′ andβ′ can only nar-
rowly exceed the target values. Wald [32] also shows that
α′ + β′ 6 α + β, so at least one of the inequalitiesα′ 6 α
andβ′ 6 β must hold, and in practice we often find that both
inequalities hold.

2.2.3 Complexity of the Statistical Solution Method

The complexity of the statistical approach depends on the
number of observations, also called thesample size, required
to reach a decision, as well as the time required for each ob-
servation. An observation involves the verification of a CSL
path formulaϕ over a sample pathσi. The sample size for
the sequential probability ratio test is a random variable, and

so is the time per observation, which means that we can only
talk about theexpectedcomplexity of the method.

First, consider the time per observation. A sample path
σi may very well be infinite, but in order to verify the path
formulaϕ = Φ U6t Ψ , we only need to generate a prefix of
σi. We stop as soon as we reach a state satisfying¬Φ ∨ Ψ , or
if the time limit t is exceeded. In each state along the prefix,
we verify the formulaeΦ andΨ . If both of these formulae
are classical logic expressions, i.e. contain no probabilistic
operators, then we can treat the time required per state as a
constant. Consequently, the time per observation is propor-
tional to the length of the prefix ofσi required to determine
the truth-value of the path formulaϕ. If we are lucky, a state
satisfying¬Φ ∨ Ψ is reached early, but in the worst case we
have to continue until the time limitt is exceeded. The ex-
pected time per observation is thereforeO(q·t), whereq is
the maximum exit rate of the CTMC model. In order to ob-
tain a tighter bound, we would have to know more about the
CTMC than just its maximum exit rate.

The second component of the complexity is the expected
sample size, which for a sequential test depends on the un-
known parameterp. Let Np denote the expected sample size
as a function of the parameterp. The complexity of the statis-
tical model checking approach is thenO(q·t·Np), which can
be compared toO(q·t·M) for the numerical solution method.
The expected sample size for statistical hypothesis testing, in
general, depends on the error boundsα andβ, and the proba-
bility thresholdsp0 andp1 (alternatively expressed using the
thresholdθ and the half-width of the indifference regionδ).
There is, however, no immediate dependence between the
expected sample size and the size of the state space for the
CTMC model. This is in sharp contrast to the time complex-
ity for the numerical method where the factorM , the number
of non-zero entries in the rate matrixR, is at least linear in
the size of the state space.

An exact formula for the expected sample size required
by the sequential probability ratio test is not available, but
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p Ñp

0
log

1− β

α

log
1− p1

1− p0

p1

β log
β

1− α
+ (1− β) log

1− β

α

p1 log
p1

p0
+ (1− p1) log

1− p1

1− p0

s
− log

β

1− α
log

1− β

α

log
p1

p0
log

1− p0

1− p1

p0

(1− α) log
β

1− α
+ α log

1− β

α

p0 log
p1

p0
+ (1− p0) log

1− p1

1− p0

1
log

β

1− α

log
p1

p0

Table 1. Approximate expected sample size for the sequential probability
ratio test. The approximation formulae forp = 0 andp = 1 differ from
those derived by Wald [33]. This is because we assumep0 > p1, while
Wald assumes the opposite.

Wald [32] provides

Ñp =
Lp log

β

1− α
+ (1− Lp) log

1− β

α

p log
p1

p0
+ (1− p) log

1− p1

1− p0

(8)

as a good approximation ofNp whenp1 is not far fromp0,
which is typically the case in practice. The quantityLp is the
probability of acceptingH0 whenPr[Xi = 1] = p. Wald
provides an approximation formula forLp as well, but the
formula is not suited for computing an approximation ofLp

for an arbitraryp. ApproximatingNp for an arbitraryp is
therefore non-trivial, but we can provide explicit formulae for
a few cases of special interest shown in Table 1, with

s =
log

1− p0

1− p1

log
p1(1− p0)
p0(1− p1)

. (9)

The expected sample size increases asp goes from0 top1 and
decreases asp goes fromp0 to 1. In the indifference region
(p1, p0), the sample size increases fromp1 to some pointp′

and decreases fromp′ to p0. The pointp′ is generally equal
to s or at least very nears [33].

