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Abstract. We present a compositional verification technique for sys-
tems that exhibit both probabilistic and nondeterministic behaviour. We
adopt an assume-guarantee approach to verification, where both the as-
sumptions made about system components and the guarantees that they
provide are regular safety properties, represented by finite automata.
Unlike previous proposals for assume-guarantee reasoning about proba-
bilistic systems, our approach does not require that components interact
in a fully synchronous fashion. In addition, the compositional verifica-
tion method is efficient and fully automated, based on a reduction to
the problem of multi-objective probabilistic model checking. We present
asymmetric and circular assume-guarantee rules, and show how they can
be adapted to form quantitative queries, yielding lower and upper bounds
on the actual probabilities that a property is satisfied. Our techniques
have been implemented and applied to several large case studies, includ-
ing instances where conventional probabilistic verification is infeasible.

1 Introduction

Many computerised systems exhibit probabilistic behaviour, for example due to
the use of randomisation (e.g. in distributed communication or security proto-
cols), or the presence of failures (e.g. in faulty devices or unreliable communica-
tion media). The prevalence of such systems in today’s society makes techniques
for their formal verification a necessity. This requires models and formalisms
that incorporate both probability and nondeterminism. Although efficient algo-
rithms for verifying such models are known [2,7] and mature tool support [11,6]
exists, applying these techniques to large, real-life systems remains challenging,
and hence techniques to improve scalability are essential.

In this paper, we focus on compositional verification techniques for prob-
abilistic and nondeterministic systems, in which a system comprising multiple
interacting components can be verified by analysing each component in isolation,
rather than verifying the much larger model of the whole system. In the case of
non-probabilistic models, a successful approach is the use of assume-guarantee
reasoning. This is based on checking queries of the form 〈A〉M 〈G〉, with the
meaning “whenever component M is part of a system satisfying the assumption
A, then the system is guaranteed to satisfy property G”. Proof rules can then
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be established that show, for example, that if 〈true〉M1 〈A〉 (process M1 satis-
fies assumption A in any environment) and 〈A〉M2 〈G〉 hold, then the combined
system M1‖M2 satisfies G. For probabilistic systems, compositional approaches
have also been studied, but a distinct lack of practical progress has been made.
In this paper, we address this limitation, presenting the first fully-automated
technique for compositional verification of systems exhibiting both probabilistic
and nondeterministic behaviour, and illustrating its applicability and efficiency
on several large case studies.

We use probabilistic automata [20,21], a well-studied formalism that is natu-
rally suited to modelling multi-component probabilistic systems. Indeed, elegant
proof techniques have been developed and used to manually prove correctness
of large, complex randomised algorithms [18]. Several branching-time preorders
(simulation and bisimulation) have been proposed for probabilistic automata and
have been shown to be compositional (i.e. preserved under parallel composition)
[21], but such branching-time equivalences are often too fine to give significant
practical advantages for compositional verification.

A coarser linear-time preorder can be obtained through trace distribution
(probability distributions over sequences of observable actions) inclusion [20];
however, it is well known that this relation is not preserved under parallel compo-
sition [19]. Various attempts have been made to characterise refinement relations
that are preserved, e.g. [20,15]. An alternative direction is to restrict the forms of
parallel composition that are allowed. One example is the formalism of switched
probabilistic I/O automata [5], which places restrictions on the scheduling be-
tween parallel components. Another is [8] which uses a probabilistic extension
of Reactive Modules, restricted to synchronous parallel composition. A limita-
tion of all these approaches is that the relations used, such as trace distribution
inclusion and weak probabilistic simulation, are not efficiently computable.

We propose an assume-guarantee verification technique for probabilistic au-
tomata, that has no restrictions on the parallel composition permitted between
components, allowing greater flexibility to model complex systems. To achieve
this, we represent both the assumptions made about system components and the
guarantees that they provide as safety properties. In the context of probabilistic
systems, safety properties capture a wide range of useful properties, e.g. “the
maximum probability of an error occurring is at most 0.01” or “the minimum
probability of terminating within k time-units is at least 0.75”.

We represent safety properties using finite automata and show that verifying
assume-guarantee queries reduces to the problem of multi-objective model check-
ing for probabilistic automata [10], which can be implemented efficiently using
linear programming. Another key benefit of using finite automata in this way is
illustrated by the (non-probabilistic) assume-guarantee verification framework
of [16]. There, not only is the verification of queries fully automated, but the
assumptions themselves (represented as finite automata) are generated auto-
matically using learning techniques. This opens the way for applying learning
techniques to compositional verification in the probabilistic case.
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We use our definitions of probabilistic assume guarantee reasoning to for-
mulate and prove several assume-guarantee proof rules, representing commonly
occurring patterns of processes. We also discuss how to employ quantitative rea-
soning, in particular obtaining lower and upper bounds on the actual probability
that a system satisfies a safety property. The techniques have been implemented
in a prototype tool and applied to several large case studies. We demonstrate sig-
nificant speed-ups over traditional, non-compositional verification, and success-
fully verify models that cannot be analysed without compositional techniques.

A full version of this paper, including additional proofs, is available as [12].

