
Automatic Verification of Real-time Systems

with Discrete Probability Distributions ?

Marta Kwiatkowska a, Gethin Norman a, Roberto Segala b and
Jeremy Sproston a

aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom
bUniversità di Bologna, Mura Anteo Zamboni 7, 40127 Bologna, Italy

Abstract

We consider the timed automata model of [3], which allows the analysis of real-
time systems expressed in terms of quantitative timing constraints. Traditional ap-
proaches to real-time system description express the model purely in terms of non-
determinism; however, it is often desirable to express the likelihood of the system
making certain transitions. In this paper, we present a model for real-time systems
augmented with discrete probability distributions. Furthermore, two approaches to
model checking are introduced for this model. The first uses the algorithm of [6]
to provide a verification technique against temporal logic formulae which can refer
both to timing properties and probabilities. The second, generally more efficient,
technique concerns the verification of probabilistic, real-time reachability properties.

1 Introduction

The proliferation of digital technology embedded into real-life environments
has led to increased interest in computer systems expressed in terms of quan-
titative timing constraints. Examples of such real-time systems include com-
munication protocols, digital circuits with uncertain delay lengths, and media
synchronization protocols. A number of frameworks exist for modelling, anal-
ysis and verification of such systems. A formalism that has received much
attention, both in terms of theoretical and practical developments, is that of
timed automata; in particular, the theory of automatically verifying timed au-
tomata against properties expressed in a real-time temporal logic is advanced,
and is supported by a number of tools [7,10].

? supported in part by EPSRC grants GR/M04617, GR/M13046, and GR/N22960.

Preprint submitted to Elsevier Science 3 February 2004

Traditional approaches to the formal description of real-time systems express
the system model purely in terms of nondeterminism. However, it may be
desirable to express the relative likelihood of the system exhibiting certain
behaviour. For example, we may wish to model a system for which the likeli-
hood of a certain event occurring changes with respect to the amount of time
elapsed. This notion is particularly important when considering fault-tolerant
systems. Furthermore, we may also wish to refer to the likelihood of certain
properties being satisfied by the real-time system, and to have a model check-
ing algorithm for verifying the truth of these assertions. The remit of this
paper is to address these problems.

We present a model for real-time systems that are described partially in terms
of discrete probability distributions, and two automatic verification methods
for this model against probabilistic timed properties. The system model is
called a probabilistic timed automaton, and differs from the traditional timed
automaton model of [2,3] in the following respect: the edge relation of proba-
bilistic timed automaton is both nondeterministic and probabilistic in nature.
More precisely, instead of making a purely nondeterministic choice over the
set of currently enabled edges, we choose amongst the set of enabled discrete
probability distributions, each of which is defined over a finite set of edges. We
then make a probabilistic choice as to which edge to take according to the se-
lected distribution. As with usual timed automata techniques, the underlying
model of time is assumed to be dense; that is, the time domain is modelled
by the reals (R) or rationals (Q).

In addition, we require appropriate languages to specify properties of prob-
abilistic real-time systems. Firstly, a specification language commonly used
for stating real-time system requirements, TCTL (Timed Computation Tree
Logic) [21], is adapted to cater for probability. A common approach taken in
probabilistic temporal logics is to add the probabilistic operator [·]≥p where
p is a probability bound. For example, [φ1 ∃U φ2]≥p is true if the probability
of φ1 ∃U φ2 is at least p. Therefore, we develop our specification language,
PTCTL (Probabilistic Timed Computation Tree Logic), by adding such prob-
abilistic operators to TCTL. The resulting logic allows us to express such
quality of service properties as “with probability 0.7, there will be a response
between 5 and 7 time units after a query”. Secondly, we also consider the
less expressive class of reachability properties, an example of which is “with
probability 0.99 or greater, a data packet is delivered within 5 time units”.