An amazing property of the sequential probability ratio
test is that it minimises the expected sample size at bothp0

andp1, i.e. no other statistical test with the same strength will
have a lower expected sample size if the unknown parameter
p is equal to eitherp0 or p1 [34]. It is well-known, however,

that there exist tests that achieve a lower expected sample size
for other values ofp, in particular ifp happens to be in the in-
difference region. Alternative approaches have therefore been
suggested, in particular so calledBayesianapproaches where
the objective is to minimise the expected cost subject to a cost
c per observation and a unit cost for accepting a false hypoth-
esis [27,21]. While this and other alternative formulations of
the hypothesis testing problem are certainly interesting, we
will not explore them further in this paper because they rep-
resent a departure from the model where the user specifies the
desired strength of the test. We refer the reader to Lai [22] for
a more detailed account of the developments in the field of
sequential hypothesis testing since the ground breaking work
of Wald.

2.3 Mixing Numerical and Statistical Techniques

Although the algorithm of Younes and Simmons [38] can
handle CSL formulae with nested probabilistic operators, the
way in which it is done requires that the nested formulae be
verified in each state along a sample path. Since the verifi-
cation of path formulae now involves acceptance sampling,
there is some probability of error associated with each obser-
vation used for the verification of the outer probabilistic op-
erator. To cope with this uncertainty in the observations, the
indifference region of the outer probabilistic operator must be
reduced, which leads to an increase in the expected sample
size. In addition, the nested formulae must be verified with
lower values forα andβ than used with the outer probabilis-
tic operator. The numerical approach, on the other hand, can
verify the nested formulae for all states simultaneously at the
same (asymptotic) cost as verifying the formulae for a single
state. This is beneficial when dealing with nested probabilis-
tic operators.

We therefore propose a mixed approach, implemented in
YMER, where statistical sampling is used to verify the out-
ermost probabilistic operator, while numerical techniques are
used to verify the nested probabilistic operators. We can mix
the numerical and statistical techniques by assuming that the
result of the numerical technique holds with certainty (i.e.
α = β = 0 in terms of a statistical test). The nested formulae
are first verified for all states using numerical methods. When
verifying a path formula over a sample path we only need to
read the value for each state along the path without any addi-
tional verification effort for the nested formulae. The cost for
verifying the nested components of a formula is exactly the
same for the mixed approach as for the numerical approach,
but the use of sampling for the outermost probabilistic oper-
ator can provide a faster solution.

The time complexity for the pure numerical approach is
O(q·t·M + q·t′·M), when used to verify a CSL formula with
a single nested probabilistic operator and time bounds oft
and t′ for the outer and nested until formulas, respectively.
The mixed solution method replaces the uniformisation step
for the outer probabilistic operator with statistical hypothesis
testing, which therefore yields an overall time complexity of
O(q·t·Np + q·t′·M).
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λ . . . ph = 1 aµ1 ph = 2 µ2 . . . κ

(1 − a)µ1

Fig. 3.Tandem queueing network with a two-phase Coxian distribution gov-
erning the routing time between the queues.

3 Case Studies

We now present two case studies, taken from the literature
on performance evaluation and probabilistic model checking,
on which we will base our empirical evaluation. A third sim-
ple example is also introduced to illustrate the use of nested
probabilistic operators in CSL. More information about all of
these case studies can be found on the PRISM web site [25].

3.1 Tandem Queueing Network

The first case study is based on a CTMC model of a tandem
queueing network presented by Hermanns et al. [12]. The net-
work consists of anM/Cox2/1 queue sequentially composed
with anM/M/1 queue. The capacity of each queue isn, and
the state space isO(n2). The property of interest is given by
the CSL formulaP< 0.5

[
> U6T full

]
which is true in a state

if there is a less than50% chance of the queueing network
becoming full withinT time units. We verify the correctness
of this property in the state where both queues are empty.

Figure 3 shows a schematic view of the tandem queueing
network. Messages arrive at the first queue with rateλ, and
exit the system from the second queue with rateκ. If the first
queue is not empty and the second queue is not full, then
messages are routed from the first to the second queue. The
routing time is governed by a two-phase Coxian distribution
with parametersµ1, µ2, anda. Here,µi is the exit rate for
the ith phase of the distribution, and1 − a is the probability
of skipping the second phase. Letsi ∈ {0, . . . , n}, for i ∈
{1, 2}, denote the number of messages currently in queuei,
and letph ∈ {1, 2} denote the current phase of the Coxian
distribution. We express the condition that the system is full
with the formulafull ≡ s1=n ∧ s2=n ∧ ph=2, and the state
in which we verify the CSL formulaP< 0.5

[
> U6T full

]
is

given bys1=0∧s2=0∧ph=1, i.e. when the system is empty.