Related work. In addition to the compositional techniques for probabilistic
systems surveyed above [5,8,15,18,19,20,21], we mention several other related
pieces of work. In particular, our approach was inspired by the large body of
work by Giannakopoulou, Pasareanu et al. (see e.g. [16]) on non-probabilistic
assume guarantee techniques. We also build upon ideas put forward in [10],
which suggests using multi-objective verification to check probabilistic assume-
guarantee queries. Also relevant are: [9], which presents an assume/guarantee
framework using probabilistic contracts for non-probabilistic models; [3], which
presents a theoretical framework for compositional verification of quantitative
(but not probabilistic) properties; and [17], which uses probabilistic automata
to model the environment of non-probabilistic components.

2 Background

We begin by briefly reviewing probabilistic automata and techniques for their
verification. We also introduce safety properties, in the context of probabilistic
systems, and discuss multi-objective model checking.

In the following, we use Dist(S) to denote the set of all discrete probability
distributions over a set S, ηs for the point distribution on s ∈ S, and µ1×µ2 ∈
Dist(S1×S2) for the product distribution of µ1 ∈ Dist(S1) and µ2 ∈ Dist(S2).

2.1 Probabilistic automata

Probabilistic automata [20,21] are a modelling formalism for systems that exhibit
both probabilistic and nondeterministic behaviour.

Definition 1. A probabilistic automaton (PA) is a tuple M = (S, s, αM , δM , L)
where S is a set of states, s ∈ S is an initial state, αM is an alphabet, δM ⊆
S×(αM ∪{τ})×Dist(S) is a probabilistic transition relation and L : S → 2AP is
a labelling function, assigning atomic propositions from a set AP to each state.

In any state s of a PA M , a transition, denoted s
a−→ µ, where a is an action

label and µ is a discrete probability distribution over states, is available1 if

1 Markov decision processes, another commonly used model, are PAs with the restric-
tion that action labels are unique amongst the available transitions for each state.
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(s, a, µ) ∈ δM . In an execution of the model, the choice between the available
transitions in each state is nondeterministic; the choice of successor state is then
made randomly according to the distribution µ. A path through M is a (finite or

infinite) sequence s0
a0,µ0−−−→s1

a1,µ1−−−→· · · where s0 = s and, for each i > 0, si
ai−→ µi

is a transition and µi(si+1) > 0. The sequence of actions a0, a1, . . . , after removal
of any “internal actions” τ , from a path π is called a trace and is denoted tr(π).

To reason about PAs, we use the notion of adversaries (also called sched-
ulers or strategies), which resolve the nondeterministic choices in a model, based
on its execution history. Formally an adversary σ maps any finite path to a
sub-distribution over the available transitions in the last state of the path. Ad-
versaries are defined in terms of sub-distributions because they can opt to (with
some probability) take none of the available choices and remain in the current
state. For this reason, they are are sometimes called partial adversaries. Occa-
sionally, we will distinguish between these and complete adversaries, in which all
the distributions are total.

We denote by PathσM the set of all paths through M when controlled by
adversary σ, and by AdvM the set of all possible adversaries for M . Under an
adversary σ, we define a probability space PrσM over the set of paths PathσM ,
which captures the (purely probabilistic) behaviour of M under σ.

To reason about probabilistic systems comprising multiple components, we
will need the notions of parallel composition and alphabet extension:

Definition 2 (Parallel composition of PAs). If M1 = (S1, s1, αM1 , δM1 , L1)
and M2 = (S2, s2, αM2 , δM2 , L2) are PAs, then their parallel composition, denoted
M1‖M2, is given by the PA (S1×S2, (s1, s2), αM1

∪αM2
, δM1‖M2

, L) where δM1‖M2

is defined such that (s1, s2)
a−→ µ1×µ2 if and only if one of the following holds:

– s1
a−→ µ1, s2

a−→ µ2 and a ∈ αM1
∩ αM2

– s1
a−→ µ1, µ2 = ηs2 and a ∈ (αM1

\αM2
) ∪ {τ}

– s2
a−→ µ2, µ1 = ηs1 and a ∈ (αM2

\αM1
) ∪ {τ}

and L(s1, s2) = L1(s1) ∪ L2(s2).

Definition 3 (Alphabet extension). For any PA M = (S, s, αM , δM , L) and
set of actions Σ, we extend the alphabet of M to Σ, denoted M [Σ], as follows:
M [Σ] = (S, s, αM∪Σ, δM [Σ], L) where δM [Σ] = δM∪{(s, a, ηs) | s∈S∧a∈Σ\αM}.
We also require the notion of projections. First, for any state s = (s1, s2) of
M1‖M2, the projection of s onto Mi, denoted by s�Mi

, is si. We extend this
notation to distributions over the state space S1×S2 of M1‖M2 in the standard
manner. Next, for any path π of M1‖M2, the projection of π onto Mi, denoted
π�Mi , is the path obtained from π by projecting each state of π onto Mi and
removing all the actions not in αMi together with the subsequent states.

Definition 4 (Projections of adversaries). Let M1 and M2 be PAs and σ
an adversary of M1‖M2. The projection of σ onto Mi, denoted σ�Mi

, is the
adversary on Mi where, for any finite path πi of Mi, σ�Mi

(π)(a, µi) equals∑
{|Prσ(π)·σ(π)(a, µ) | π ∈ PathσM1‖M2

∧ π�Mi
=πi ∧ µ�Mi

=µi|}
Prσ�Mi (πi)
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Compositional reasoning about PAs, and in particular adversary projections,
necessitates the use of partial, rather than complete, adversaries. In particular,
even if an adversary σ of M1‖M2 is complete, the projection σ�Mi onto one
component may be partial.