The denseness of the time domain means that the state space of timed au-
tomata is infinite. Therefore, automatic verification of timed automata is per-
formed by constructing a finite-state quotient of the system model. This quo-
tient takes the form of a state-labelled transition system which represents all of
the timed automaton’s behaviours, and which can be analyzed using analogues
of traditional model checking techniques. We adopt this method in order to

2

construct a finite quotient of probabilistic timed automata, and note that cer-
tain desirable properties required for model checking in the non-probabilistic
case are preserved in our context. The addition of discrete probability distri-
butions to timed automata means that the transitions of the resulting finite
quotient structure are both nondeterministic and probabilistic in nature, and
therefore the model checking methods employed must accommodate this char-
acteristic. For the case in which PTCTL properties are considered, the verifi-
cation algorithms of [6] are used for this purpose. However, they are defined
with respect to PBTL (Probabilistic Branching Time Logic), which does not
allow the expression of dense timing constraints. Hence, we present a method
for translating a given PTCTL formula into a corresponding PBTL formula.
The model checking algorithm of [6] is then used to verify the PBTL proper-
ties over our probabilistic-nondeterministic quotient structure, the results of
which allow us to conclude whether the original probabilistic timed automaton
satisfies its PTCTL specification. In the case of such temporal logic properties,
the quotient structure is obtained by application of the region equivalence of
[3].

Unfortunately, for many real-life examples of timed systems, region equiva-
lence induces an unnecessarily fine granularity on the infinite state space of
system model, making model checking impractical. Therefore, we also consider
probabilistic real-time reachability properties, which, while lacking the expres-
sive power of PTCTL, can express a number of useful requirements. Consid-
eration of such a narrower class of properties means that we can abstract
more information when constructing the quotient structure of the probabilis-
tic timed automaton, and therefore the size of the quotient can be smaller.
Our approach is to adapt the forward reachability algorithms of [13,24,27] for
timed automata to cater for probability. Unfortunately, the adaptation ne-
cessitates the loss of an appealing characteristic of these algorithms, namely
that they are on-the-fly (that is, the algorithms may terminate as soon as an
answer to the verification problem is found, without searching exhaustively
through the state space). Furthermore, the probability of reachability that we
can compute is not exact, but is instead an upper bound on the true reachabil-
ity probability. However, our approach results in a quotient structure which is
no larger than that obtained via the associated region construction, and which
may, in practice, be significantly smaller. The probability bound obtained by
our method is useful in certain contexts; for example, in the case of invariance
properties for which we are interested in the probability of reaching an ‘unsafe’
state.

An example of a real-time system which could be subject to these techniques
is the bounded retransmission protocol, which is modelled as a network of
purely nondeterministic timed automata in [12]. Each communication chan-
nel is represented as a timed automaton which features a nondeterministic
choice over two edges, one of which corresponds to the correct transmission

3

of the message, the other to the message’s loss. Using our framework, the
relative likelihood of such a loss occurring could be represented by replacing
this nondeterministic choice by a probabilistic choice between the two edges;
for example, a probabilistic timed automaton could be used to model that a
message is lost with probability 0.05 each time a communication channel is
used. Similarly, the system requirements of the bounded retransmission pro-
tocol could be expanded to admit reasoning about the probability of certain
system behaviours. For instance, we may require that, with probability at least
0.99, any data chunk transmitted by the sender is successfully processed by
the receiver within 10 time units.

The model presented in this paper has similarities with other frameworks
for probabilistic real-time systems. In particular, the approach of [18] is also
to augment timed automata with discrete probability distributions; however,
these distributions are obtained by normalization of edge-labelling weights.
Furthermore, the model checking algorithm of [18] is with respect to an action-
based logic, rather than a state-based logic such as PTCTL. A dense time,
automata-based model with discrete and continuous probability distributions
is presented in [1], along with a quotient construction and TCTL model check-
ing method similar to that of [2]. However, the model of [1] does not permit
any nondeterministic choice, and its use of continuous probability distribu-
tions, while a highly expressive modelling mechanism, does not permit the
model to be automatically verified against logics which include bounds on
probability. Furthermore, note that the temporal logic of [19] has syntactic
similarities with the logic PTCTL, although this former logic is interpreted
with respect to discrete, not dense time.