3.2 Symmetric Polling System

For the next case study, we consider ann-station symmet-
ric polling system described by Ibe and Trivedi [14]. Each
station has a single-message buffer and the stations are at-
tended by a single server in cyclic order. The server begins
by polling station1. If there is a message in the buffer of sta-
tion 1, the server starts serving that station. Once stationi has
been served, or if there is no message in the buffer of station
i when it is polled, the server starts polling stationi + 1 (or

R

J

Fig. 4. A grid world with a robot (R) in the bottom left corner and a janitor
(J) in the centre. The dashed arrow indicates the path of the robot. The janitor
moves with equal probability to any of the adjacent squares.

1 if i = n). The polling and service times are exponentially
distributed, as is the time before arrival of a new message
at each station. The fact that arrival rates are equal for all sta-
tions makes the system symmetric. The size of the state space
for a system withn stations isO(n·2n).

We will verify the property that, if the buffer of station
1 is full, then it is polled withinT time units with prob-
ability at least0.5. We do so in the state where station 1
has just been polled and the buffers of all stations are full.
Let s ∈ {1, . . . , n} be the station currently receiving the
server’s attention, leta ∈ {0, 1} represent the activity of
the server (0 for polling and1 for serving), and letmi ∈
{0, 1} be the number of messages in the buffer of stationi.
The property of interest is represented in CSL asm1=1 →
P> 0.5

[
> U6T poll1

]
, wherepoll1 ≡ s=1 ∧ a=0, and the

state in which we verify the formula is given bys=1∧a=1∧
m1=1 ∧ · · · ∧mn=1.

3.3 Grid World

The final case study involves a robot navigating in a grid
world, and is introduced to illustrate the verification of for-
mulae with nested probabilistic operators. We have ann× n
grid world with a robot moving from the bottom left corner to
the top right corner. The robot first moves along the bottom
edge and then along the right edge. In addition to the robot,
there is a janitor moving randomly around the grid. Figure 4
provides a schematic view of a grid world withn = 5.

The robot moves at rateλR, unless the janitor occupies
the destination square, in which case the robot remains sta-
tionary. The janitor moves around randomly in the grid world
at rateλJ , selecting the destination from the set of neighbor-
ing squares according to a discrete uniform distribution. The
robot initiates communication with a base station at rateµ,
and the duration of each communication session is exponen-
tially distributed with rateκ.

The objective is for the robot to reach the goal square
at the top right corner withinT1 time units with probabil-
ity at least0.9, while maintaining at least a0.5 probability
of periodically communicating with the base station (on av-
erage, at least once everyT2 time units). The CSL formula
P> 0.9

[(
P> 0.5

[
> U6T2 comm

])
U6T1 goal

]
expresses the
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given objective. There is nothing in the model that obstructs
communication, but the communication requirement will not
be satisfied in any states ifT2 is too low. The size of the state
space isO(n3) for this case study.

4 Empirical Evaluation

We base our empirical evaluation on the case studies pre-
sented in Sect. 3. We have verified the time-bounded until
formulae for the first two case studies using both the numeri-
cal and the statistical approach, varying the problem size (and
thereby the size of the state space) and the time bound. All re-
sults, for both the numerical and the statistical approach, are
for the verification of a CSL property in asinglestate. The
results were generated on a 500 MHz Pentium III PC running
Linux, and with a 700 MB memory limit set per process.

Figs. 5 and 6 present statistics for model checking of the
tandem queueing network and symmetric polling system case
studies, respectively. In each case, we include the verification
time for both the numerical solution method and the statis-
tical solution method using various test strengths (subfigures
(a) and (b)). We also give, for the statistical approach, de-
tails of both sample size (subfigures (c) and (d)) and path
length (subfigures (e) and (f)). For all data, we plot the re-
sults against both model size (subfigures (a), (c) and (e)) and
against the CSL until time bound (subfigures (b), (d) and (f)).

For the numerical approach, we used a precision ofε =
10−6. For the statistical approach, we used an indifference re-
gion with2δ = 10−2, unless otherwise noted, and the results
obtained correspond to the average over ten runs.

4.1 Memory Requirements

In the case of the numerical solution method, all experiments
were run using the hybrid engine (see Sect. 2.1) which, al-
though not necessarily the fastest engine, in general allows
the analysis of larger problems than the other engines. The
limiting factor in this approach is the space required to store
the iteration vector: however compact the matrix representa-
tion is, memory proportional to the number of states is re-
quired for numerical solution.