2.2 Model checking for PAs

The verification of PAs against properties specified either in temporal logic or as
automata has been well studied. In this paper, both the states and transitions
of PAs are labelled (with sets of atomic propositions and actions, respectively)
and we formulate properties that refer to both types of labels. For the former,
we will express properties in linear temporal logic (LTL), and for the latter, we
will use safety properties represented by deterministic finite automata.

LTL verification. For an LTL formula ψ, PA M and adversary σ ∈ AdvM :

PrσM (ψ)
def
= PrσM{π ∈ PathσM | π |= ψ}

where π |= ψ denotes satisfaction according to the standard semantics of LTL.
Verifying an LTL specification ψ against M typically involves checking that the
probability of satisfying ψ meets a probability bound for all adversaries. This
reduces to computing the minimum or maximum probability of satisfying ψ:

Prmin
M (ψ)

def
= infσ∈AdvM PrσM (ψ) and Prmax

M (ψ)
def
= supσ∈AdvM PrσM (ψ) .

The complexity of this computation is polynomial in the size of M and doubly
exponential in the size of ψ [7]. In practice, the LTL formula ψ is small and, for
simple, commonly used cases such as ♦ap (“eventually ap”) or �ap (“globally
ap”), model checking is polynomial [2]. Furthermore, efficient implementations
of LTL verification exist in tools such as PRISM [11] and LiQuor [6].

Safety properties. A regular safety property A represents a set of infinite
words, denoted L(A), that is characterised by a regular language of bad prefixes,
finite words of which any extension is not in L(A). More precisely, we will define a
regular safety property A by a (complete) deterministic finite automaton (DFA)
Aerr = (Q, q, αA, δA, F ), comprising states Q, initial state q ∈ Q, alphabet αA,
transition function δA : Q×αA → Q and accepting states F ⊆ Q. The DFA Aerr

defines, in standard fashion, a regular language L(Aerr ) ⊆ (αA)∗. The language
L(A) is then defined as L(A) = {w ∈ (αA)ω | no prefix of w is in L(Aerr )}.

Given a PA M , adversary σ ∈ AdvM and regular safety property A with
αA ⊆ αM , we define the probability of M under σ satisfying A as:

PrσM (A)
def
= PrσM{π ∈ PathσM | tr(π)�αA ∈ L(A)}

where w�α is the projection of word w onto a subset α of its alphabet. We then
define Prmin

M (A) and Prmax
M (A) as for LTL above.
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Fig. 1. Two probabilistic automata M1,M2 and the DFA for a safety property G

Definition 5 (Probabilistic safety properties). A probabilistic safety prop-
erty 〈A〉>p comprises a regular safety property A and a rational probability bound
p. We say that a PA M satisfies the property, denoted M |= 〈A〉>p, if the prob-
ability of satisfying A is at least p for any adversary:

M |= 〈A〉>p ⇔ ∀σ∈AdvM . PrσM (A) > p ⇔ Prmin
M (A) > p .

Safety properties can be used to represent a wide range of useful properties of
probabilistic automata. Examples include:

– “the probability of an error occurring is at most 0.01”
– “event A always occurs before event B with probability at least 0.98”
– “the probability of terminating within k time-units is at least 0.75”

The last of these represents a very useful class of properties for timed proba-
bilistic systems, perhaps not typically considered as safety properties. Using the
digital clocks approach of [13], verifying real-time probabilistic systems can often
be reduced to analysis of a PA with time steps encoded as a special action type.
Such requirements are then naturally encoded as safety properties.

Example 1. Figure 1 shows two PAs M1 and M2. Component M1 represents
a controller that powers down devices. Upon receipt of the detect signal, it first
issues the warn signal followed by shutdown; however, with probability 0.2 it will
fail to issue the warn signal. M2 represents a device which, given the shutdown
signal, powers down correctly if it first receives the warn signal and otherwise
will only power down correctly 90% of the time. We consider a simple safety
property G “action fail never occurs”, represented by the DFA Gerr also shown
in Figure 1. Composing the two PAs in parallel and applying model checking,
we have that Prmin

M1‖M2
(G) = 0.98. Thus, M1‖M2 |= 〈G〉>0.98.

Safety verification. Using standard automata-based techniques for model
checking PAs [7], verifying correctness of probabilistic safety properties reduces
to model checking the product of a PA and a DFA:

Definition 6 (PA-DFA product). The product of a PA M=(S, s, αM , δM , L)
and DFA Aerr=(Q, q, αA, δA, F ) with αA ⊆ αM is given by the PA M⊗Aerr =
(S×Q, (s, q), αM , δ′, L′) where:

– (s, q)
a−→ µ×ηq′ if s

a−→ µ and q′ = δA(q, a) if a ∈ αA and q′ = q otherwise;
– L′(s, q) = L(s) ∪ {errA} if q ∈ F and L′(s, q) = L(s) otherwise.
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Proposition 1. For PA M and regular safety property A, we have:

Prmin
M (A) = 1− Prmax

M⊗Aerr (♦errA) .

Thus, using [2], satisfaction of the probabilistic safety property 〈A〉>p can be
checked in time polynomial in the size of M⊗Aerr . Note that maximum reach-
ability probabilities, and therefore satisfaction of probabilistic safety properties,
are independent of whether complete or partial adversaries are considered.