The paper proceeds as follows. Section 2 introduces some preliminary con-
cepts and notation relating to probability distributions, execution sequences
and dense state spaces. Probabilistic timed automata are defined in Section 3
as our model for probabilistic-nondeterministic real-time systems, and an ex-
ample of how the framework can be used to model a simple communication
protocol is presented. Section 4 presents the underlying model of probabilistic
timed automata, which are used to interpret formulae of the logic, PTCTL, in-
troduced in Section 5. Section 6 explores the PTCTL model checking problem
for probabilistic timed automata, and presents a finite-state quotient construc-
tion for this model, a method for translating a PTCTL formula into an equiv-
alent PBTL formula, and finally a verification method. Section 7 considers the
verification of probabilistic timed automata against reachability properties. To
conclude, Section 8 analyzes the complexity of the model checking techniques,
and suggests further directions of research. A preliminary version of this paper
appeared as [22].

4

2 Preliminaries

Probability distributions. We denote the set of (finite) discrete probability
distributions over a set S by µ(S). Therefore, each p ∈ µ(S) is a function
p : S → [0, 1] such that

∑
s∈S p(s) = 1 and the set {s | s ∈ S and p(s) > 0} is

finite.

Markov decision processes. A Markov decision process is a tuple (Q, Steps),
where Q is a set of states, and Steps : Q → 2µ(Q) is a function assigning a
set of probability distributions to each state. Our intuition is that the Markov
decision process traverses the state space by making transitions determined
by Steps ; that is, in the state q, a transition is made by first nondeterminis-
tically selecting a probability distribution p from the set Steps(q), and then
performing a probabilistic choice according to p as to which state to move to.
If the state selected by p is q′, then we denote such a transition by q

p−→ q′.
Throughout the paper, we present variants of Markov decision processes as
necessary. For example, occasionally we will require an additional “event” in
the definition of Steps , so that, for some set Σ, Steps : Q → 2Σ×µ(Q) is now
a function assigning a pair (σ, p), comprising of an event and a probability

distribution, to each state (a transition is now denoted by q
σ,p−→ q′). Further-

more, we often require state labelling functions of the form L : Q → 2AP to be
included in the definition of a Markov decision process. Such functions assign
a set of atomic propositions from the set AP to each state. Then, in this case,
a (labelled) Markov decision process is a tuple (Q, Steps , L).

Paths. Labelled paths (or execution sequences) are non-empty finite or infinite
sequences of the form:

ω = q0
l0−→ q1

l1−→ q2
l2−→ · · ·

where qi are states and li are labels for transitions. We use the following
notation for such paths. Take any path ω. Then the first state of ω is denoted
by first(ω). If ω is finite then the last state of ω is denoted by last(ω). The
length of a path, |ω|, is defined in the usual way: if ω is the finite path ω =

q0
l0−→ q1

l1−→ · · · ln−1−−→ qn, then |ω| = n; if ω is an infinite path, then we let
|ω| = ∞. If k ≤ |ω| then ω(k) denotes the k-th state of ω and step(ω, k) is
the label of the k-th step (that is, ω(k) = qk and step(ω, k) = lk). ω(k) is the

k-th prefix of ω; that is, if k < |ω| then ω(k) = q0
l0−→ q1

l1−→ · · · lk−1−−→ qk, and

if k ≥ |ω| then ω(k) = ω. If ω = q0
l0−→ q1

l1−→ · · · ln−1−−→ qn is a finite path and

ω′ = q′0
l′0−→ q′1

l′1−→ · · · is a finite or infinite path with last(ω) = first(ω′), then
we let the concatenation of ω and ω′ be:

ωω′ = q0
l0−→ q1

l1−→ q2 · · ·
ln−1−−→ qn

l′0−→ q′1
l′1−→ · · ·

5

Clocks and clock valuations. A clock is a real-valued variable which in-
creases at the same rate as real-time. Let X = {x1, . . . , xn} be a set of clocks,
and let ν : X → R be a function assigning a real value to each of the clocks in
this set. Such a function is called a clock valuation. We denote the set of all
clock valuations of X by RX . Let 0 be the clock valuation that assigns 0 to all
clocks in X . For some X ⊆ X , we write ν[X := 0] for the clock valuation that
assigns 0 to clocks in X, and agrees with ν for all clocks in X \ X (that is,
∀x ∈ X . ν[X := 0](x) = 0 and ∀x ∈ X \X . ν[X := 0](x) = ν(x)). Informally,
we write ν[x := 0] if X contains the single clock x. In addition, for every t ∈ R,
ν + t denotes the clock valuation for which all clocks x ∈ X take the value
ν(x) + t.