More precisely, the hybrid engine with steady-state detec-
tion requires storage of three double precision floating point
vectors of size|S|, which for the memory limit of 700 MB
means that systems with at most 31 million states can be anal-
ysed. We need an additional floating point vector of size|S|
for verifying a formula in all states simultaneously, which is
done for nested probabilistic formulae, and this would make
the limit 23 million states. In practice, for the first two case
studies, we were able to handle systems with about 27 mil-
lion states, showing that the symbolic representations of the
probability matrices are fairly compact.

The memory requirements for the statistical approach are
very conservative. In principle, all that we need to store dur-
ing verification is the current state, which only requires mem-

ory logarithmic in the size of the state space. We never ex-
hausted memory during verification when using the statistical
solution method.

4.2 Performance of the Numerical Solution Method

For model checking time-bounded until formulae using the
numerical approach, PRISM computes the Poisson probabil-
ities (see Sect. 2.1) using the Fox-Glynn algorithm [10]. This
yields, for the hybrid engine, an overall time complexity of
O(q·t·M), whereq is the uniformisation constant described
earlier,t is the time bound of the until formula andM is the
number of non-zero entries inR.

In all the examples considered, the number of non-zeros
in the rate matrix is linear in the size of the state space. Hence,
the verification time for a given time-bounded until formula
is linear in the size of the state space, as can be observed in
Figs. 5(a) and 6(a). Thedecreasein Fig. 5(a) of the verifica-
tion time is caused by the fact that, for models above a certain
size, on-the-fly steady-state detection is triggered during the
numerical computation (see Sect. 2.1.1).

For a single model, the complexity is linear in the time
bound, as demonstrated by the results in Figs. 5(b) and 6(b).
Note that the verification time in both these cases becomes
constant once the time bound has become sufficiently large.
This is caused by steady-state detection, which gives the nu-
merical approach a distinct advantage over the statistical ap-
proach in the tandem queueing network case study.

The sequential stopping rule (see Sect. 2.1.2) for the nu-
merical solution method also helps to reduce the verification
time, but the reduction is typically moderate. Figure 7 shows,
for the symmetric polling system (T = 20), the number of
iterations required for solution, as a fraction ofRε (the up-
per truncation point provided by the Fox-Glynn algorithm,
i.e. the maximum possible number of iterations). Note that,
in all cases, this fraction is less than one. For the smaller
models, the large reduction in iterations is due to steady-state
detection. On the otherhand, for larger models the reduction
is caused by the sequential stopping rule (corresponding to
the plateau in the graph). The reduction stays at around10
percent, and starts to get smaller for larger models because
the probability of the path formula holding gets closer to the
threshold0.5.

4.3 Performance of the Statistical Solution Method

As discussed in Sect. 2.2, there are two main factors influ-
encing the verification time for the statistical approach: the
number of samples and the length of sample paths (in terms
of state transitions). Consider the problem of verifying the
formulaP> θ [ϕ] in states, with p = P (s, ϕ) denoting the
probability thatϕ holds over paths starting ins.

For fixedα andβ (test strength) andδ (indifference re-
gion), the number of samples grows larger the closerθ gets
to the probabilityp. The peaks in the curves for the statistical
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Fig. 5. Empirical results for the tandem queueing network, withT = 50 to the left andn = 31 to the right. The dashed curves in (a) and (b) are for the
numerical approach using the hybrid engine withε = 10−6. The solid curves are for the statistical approach with2δ = 10−2, andα andβ as indicated. The
dotted lines mark a change in the truth value of the formula being verified.
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Fig. 6. Empirical results for the symmetric polling system, withT = 20 to the left andn = 10 to the right. The dashed curves in (a) and (b) are for the
numerical approach using the hybrid engine withε = 10−6. The solid curves are for the statistical approach with2δ = 10−2, andα andβ as indicated. The
dotted lines mark a change in the truth value of the formula being verified.
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Fig. 7. Iterations as a fraction ofRε for the symmetric polling system with
T = 20.

solution method all coincide withp being close to or in the
indifference region(θ − δ, θ + δ).