Multi-objective model checking. In addition to traditional probabilistic
model checking techniques, the approach presented in this paper requires the
use of multi-objective model checking [10]. The conventional approach described
above allows us to check whether, for all adversaries (or, dually, for at least one
adversary), the probability of some property is above (or below) a given bound.
Multi-objective queries allow us to check the existence of an adversary satisfying
multiple properties of this form. In particular, consider k predicates of the form
PrσM (ψi) ∼i pi where ψi is an LTL formula, pi ∈ [0, 1] is a rational probability
bound and ∼i∈ {>, >}. Using the techniques in [10], we can verify whether:

∃σ∈AdvM . ∧ki=1 (PrσM (ψi) ∼i pi)

by a reduction to a linear programming (LP) problem. Like for (single-objective)
LTL verification, this can be done in time polynomial in the size of M (and dou-
bly exponential in the sizes of ψi). In fact, [10] also shows that this technique
generalises to checking existential or universal queries over a Boolean combina-
tion of predicates for which ∼i∈ {>, >,6, <}. In all cases, if an adversary which
satisfies the predicates exists, then it can also easily be obtained.

Finally, through a trivial extension of this approach (and without increasing
the complexity), we can formulate quantitative multi-objective queries. For ex-
ample, given a conjunction of the above predicates Ψ = ∧ki=1PrσM (ψi) ∼i pi, and
an additional LTL formula ψ0, we can compute the maximum probability of ψ0

that is achievable whilst also satisfying Ψ :

Prmax
M (ψ0 |Ψ)

def
= sup{PrσM (ψ0) |σ ∈ AdvM ∧ Ψ)} .

3 Compositional Verification for PAs

We now describe our approach for compositional verification of probabilistic
automata. We first define the basic underlying ideas and then present several
different proof rules. For clarity, we present the simplest of these rules in some
detail and then discuss some generalisations and extensions.

We extend the notion of assume-guarantee reasoning to PAs using probabilis-
tic assume-guarantee triples of the form 〈A〉>pAM 〈G〉>pG , where 〈A〉>pA and
〈G〉>pG are probabilistic safety properties and M is a PA. Informally, the mean-
ing of this is “whenever M is part of a system satisfying A with probability at
least pA, then the system will satisfy G with probability at least pG”. Formally:
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Definition 7 (Assume-guarantee semantics). If 〈A〉>pA and 〈G〉>pG are
probabilistic safety properties, M is a PA and αG ⊆ αA ∪ αM , then

〈A〉>pAM 〈G〉>pG ⇔ ∀σ∈AdvM [αA] .
(

PrσM [αA](A)>pA → PrσM [αA](G)>pG
)
.

The use of M [αA], i.e. M extended to the alphabet of A, in this definition is
required for the case where the property G includes actions that are not in M .

We write 〈true〉M 〈G〉>pG to denote the absence of any assumption, i.e. the
query 〈true〉M 〈G〉>pG is equivalent to M |= 〈G〉>pG which, as described above,
is standard model checking [2]. In the general case, we check the satisfaction of a
probabilistic assume-guarantee triple using multi-objective PA model checking:

Proposition 2 (Assume-guarantee model checking). Let M be a PA, 〈A〉>pA ,
〈G〉>pG be probabilistic safety properties and M ′ = M [αA]⊗Aerr⊗Gerr . The
probabilistic assume-guarantee triple 〈A〉>pAM 〈G〉>pG holds if and only if:

¬∃σ′∈AdvM ′ .
(

Prσ
′

M ′(�¬errA)>pA ∧ Prσ
′

M ′(♦errG)>1−pG
)

which can be checked in time polynomial in |M ′| by solving an LP problem [10].

We now present, using the definitions above, several assume-guarantee proof
rules to allow compositional verification.

An asymmetric proof rule. The first rule we consider is asymmetric, in the
sense that we require only a single assumption about one component. Experience
in the non-probabilistic setting [16] indicates that, despite its simplicity, rules of
this form are widely applicable.

Theorem 1. If M1,M2 are probabilistic automata and 〈A〉>pA , 〈G〉>pG proba-
bilistic safety properties such that αA ⊆ αM1 and αG ⊆ αM2 ∪ αA, then the
following proof rule holds:

〈true〉M1 〈A〉>pA
〈A〉>pAM2 〈G〉>pG
〈true〉M1 ‖M2 〈G〉>pG

(ASym)

Theorem 1 means that, given an appropriate assumption 〈A〉>pA , we can check
the correctness of a probabilistic safety property 〈G〉>pG on M1‖M2, without
constructing and model checking the full model. Instead, we perform one instance
of (standard) model checking on M1 (to check the first condition of rule (ASym))
and one instance of multi-objective model checking on M2[αA]⊗Aerr (to check
the second). If Aerr is much smaller than M1, we can expect significant gains in
terms of the verification performance.

Example 2. We illustrate the rule (ASym) on the PAs M1,M2 and property
〈G〉>0.98 from Example 1. Figure 2 (left) shows a DFA Aerr representing the
safety property A “warn occurs before shutdown”. We will use the probabilistic
safety property 〈A〉>0.8 as the assumption about M1 in (ASym).
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Fig. 2. DFA for safety property A and the product PA M2⊗Aerr⊗Gerr (see Figure 1)

Checking the first condition of (ASym) amounts to verifying M1 |= 〈A〉>0.8,
which can be done with standard probabilistic model checking. To complete the
verification, we need to check the second condition 〈A〉>0.8M2 〈G〉>0.98, which,
from Proposition 2, is achieved though multi-objective model checking on the
product2 M2⊗Aerr⊗Gerr . More precisely, we check there is no adversary under
which the probability of remaining within states not satisfying errA is at least
0.8 and the probability of reaching an errG state is above 1−0.98 = 0.02. The
product is shown in Figure 2 (right), where we indicate states satisfying errA
and errG by highlighting the accepting states a2 and q1 of DFAs Aerr and Gerr .