Constraints. A constraint over X is an expression of the form xi ∼ c or
xi − xj ∼ c, where 1 ≤ i 6= j ≤ n, ∼∈ {<,≤,≥, >} and c ∈ N ∪ {∞}.
By convention (see [14]), a “dummy” variable x0, which is always taken to
represent 0, is assumed. The presence of x0 allows all constraints to be written
uniformly as xi − xj ∼ c where 0 ≤ i 6= j ≤ n, ∼∈ {<,≤} and c ∈ Z ∪ {∞}.

A clock valuation ν satisfies a constraint xi − xj ∼ c iff ν(xi)− ν(xj) ∼ c.

Zones. A zone of X , written ζ, is a convex subset of the valuation space
RX described by a conjunction of constraints. Formally, a zone ζ is the set of
valuations which satisfy the conjunction of n · (n + 1) constraints given by:∧

0≤i6=j≤n

xi − xj ∼i,j ci,j .

Let ZX be the set of all zones of X . We denote by cmax(ζ) the largest constant
used in the description of a zone; that is, cmax(ζ) = max{|ci,j| | 0 ≤ i 6= j ≤ n},
where |c| is the absolute value of c if c ∈ Z and 0 if c = ∞.

Observe that more than one conjunction of constraints may correspond to the
same subset of RX . Therefore, in the sequel, we only consider zones that are
in canonical form; that is, when their constraints are as ‘tight’ as possible (see
[17] for an O(n3) algorithm to achieve this for any zone). Such a canonical
form allows us to use the semantic interpretation of zones as sets of valua-
tions interchangeably with the original, syntactic interpretation of zones as
conjunctions of constraints. Observe that this means that semantic equality
can be reduced to syntactic equality. Other semantic operations, such as in-
tersection ζ1 ∩ ζ2, are well-defined operations on polyhedra such as zones, and
have their corresponding syntactic transformations. However, we generally use
the semantic interpretation throughout this paper.

In the following definition we introduce the clock reset operation on zones.

Definition 1 For any zones ζ, ζ ′ ∈ ZX , and a set of clocks X ⊆ X , let

6

ζ[X := 0] = {ν[X := 0] | ν ∈ ζ} .

We write ζ0 for the zone which contains the single clock valuation 0. Let
ζ ∈ ZX be a zone and ν ∈ RX be a valuation. Given that we return to
our syntactic view of zones as conjunctions of constraints, ζ[ν] is the boolean
value obtained by replacing each occurrence of a clock x ∈ X in ζ by ν(x).
If ζ[ν] = true then we say that ν satisfies ζ, also denoted by ν ∈ ζ (such
set membership notation tallies with the semantic view of zones as sets of
valuations).

3 Probabilistic Timed Automata

This section introduces probabilistic timed automata as a modelling framework
for real-time systems with probability; this formalism is derived from timed
automata [2,3]. Here, we extend timed automata with discrete probability dis-
tributions over edges, so that the choice of the next location of the automaton
is now probabilistic, in addition to nondeterministic, in nature. Furthermore,
we incorporate invariant conditions [21] into the probabilistic timed automa-
ton in order to enforce upper bounds on the time at which certain probabilistic
choices are made.

Definition 2 (Probabilistic Timed Automaton) A probabilistic timed au-
tomaton is a tuple G = (S,L, s̄,X , inv , prob, 〈τs〉s∈S) which contains:

• a finite set S of nodes,
• a function L : S → 2AP assigning to each node of the automaton the set of

atomic propositions that are true in that node,
• a start node s̄ ∈ S,
• a finite set X of clocks,
• a function inv : S → ZX assigning to each node an invariant condition,
• a function prob : S → Pfn(µ(S × 2X)) assigning to each node a (finite,

non-empty) set of discrete probability distributions on S × 2X ,
• a family of functions 〈τs〉s∈S where, for any s ∈ S, τs : prob(s) → ZX

assigns to each p ∈ prob(s) an enabling condition.