The average sample size required to verify a formula of
the formP> θ [ϕ] rapidly decreases asp gets further away
from the thresholdθ. We see this clearly in Figs. 5(c), 6(c),
and 6(d) where the sample size is plotted against either the
state space size or the time bound of the until formula. The
empirical results also indicate that the sample size is propor-
tional to the logarithm of the test strength, so that the required
sample size doubles whenα andβ goes from10−x to 10−2x.
This is generally only true ifp is not in the indifference re-
gion. From the approximation formula forp = s in Table 1
(s refers to the quantity defined in (9), and not to a state), it
follows that the numerator of̃Ns is equal to

(
log(α−1− 1)

)2
for α = β, which means thatNs is approximately propor-
tional to thesquareof log α if p is in the indifference region.
We can see an example of this in Fig. 6(d). The exceptionally
sharp peak is forT = 9.71, which is almost in the centre of
the indifference region.

Outside of the indifference region, where the sample size
remains almost constant at a low level, the key performance
factor instead becomes the length of sample paths. This fac-
tor depends on the exit rates of the CTMC and on the path
formula ϕ. An upper bound on the expected sample path
length for an until formula with time boundT , as noted in
Sect. 2.2, isO(q·T ), which is also the number of iterations
for the numerical solution technique. We can see in Figs. 5(b)
and 6(b) that the curves for the numerical and statistical solu-
tion techniques initially have very similar slope. For the tan-
dem queueing network case study, the numerical approach
benefits greatly from steady-state detection and outperforms
the statistical approach asT increases. Figure 5(f) shows that
the average sample path length for the statistical approach in
this case is proportional to the time boundT across the entire
range of time bounds considered.

For the tandem queueing network, the arrival rate for mes-
sages is4n, wheren is the capacity of the queues. This means

that in the worst case we can expect sample path lengths to be
proportional ton. As n increases, the sample path length be-
comes the dominant performance factor because the sample
size remains constant as seen in Fig. 5(c), meaning that verifi-
cation time for the statistical approach becomes proportional
to n. This is to be compared with the numerical approach,
whose performance is linear in the size of the state space,
which is quadratic inn. In the polling example, the arrival
rateλ is inversely proportional to the number of polling sta-
tionsn, while the other rates remain constant for alln. This
explains the levelling-off of the expected sample path length
plotted in Fig. 6(e).

Recall that we only need to generate as much of a sam-
ple path as is needed to determine the truth value ofϕ. For
ϕ = Φ U6T Ψ , we can stop if we reach a state satisfying
¬Φ ∨ Ψ (cf. the CTMCC′ constructed in the numerical ap-
proach in Sect. 2.1). The effect of this is seen most clearly for
the polling case study as we increase the time bound. Once
the path formula is satisfied the average length of the sample
paths does not increase (Fig. 6(f)).

In general, we can say that the statistical solution tech-
nique scales better than the numerical solution technique with
an increase in the size of the state space, but that steady-state
detection can give the numerical approach an advantage when
the time bound is high. It should also be clear from the results
presented here that the sequential aspect of the statistical ap-
proach has a greater effect then the sequential component of
the numerical approach. This means that the statistical is bet-
ter at adapting to the difficulty of the verification problem at
hand.

4.4 Trading Accuracy for Speed

With both solution methods, it is possible to adjust the accu-
racy of the result. For the statistical approach, we can con-
trol the parametersα, β, andδ so as to trade accuracy for
efficiency. By setting these parameters high, we can get an
answer quickly. We could then gradually tighten the error
bounds and/or the indifference region to obtain higher accu-
racy. This approach is taken by Younes et al. [37], who mod-
ify the statistical solution method for verifying CSL formulae
of the formP> θ [ϕ] without nested probabilistic operators so
that it can be stopped at any time to return a result.

Figure 8 shows how the verification time for the symmet-
ric polling system case study (n = 10, T = 40) depends on
the strength of the test and the width of the indifference re-
gion. We can see that the verification time is inversely propor-
tional both to the error bounds and the width of the indiffer-
ence region, and that for some parameter values the numerical
approach is faster while for others the statistical approach is
the fastest. Using the statistical approach with error bounds
α = β = 10−4 and half-width of the indifference region
δ ≈ 7 · 10−5, for example, Fig. 8 demonstrates that we could
obtain a verification result for the symmetric polling system
problem in roughly the same time as is required by the nu-
merical approach. For larger models, we would of course be
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Fig. 8.Verification time for the symmetric polling system (n = 10 andT =
40) as a function of the half-width of the indifference region for different test
strengths. The dashed line represents the verification time for the numerical
approach.

able to obtain even higher accuracy with the statistical ap-
proach if allowed as much time as needed by the numerical
approach to solve the problem. The results in Fig. 8 also in-
dicate that it is more costly to make the indifference region
narrower than to reduce the error probabilities. For example,
reducing the error probabilities from10−2 to 10−4 roughly
doubles the verification time, while the same reduction in the
half-width of the indifference region leads to a hundredfold
increase in the verification time.