By inspection, we see that no such adversary exists, so we can conclude
that M1‖M2 |= 〈G〉>0.98. Consider, however, the adversary σ which, in the initial
state, chooses warn with probability 0.8 and shutdown with probability 0.2. This
satisfies �¬errA with probability 0.8 and ♦errG with probability 0.02. Hence,
〈A〉>0.8M2 〈G〉>pG does not hold for any value of pG > 1−0.02 = 0.98.

Proof of Theorem 1. We give below the proof of Theorem 1. This requires the
following lemma, which is a simple extension of [20, Lemma 7.2.6, page 141].

Lemma 1. Let M1,M2 be PAs, σ ∈ AdvM1‖M2
, Σ ⊆ αM1‖M2

and i = 1, 2. If A
and B are regular safety properties such that αA ⊆ αMi

and αB ⊆ αMi[Σ], then

(a) PrσM1‖M2
(A) = Pr

σ�Mi
Mi

(A) and (b) PrσM1‖M2
(B) = Pr

σ�Mi[Σ]

Mi[Σ] (B) .

Note that the projections onto Mi[Σ] in the above are well defined since the
condition Σ ⊆ αM1‖M2

implies that M1‖M2 = M1[Σ]‖M2 = M1‖M2[Σ].

Proof (of Theorem 1). The proof is by contradiction. Assume that there exist
PAs M1 and M2 and probabilistic safety properties 〈A〉>pA and 〈G〉>pG such
that 〈true〉M1 〈A〉>pA and 〈A〉>pAM2 〈G〉>pG hold, while 〈true〉M1‖M2 〈G〉>pG
does not. From the latter, it follows that there exists an adversary σ ∈ AdvM1‖M2

such that PrσM1‖M2
(G) < pG. Now, since 〈true〉M1 〈A〉>pA and σ�M1

∈ AdvM1
,

2 In this example, αA = {warn, shutdown} ⊆ αM2 so M2[αA] = M2.
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it follows that:

Pr
σ�M1

M1
(A) > pA ⇒ PrσM1‖M2

(A) > pA by Lemma 1(a) since αA ⊆ αM1

⇒ Pr
σ�M2[αA]

M2[αA] (A) > pA by Lemma 1(b) since αA ⊆ αM2[αA]

⇒ Pr
σ�M2[αA]

M2[αA] (G) > pG since 〈A〉>pAM2 〈G〉>pG
⇒ PrσM1‖M2

(G) > pG by Lemma 1(b) since αG ⊆ αM2[αA]

which contradicts the assumption that PrσM1‖M2
(G) < pG. ut

Generalising the proof rule. Next, we state two useful generalisations of the
above proof rule. First, using 〈A1, . . . , Ak〉>p1,...,pk to denote the conjunction of
probabilistic safety properties 〈Ai〉>pi for i = 1, . . . , k, we have:

〈true〉M1 〈A1, . . . , Ak〉>p1,...,pk
〈A1, . . . , Ak〉>p1,...,pkM2 〈G〉>pG

〈true〉M1 ‖M2 〈G〉>pG

(ASym-Mult)

Definition 7 extends naturally to k assumptions, replacing αA with ∪ki=1αAi
and the single probabilistic safety property on the left-hand side of the implica-
tion with the conjunction. In similar fashion, by adapting Proposition 2, model
checking of the query 〈A1, . . . , Ak〉>p1,...,pkM 〈G〉>pG reduces to multi-objective
model checking on the product M [∪ki=1αAi ]⊗Aerr

1 ⊗ · · ·⊗Aerr
k ⊗Gerr .

Secondly, we observe that, through repeated application of (ASym), we ob-
tain a rule of the following form for n components:

〈true〉M1 〈A1〉>p1
〈A1〉>p1 M2 〈A2〉>p2

· · ·
〈An−1〉>pn−1 Mn 〈G〉>pG
〈true〉M1 ‖ · · · ‖Mn 〈G〉>pG

(ASym-N)

A circular proof rule. One potential limitation of the rule (Asym) is that
we may not be able to show that the assumption A1 about M1 holds without
making additional assumptions about M2. This can be overcome by using the
following circular proof rule:

Theorem 2. If M1,M2 are PAs and 〈A1〉>p1 , 〈A2〉>p2 and 〈G〉>pG probabilistic
safety properties such that αA2 ⊆ αM2 , αA1 ⊆ αM1 ∪ αA2 and αG ⊆ αM2 ∪ αA1 ,
then the following circular assume-guarantee proof rule holds:

〈true〉M2 〈A2〉>p2
〈A2〉>p2 M1 〈A1〉>p1
〈A1〉>p1 M2 〈G〉>pG
〈true〉M1 ‖M2 〈G〉>pG

(Circ)
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An asynchronous proof rule. This rule is motivated by the fact that, often,
part of a system comprises several asynchronous components, that is, compo-
nents with disjoint alphabets. In such cases, it can be difficult to establish useful
probability bounds on the combined system if the fact that the components act
independently is ignored. For example, consider the case of n independent coin
flips; in isolation, we have that the probability of any coin not returning a tail
is 1/2. Now, ignoring the independence of the coins, all we can say is that the
probability of any of them not returning a tail is at least 1/2. However, using
their independence, we have that this probability is at least 1−1/2n.