The behaviour of the system takes the form of transitions between states,
which can be as a result of either the passage of time or the execution of a
discrete transition. The role of the invariant condition is to describe the set
of admissible states of the probabilistic timed automaton; therefore, we forbid
transitions to inadmissible states.

The system starts in node s̄ with all of its clocks initialized to 0. The values
of all the clocks increase uniformly with time. At any point in time, if the

7

system is in node s and the invariant condition will no longer be satisfied by
letting any time advance, then the system can either (a) remain in its current
node and let time advance, or (b) make a discrete transition if there exists
a distribution p ∈ prob(s) whose corresponding enabling condition τs(p) is
satisfied by the current values of the clocks. Alternatively, if the invariant
condition will be violated by letting time advance then the system must make
a discrete transition. Discrete transitions are instantaneous and consist of
the following two steps performed in succession: firstly, the system makes a
nondeterministic choice between the set of distributions p ∈ prob(s) whose
corresponding enabling condition τs(p) is satisfied by the current values of
the clocks. Secondly, supposing that the probability distribution p is chosen,
the system then makes a probabilistic transition according to p; that is, for
any s′ ∈ S and X ⊆ X , the probability that the system will make a state
transition to node s′, and reset all the clocks in X to 0, is given by p(s′, X).

For simplicity, the invariant and enabling conditions are subject to the follow-
ing assumptions: first, if, in some state in the execution of G, allowing any
amount of time to elapse would violate the invariant condition of the current
node, then the enabling condition of at least one probability distribution is
satisfied 1 . Second, we assume that it is never possible to perform a discrete
transition to a node for which the invariant condition is not satisfied by the
current values of the clocks. Formally, for each node s ∈ S and each distri-
bution of that node p ∈ prob(s), assume that, for all s′ ∈ S, X ⊆ X such
that p(s′, X) > 0, it is the case that τs(p)[X := 0] ⊆ inv(s′). We refer to this
assumption as that of admissible targets.

We use ZX (G) to denote the set of all zones appearing as an invariant or
enabling condition of G. Formally, let:

ZX (G) = {inv(s) ∈ ZX | s ∈ S} ∪ {τs(p) ∈ ZX | s ∈ S and p ∈ prob(s)} .

Furthermore, let cmax(G) = max{cmax(ζ) | ζ ∈ ZX (G)} be the maximal con-
stant used in the description of G. In later sections, this constant will be used
to ensure the decidability of our model checking methods.

3.1 Example

An example of a probabilistic timed automaton which models a simple com-
munication protocol operating with an unreliable, lossy channel is shown in
Figure 1. The system consists of a sender and a receiver which communicate

1 Another solution is to identify an additional discrete probability distribution
pinv

s ∈ µ(S × 2X) with each s ∈ S, which becomes enabled in s at the points for
which progression of any amount of time would violate the node’s invariant inv(s).

8

x ≥ 2

x = y = 0

r:received
s:waitAck

y ≤ 1

s:hasData
r:idle

x ≤ 3

{x, y := 0}

{x := 0}{x, y := 0}

s:received
r:idle

true

{x := 0}

{x, y := 0}

r:abort

true

{x, y := 0}

{x, y := 0}

true

x ≥ 2

y = 7

1

0.05

0.95

0.01

0.05

1

0.95

1

0.99

x ≤ 3 ∧
y ≤ 7

r:idle
s:waitAck

s:abort

true

Fig. 1. The probabilistic timed automaton G1.