We can adjust the accuracy for the numerical solution
method by varying the parameterε, but increasing or decreas-
ing ε has very little effect on the verification time as shown
by Reibman and Trivedi [26] and Malhotra et al. [23]. This
means that the numerical solution method can provide very
high accuracy without much of a performance degradation,
while the statistical solution method is well suited if a quick
answer with some uncertainty is more useful.

4.5 Mixing Solution Techniques

Finally, we present some results for the grid world case study,
where the CSL property has nested probabilistic operators.
We can see in Fig. 9 that the mixed approach shares perfor-
mance characteristics with both approaches, outperforming
the pure numerical solution method for larger state spaces.
Verification times are shown forα = β = 10−2 and three
different values ofδ.

5 Discussion

In this paper, we have compared numerical and statistical so-
lution techniques for probabilistic model checking both the-
oretically and empirically. The empirical evaluation has been
carried out using case studies taken from the literature on per-
formance evaluation and probabilistic model checking. We
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Fig. 9. Verification time as a function of state space size for the grid world
example, withT1 = 100 andT2 = 7. The dotted line marks a change in the
truth value of the formula being verified.

focused our attention on time-bounded properties as these are
the type of properties most suited for statistical methods (the
time-bound provides a natural limit for simulations).

The nature of CSL formulae allows us to use statistical
hypothesis testing instead ofestimationsince we only need
to know if the probability of a path formula holding is above
or below some threshold. The use of sequential acceptance
sampling allows the statistical approach to adapt to the diffi-
culty of the problem: verifying a propertyP> θ [ϕ] in a state
s takes more time if the true probability ofϕ holding in s
is close to the thresholdθ. This can give a statistical meth-
ods a distinct advantage over numerical approaches for model
checking CSL formulae. Most previous assessments of statis-
tical techniques (e.g., [29,?]) are based on parameter estima-
tion problems, which are clearly harder in that they typically
require a large number of samples. Our results show that the
intuition from earlier studies does not necessarily carry over
to CSL model checking.

Our results are otherwise in line with known complexity
results for the two techniques. We show a linear complex-
ity in the time-bound for both approaches and also confirm
that statistical methods scale better with the size of the state
space, but that high accuracy comes at a greater price than for
numerical methods.

Sen et al. [28] have recently claimed to have developed
a faster statistical solution technique than the one used in
this paper, but their comparison is misleading. Their algo-
rithm, unlike the one presented here, cannot guarantee any
bound on the probability of accepting a false hypothesis, and
instead reports a confidence (p-value [13]) in the computed
result. The sample sizes reported by Sen et al. were selected
manuallybased on prior empirical testing (K. Sen, personal
communication, May 20, 2004), and there is in fact no fixed
procedure by which they can determine the sample size re-
quired to achieve a certainp-value. The two algorithms are
complementary rather than competing, and are useful under
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disparate sets of assumptions. If we cannot generate sample
paths on demand, then their algorithm (or the variation de-
scribed by Younes [36]) allows one to still reach conclusions
regarding the behaviour of a system. If, however, we know
the dynamics of a system well enough to enable simulation,
then we are better off using the approach presented here as it
gives full control over the probability of obtaining an incor-
rect result. It is of course not necessary to use the sequential
probability ratio test as we have done. There exist other ac-
ceptance sampling tests, as discussed briefly in Sect. 2.2, that
may outperform the sequential probability ratio test in some
circumstances.

The case studies we considered in this paper were all
CTMCs. To verify time-bounded properties of more com-
plex models with general distributions, such as semi-Markov
processes, more elaborate numerical techniques are required
than those used for CTMC model checking (see e.g. [15,20]).
A statistical approach, on the other hand, would work just as
well for semi-Markov processes (assuming, of course, that
samples from the distributions used in the model can be gen-
erated in roughly the same amount of time as samples from
the exponential distribution). Statistical solution techniques
are also easier to parallelise, as each sample path can be gen-
erated independently. YMER does in fact include support for
distributed acceptance sampling, and it is possible to get a
performance improvement close to linear in the number of
CPUs made available to YMER.
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