Theorem 3. For any PAs M1,M2 and probabilistic safety properties 〈A1〉>pA2
,

〈A2〉>pA1
, 〈G1〉>pG1

and 〈G2〉>pG2
such that αM1

∩ αM2
= ∅, αG1

⊆ αM1
∪ αA1

and αG2
⊆ αM2

∪ αA2
, we have the following asynchronous assume-guarantee

proof rule:

〈A1〉>pA1
M1 〈G1〉>pG1

〈A2〉>pA2
M2 〈G2〉>pG2

〈A1, A2〉>pA1
,pA2

M1‖M2 〈G1 ∨G2〉>pG1
+pG2

−pG1
·pG2

(ASync)

where the disjunction of safety properties G1 and G2 is obtained by taking the
intersection of the DFAs Gerr

1 and Gerr
2 .

4 Quantitative Assume-Guarantee Queries

Practical experience with probabilistic verification suggests that it is often more
useful to adopt a quantitative approach. For example, rather than checking the
correctness of a probabilistic safety property 〈G〉>pG , it may be preferable to
just compute the actual worst-case (minimum) probability Prmin

M (G) that G is
satisfied. In this section we consider how to formulate such quantitative queries
in the context of assume-guarantee reasoning. For simplicity, we restrict our
attention here to the rule (ASym) for fixed PAs M1 and M2, and property G.
Similar reasoning applies to the other rules presented above.

Maximal lower bounds. Rule (ASym) allows us to establish lower bounds for
the probability Prmin

M1‖M2
(G), i.e. it can be used to prove, for certain values of

pG, that Prmin
M1‖M2

(G) > pG. We consider now how to obtain the highest such
lower bound, say p?G. First, we note that, from Definition 7, it is clear that the
highest value of pG for which 〈A〉>pAM2 〈G〉>pG holds will be obtained by using
the maximum possible value of pA. For rule (ASym) to be applicable, this is
equal to Prmin

M1
(A), since for any higher value of pA the first condition will fail to

hold. Now, by Proposition 2, and letting M ′ = M2[αA]⊗Aerr ⊗Gerr , the value
p?G can be obtained through multi-objective model checking as follows:

p?G = 1−Prmax
M ′ (♦errG |Ψ) where Ψ = PrσM ′(�¬errA) > pA.
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Parameterised queries. Let us assume that component M1 is parameterised
by a variable x in such a way that varying x changes the probability of M1 satis-
fying the assumption A. For example, increasing the value of x might increase the
probability PrM1(A), but simultaneously worsen some other performance mea-
sure or cost associated with M1. In this situation, it is desirable to establish a
trade-off between the probability of M1‖M2 satisfying G and the secondary ‘cost’
of M1. Our use of multi-objective model checking for compositional verification
offers two choices here. Firstly, we can pick a suitable threshold for PrM1‖M2

(G)
and then compute the lowest value of PrM1(A) which guarantees this, allow-
ing an appropriate value of x to be chosen. Alternatively, we can consider the
so-called Pareto curve: the set of achievable combinations of PrM1‖M2

(G) and
PrM1

(A), which will present a clear view of the trade-off. For the latter, we can
use the techniques of [10] for approximate exploration of the Pareto curve.

Upper bounds. Since application of (ASym) gives lower bounds on Prmin
M1‖M2

(G),
it is desirable to also generate upper bounds on this probability. This can be done
as follows. When checking condition 2 of (ASym), using multi-objective model
checking, we also obtain an adversary σ ∈ AdvM2[αA]⊗Aerr that satisfies 〈A〉>pA
and gives the minimum (i.e. worst-case) probability of satisfying G. This can
then be projected onto M2, giving an adversary σ2 which achieves the worst-
case behaviour of the single component M2 with respect to G satisfying 〈A〉>pA .
Furthermore, from σ2, we can easily construct a PA Mσ2

2 that represents the
behaviour of M2 under σ2.

Finally, we compute the probability of satisfyingG onM1‖Mσ2
2 . BecauseMσ2

2

is likely to be much smaller than M2, there is scope for this to be efficient, even
if model checking M1‖M2 in full is not feasible. Since M1‖Mσ2

2 represents only
a subset of the behaviour of M1‖M2, the probability computed is guaranteed to
give an upper bound on Prmin

M1‖M2
(G). We use σ2 (which achieves the worst-case

behaviour with respect to G), rather than an arbitrary adversary of M2, in order
to obtain a tighter upper bound.

5 Implementation and Case Studies

We have implemented our compositional verification approach in a prototype
tool. Recall that, using the rules given in Section 3, verification requires both
standard (automata-based) model checking and multi-objective model checking.
Our tool is based on the probabilistic model checker PRISM [11], which already
supports LTL model checking of probabilistic automata. Model checking of prob-
abilistic safety properties, represented by DFAs, can be achieved with existing
versions of PRISM, since DFAs can easily be encoded in PRISM’s modelling
language. For multi-objective model checking, we have extended PRISM with
an implementation of the techniques in [10]. This requires the solution of Linear
Programming (LP) problems, for which we use the ECLiPSe Constraint Logic
Programming system with the COIN-OR CBC solver, implementing a branch-
and-cut algorithm. All experiments were run on a 2GHz PC with 2GB RAM.
Any run exceeding a time-limit of 24 hours was disregarded.
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We demonstrate the application of our tool to two large case studies. The
first is the randomised consensus algorithm of Aspnes & Herlihy [1]. The al-
gorithm allows N processes in a distributed network to reach a consensus and
employs, in each round, a shared coin protocol parameterised by K. The PA
model is based on [14] and consists of an automaton for each process and for
the shared coin protocol of each round. We analyse the minimum probability
that the processes decide by round R. The compositional verification employs
R−2 uses of the Async rule to return a probabilistic safety property satisfied by
the (asynchronous) composition of the shared coin protocols for the first R−2
rounds. This is then used as the assumption of an Asym rule for the subsystem
representing the processes.