over a single channel, and two global clocks x and y (we make the assumption
of the existence of global clocks for simplicity). Transit across the medium
is instantaneous. Operation of the protocol commences with the delivery of
new data to the sender, and with both clocks x and y set to 0. The sender
retains the data for between 2 and 3 time units before transmitting it onto
the medium and resetting the clock x to 0. With probability 0.95, the data is
correctly received, in which case the receiver waits for not more than 1 time
unit to attempt to return an acknowledgement to the sender. This attempt is
successful with probability 0.99, after which an arbitrary length of time may
elapse before another data packet is delivered to the sender for transmission
across the medium. However, if either the acknowledgement or the original
data packet was lost by the channel, then the receiver is idle, whereas the
sender is still waiting for an acknowledgement; therefore, the sender attempts
to re-send the data at a frequency varying between 2 and 3 time units. If
exactly 7 time units have elapsed since the data first arrived at the sender, or
the receiver last received the data, then the system aborts.

This communication protocol is modelled by the probabilistic timed automa-
ton G1 in the following way. Consider the initial node, s : hasData, r : idle,
henceforth abbreviated to hi . The invariant of hi is the zone described by the
constraint written in the body of the node, x ≤ 3, which represents the fact
that the clock x is not allowed to exceed 3. The node hi has one probability
distribution associated with it, as represented by the edges connected by a
dashed arc, which is only enabled when x ≥ 2. Therefore, when x is between

9

2 and 3, this distribution, which corresponds to the sender transmitting the
data onto the medium, may be nondeterministically chosen. Furthermore, if
x equals 3 then the invariant condition requires that the distribution must be
taken. This distribution is defined over two edges: the first leads to s : waitAck ,
r : received (abbreviated to wr), and corresponds to the successful delivery of
the data across the medium; as such, it is labelled with the probability 0.95.
The second edge leads to s : waitAck , r : idle (abbreviated to wi), and rep-
resents loss of data with probability 0.05. If the former edge is taken, both
clocks x and y are reset, whereas, in the latter case, only x is reset, as de-
noted by the edge labels {x, y := 0} and {x := 0} respectively. More formally,
p ∈ prob(hi), where p(wr , {x, y}) = 0.95, p(wi , {x}) = 0.05. Another aspect of
probabilistic timed automaton behaviour can be witnessed in the node wi : it is
possible for both of the distributions associated with wi , p′1, p

′
2 ∈ prob(wi), to

be enabled at the same time. In such a case, there can be a nondeterministic
choice between choosing p′1 and choosing p′2. From this description of the be-
haviour in the nodes hi and wi , the behaviour of G1 in other nodes follows in a
straightforward manner. The reader can verify that G1 does indeed model the
communication protocol described in the previous paragraph. In subsequent
sections, we will refer back to this example, using the abbreviations ri for
s : received , r : idle, and aa for s : abort , r : abort .

In addition to considering the way in which the communication protocol can
be modelled, we must also identify a set of requirements which we wish the
protocol to satisfy, and to formalize them in an appropriate manner. Their
validity with respect to the probabilistic timed automaton G1 could then be
verified using the model checking techniques presented in the remainder of
this paper (although, as we will see later, not all of these properties can be
verified by both of our presented approaches). Four types of requirements are
now presented, along with examples relevant to the communication protocol.

Reachability The system can reach a certain set of states with a given prob-
ability. For example, “with probability 0.9999 or greater, it is possible to
correctly deliver a data packet”.

Time bounded reachability The system can reach a certain set of states
within a certain time deadline with a given probability. For example, “with
probability 0.975 or greater, it is possible to correctly deliver a data packet
within 5 time units”

Invariance The system does not leave a certain set of states with a given
probability. For example, “with probability 0.875 or greater, the system
never aborts”.

Bounded response The system inevitably reaches a certain set of states
within a certain time deadline with a given probability. For example, “with
probability 0.99 or greater, a data packet will always be delivered within 5
time units”.

10

In Section 5 and Section 7, we will see how each of these properties may be
expressed in formalisms for which probabilistic timed automaton verification
is possible.

4 Probabilistic Timed Structures

In this section, we introduce an underlying model for probabilistic timed au-
tomata, called probabilistic timed structures, which are obtained by augment-
ing the timed structures of [20] with a probabilistic choice over transitions, and
take the form of a variant of Markov decision processes. More precisely, in-
stead of a nondeterministic choice over transitions that consist of a real-valued
duration and a next state, as is the case in traditional timed structures, the
transition function of probabilistic timed structures results in a choice over
pairs consisting of a duration and a discrete probability distribution over next
states.