The second case study is the Zeroconf network configuration protocol [4].
We use the PA model from [13] consisting of two components, one representing
a new host joining the network (parameterised by K, the number of probes it
sends before using an IP address), and the second representing the environment,
i.e. the existing network. We consider two properties: the minimum probability
that a host employs a fresh IP address and that a host is configured by time T .
In each case the compositional verification uses one application of the Circ rule.

Table 1 shows experimental results for these case studies. We present the total
time required for both compositional verification, as described in this paper, and
non-compositional verification using PRISM (with the fastest available engine).
Note that, in each case, we use the quantitative approach described in Section 4
and give actual (bounds on) probabilities computed. To give an indication of
the size of the models considered, we give the number of states for the full (non-
compositional) models and the number of variables in the LP problems used for
multi-objective model checking in the compositional case.

In summary, we see that the compositional approach is faster in the major-
ity of cases. Furthermore, it allows verification of several models for which it is
infeasible with conventional techniques. For the cases where compositional ver-
ification is slower, this is due to the cost of solving a large LP problem, which
is known to be more expensive than the highly optimised techniques used in
PRISM. Furthermore, LP solution represents the limiting factor with respect
to the scalability of the compositional approach. We expect that improvements
to our technique can be made that will reduce LP problem sizes and improve
performance. Finally, we note that the numerical values produced using compo-
sitional verification are generally good; in fact, for the consensus case study, the
bounds obtained are precise.

6 Conclusions

We have presented a compositional verification technique, based on assume-
guarantee rules, for probabilistic automata. Properties of these models are rep-
resented as probabilistic safety properties, and we show how verifying the result-
ing assume-guarantee queries reduces to the problem of multi-objective model
checking. We also show how this can be leveraged to provide a quantitative ap-
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Case study Non-compositional Compositional

[parameters] States Time (s) Result† LP size Time (s) Result†

consensus
(2 processes)

[R K]

3 2 5,158 1.6 0.108333 1,064 0.9 0.108333
3 20 40,294 108.1 0.012500 1,064 7.4 0.012500
4 2 20,886 3.6 0.011736 2,372 1.2 0.011736
4 20 166,614 343.1 0.000156 2,372 7.8 0.000156
5 2 83,798 7.7 0.001271 4,988 2.2 0.001271
5 20 671,894 1,347 0.000002 4,988 8.8 0.000002

consensus
(3 processes)

[R K]

3 2 1,418,545 18,971 0.229092 40,542 29.6 0.229092
3 12 16,674,145* time-out - 40,542 49.7 0.041643
3 20 39,827,233* time-out - 40,542 125.3 0.024960
4 2 150,487,585 78,955 0.052483 141,168 376.1 0.052483
4 12 1,053,762,385* mem-out - 141,168 396.3 0.001734
4 20 2,028,200,209* mem-out - 141,168 471.9 0.000623

zeroconf
[K]

2 91,041 39.0 2.0e-5 6,910 9.3 3.1e-4
4 313,541 103.9 7.3e-7 20,927 21.9 3.1e-4
6 811,290 275.2 2.6e-8 40,258 54.8 2.5e-4
8 1,892,952 592.2 9.5e-10 66,436 107.6 9.0e-6

zeroconf
(time

bounded)
[K T ]

2 10 665,567 46.3 5.9e-5 62,188 89.0 2.1e-4
2 14 106,177 63.1 2.0e-8 101,313 170.8 8.1e-8
4 10 976,247 88.2 3.3e+0 74,484 170.8 3.3e+0
4 14 2,288,771 128.3 7.0e-5 166,203 430.6 3.1e-4

* These models can be constructed, but not model checked, in PRISM.
† Results are maximum probabilities of error so actual values are these subtracted from 1.

Table 1. Experimental results, comparing with non-compositional verification

proach to compositional verification. In contrast to existing work in this area,
our techniques can be implemented efficiently and we demonstrate successful
results on several large case studies.

There are several interesting directions for future work. In particular, we
plan to experiment with the use of learning techniques to automatically produce
the assumptions required for compositional reasoning. We also intend to further
develop our compositional proof rules and investigate to what extent they are
complete. Finally, we plan to expand the range of properties that can be verified,
including for example reward-based specifications.
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Appendix. We include here proofs ommitted from the main text.

Proof (of Proposition 2). Consider any PA M , probabilistic safety properties
〈A〉>pA and 〈G〉>pG , and let M ′ = AdvM [αA]⊗Aerr⊗Gerr . By definition of ⊗
(see Definition 6) we can construct a bijective function f : AdvM [αA] → AdvM ′

such that:

PrσM [αA](B) = 1− Pr
f(σ)
M ′ (♦errB) for B ∈ {A,G} . (1)

Now using Definition 7 we have:

〈A〉>pAM 〈G〉>pG ⇔ ∀σ∈AdvM [αA].
(

PrσM [αA](A)>pA → PrσM [αA](G)>pG
)

⇔ ∀σ∈AdvM [αA].
(

Pr
f(σ)
M ′ (♦errA)61−pA → Pr

f(σ)
M ′ (♦errG)61−pG

)
⇔ ∀σ′∈AdvM ′ .

(
Prσ

′

M ′(♦errA)61−pA → Prσ
′

M ′(♦errG)61−pG
)

⇔ ¬∃σ′∈AdvM ′ .
(

Prσ
′

M ′(�¬errA)>pA ∧ Prσ
′

M ′(♦errG)>1−pG
)

where the second step follows from (1), the third since f is a bijection. ut

Proof (of Theorem 2). The proof is by contradiction, therefore assume that there
exist PAs M1 and M2, regular safety properties A1, A2 and G and probability
bounds p1, p2 and pG such that 〈A1〉>p1 M2 〈G〉>pG , 〈A2〉>p2 M1 〈A1〉>p1 and
〈true〉M2 〈A2〉>p2 hold, while 〈true〉M1‖M2 〈G〉>pG does not. From the latter,
it follows that there exists an adversary σ ∈ AdvM1‖M2

such that PrσM1‖M2
(G) <

pG. Using the fact that both 〈true〉M2 〈A2〉>p2 and 〈A2〉>p2 M1 〈A1〉>p1 hold,
we can apply Theorem 1 to show that 〈true〉M1‖M2 〈A1〉>p1 holds, and hence:

PrσM1‖M2
(A1) > p1

⇒ Pr
σ�M2[αA1

]

M2[αA1
] (A1) > p1 by Lemma 1(b) since αA1

⊆ αM2[αA1
]

⇒ Pr
σ�M2[αA1

]

M2[αA1
] (G) > pG since 〈A1〉>p1 M1 〈G〉>pG

⇒ PrσM1‖M2
(G) > pG by Lemma 1(b) since αA1 ⊆ αM2[αA1

]

which contradicts the assumption that PrσM1‖M2
(G) < pG. ut

Proof (of Theorem 3). The proof is by contradiction. Suppose there exist PAs
M1 and M2 where αM1

∩ αM2
= ∅, regular safety properties A1, A2, G1 and G2

and probability bounds pA1
, pA2

, pG1
and pG2

such that 〈A1〉>pA1
M1 〈G1〉>pG1

and 〈A2〉>pA2
M2 〈G2〉>pG2

hold while

〈A1, A2〉>pA1
,pA2

M1‖M2 〈G1 ∨G2〉>pG1
+pG2

−pG1
·pG2

does not. Therefore, letting αA = αA1
∪ αA2

, by Definition 7 there exists an
adversary σ of (M1‖M2)[αA] such that

Prσ(M1‖M2)[αA](A1) > pA1 (2)

Prσ(M1‖M2)[αA](A2) > pA2 (3)

Prσ(M1‖M2)[αA](G1 ∨G2) < pG1 + pG2 − pG1 ·pG2 . (4)



Assume-Guarantee Verification for Probabilistic Systems 17

As G1 and G2 are safety properties, we have:

Prσ(M1‖M2)[αA](G1∨G2) = 1−Prσ(M1‖M2)[αA] ‖ (Gerr
1 ‖Gerr

2 )

(
♦(errG1

∧errG2
)
)
. (5)

Next, since αA = αA1
∪αA2

and the parallel composition operator is commutative
and associative, using Definition 3 it follows that:

(M1‖M2)[αA] ‖ (Gerr
1 ‖Gerr

2 ) =
(
M1[αA1

]‖Gerr
1

)
‖
(
M2[αA2

]‖Gerr
2

)
from which, using the fact that αM1 ∩ αM2 = ∅, we can derive the equality:

Prσ(M1‖M2)[αA] ‖ (Gerr
1 ‖Gerr

2 )

(
♦(errG1∧errG2)

)
= Pr

σ�M1[αA1
]

M1[αA1
]‖Gerr

1
(♦errG1

) · Pr
σ�M2[αA2

]

M2[αA2
]‖Gerr

2
(♦errG2

) . (6)

Since 〈A1〉pA1
M1 〈G1〉>pG1

and 〈A2〉pA2
M2 〈G2〉>pG2

hold, using (2) and (3)
together with Definition 3 we have that:

Pr
σ�M1[αA1

]

M1[αA1
]‖Gerr

1
(♦errG1

) 6 1−pG1
and Pr

σ�M2[αA2
]

M2[αA2
]‖Gerr

2
(♦errG2

) 6 1−pG2

which combined with (6) yields:

Prσ(M1‖M2)[αA] ‖ (Gerr
1 ‖Gerr

2 )

(
♦(errG1

∧errG2
)
)
6 (1−pG1

) · (1−pG2
) .

Finally, substituting this result into (5) gives the inequality:

Prσ(M1‖M2)[αA](G1 ∨G2) > 1− (1−pG1
) · (1−pG2

) = pG1
+ pG2

− pG1
·pG2

which contradicts (4), and hence completes the proof. ut


	Assume-Guarantee Verification  for Probabilistic Systems
	Introduction
	Background
	Probabilistic automata
	Model checking for PAs

	Compositional Verification for PAs
	Quantitative Assume-Guarantee Queries
	Implementation and Case Studies
	Conclusions