Definition 3 (Probabilistic Timed Structure) A probabilistic timed str-
ucture M is a labelled Markov decision process (Q, Steps , L) where Q is a set
of states, Steps : Q → 2R×µ(Q) is a function which assigns to each state q ∈ Q
a set Steps(q) of pairs of the form (t, p) where t ∈ R and p ∈ µ(Q), and
L : Q → 2AP is a state labelling function.

Steps(q) is the set of transitions that can be nondeterministically chosen in
state q. Each transition takes the form (t, p), where t represents the duration
of the transition and p is the probability distribution used over the set of suc-
cessor states. Therefore, given the nondeterministic choice of (t, p) ∈ Steps(q)
in state q, then, after t time units have elapsed, a probabilistic transition is
made to state q′ with probability p(q′).

Paths in a probabilistic timed structure arise by resolving both the nondeter-
ministic and probabilistic choices. A path of the probabilistic timed structure
M = (Q, Steps , L) is a non-empty finite or infinite sequence:

ω = q0
t0,p0−−→ q1

t1,p1−−→ q2
t2,p2−−→ · · ·

where qi ∈ Q, (ti, pi) ∈ Steps(qi) and pi(qi+1) > 0 for all 0 ≤ i ≤ |ω|.

Sets of labelled paths are denoted in the following way. Pathfin is the set of
finite paths, and Pathfin(q) is the set of paths in Pathfin such that ω(0) = q.
Path ful is the set of infinite paths and Path ful(q) is the set of paths in Path ful

such that ω(0) = q.

Consider an infinite path ω of M. A position of ω is a pair (i, t′), where i ∈ N
and t′ ∈ R such that 0 ≤ t′ ≤ ti. The state at position (i, t′), denoted by

11

qi + t′. Given a path ω, i, j ∈ N and t, t′ ∈ R such that i ≤ |ω|, t ≤ ti and
t′ ≤ tj, then we say that the position (j, t′) precedes the position (i, t), written
(j, t′) ≺ (i, t), iff j < i, or j = i and t′ < t.

Definition 4 (Duration of a Path) For any path ω of a probabilistic timed
structure M and 0 ≤ i ≤ |ω| we define Dω(i), the elapsed time until the ith
transition, as follows: Dω(0) = 0 and for any 1 ≤ i ≤ |ω|:

Dω(i) =
i−1∑
j=0

tj .

Furthermore, an infinite path ω is divergent if for any t ∈ R, there exists
j ∈ N such that Dω(j) > t.

We now introduce adversaries of probabilistic timed structures as functions
which resolve all of the nondeterministic choices of the model.

Definition 5 (Adversary of a Probabilistic Timed Structure) An ad-
versary (or scheduler) of a probabilistic timed structure M = (Q, Steps , L)
is a function A mapping every finite path ω of M to a pair (t, p) such that
A(ω) ∈ Steps(last(ω)). Let A be the set of all adversaries of M.

For an adversary A of a probabilistic timed structure M = (Q, Steps , L)
we define PathA

fin to be the set of finite paths such that step(ω, i) = A(ω(i))

for all 1 ≤ i ≤ |ω|, and PathA
ful to be the set of paths in Path ful such that

step(ω, i) = A(ω(i)) for all i ∈ N.

With each adversary we associate a sequential Markov chain, which can be
viewed as a set of paths inM. Formally, if A is an adversary of the probabilistic
timed structure M, then MC A = (PathA

fin ,PA) is a Markov chain where:

PA(ω, ω′) =

 p(q) if A(ω) = (t, p) and ω′ = ω
t,p−→ q

0 otherwise.

For any probabilistic timed structure and adversary A, let FA
Path be the small-

est σ-algebra on PathA
ful which contains the sets:

{ω |ω ∈ PathA
ful and ω′ is a prefix of ω}

for all ω′ ∈ PathA
fin .

We now define a measure ProbA on the σ-algebra FA
Path , by first defining the

following function on the set of finite paths PathA
fin .

12

Definition 6 Let A be an adversary of the probabilistic timed structure M.
Let ProbA

fin : PathA
fin → [0, 1] be the mapping inductively defined on the length

of paths in PathA
fin as follows. If |ω| = 0, then ProbA

fin(ω) = 1.

Let ω′ ∈ PathA
fin be a finite path of A. If ω′ = ω

t,p−→ q for some ω ∈ PathA
fin ,

then we let:

ProbA
fin(ω′) = ProbA

fin(ω) ·PA(ω, ω′) .

Definition 7 The measure ProbA on FA
Path is the unique measure such that:

ProbA{ω |ω ∈ PathA
ful and ω′ is a prefix of ω} = ProbA

fin(ω′) .

When clear from the context, we drop the superscript denoting the adversary
from the function ProbA

fin and the measure ProbA.

A common restriction imposed in the study of real-time systems is that of
time divergence. This requires that paths of a real-time system which are
not divergent in the manner of Definition 4 are disregarded during analysis,
because they exhibit unrealisable behaviour in which time is not allowed to
pass beyond some bound. We now introduce the class of divergent adversaries,
which resolve nondeterminism in such a way as to result in divergent behaviour
with probability 1. Our aim is to disregard adversaries that are not divergent,
as they exhibit unrealisable behaviour with positive probability.

Definition 8 (Divergent Adversary) An adversary A of a probabilistic
timed structure (Q, Steps , L) is divergent if and only if :

Prob{ω |ω ∈ PathA
ful and ω is divergent} = 1 .

Let Adiv be the set of all divergent adversaries.

Note that we only consider such probabilistic time divergent adversaries as
opposed to a stronger definition in which an adversary is divergent if all of
its corresponding paths are divergent. We motivate this choice in the next
section.

4.1 Obtaining a Probabilistic Timed Structure from a Probabilistic Timed
Automaton

This section will now show that the behaviour of a probabilistic timed au-
tomaton G can be stated formally in terms of a probabilistic timed structure
MG. This structure consists of three components: the set of admissible states
of G (those that satisfy the invariant condition); a transition relation that

13

is both nondeterministic and probabilistic in nature, and includes time pas-
sage information; and a labelling function, which is derived from the labelling
function L of G.

For convenience, we categorise distributions of MG by assigning them a type.
That is, if a distribution over states p̃ of MG is derived from a particular
distribution p ∈ ⋃s∈S prob(s) of G, then we say that p̃ has type p. We abuse
notation to denote this by type(p̃) = p. As we wish to allow for the fact that
G may let time elapse without necessarily performing a subsequent discrete
transition, we use the special symbol ⊥ to denote the type of distribution of
MG that is induced by the passage of time only (that is, without a subsequent
discrete transition made according to a distribution of G).

Definition 9 For any probabilistic timed automaton G, define the probabilis-
tic timed structure MG = (QG, StepsG, LG) as follows:

States A state of MG is a pair 〈s, ν〉, where s ∈ S is a node and ν ∈ RX is
a valuation such that ν satisfies inv(s). Let QG be the set of states of MG.

Transitions The function StepsG : QG → 2R×µ(QG) assigns to each state
in QG a set of transitions, each of which take the form of a pair (t, p̃),
comprising of a time duration t ∈ R and a probability distribution p̃ ∈
µ(QG) over the set of states QG. Transitions are defined in two ways. For
every 〈s, ν〉 ∈ QG:
(1) Let (t, p̃) ∈ StepsG〈s, ν〉 if there exists p ∈ prob(s) such that:

(a) the valuation ν + t satisfies τs(p);
(b) the valuation ν + t′ satisfies the invariant condition inv(s) for all

0 ≤ t′ ≤ t; and
(c) for any 〈s′, ν ′〉 ∈ QG:

p̃〈s′, ν ′〉 =
∑

X⊆X &
(ν+t)[X:=0]=ν′

p(s′, X) .

We refer to p̃ as having type p; that is, type(p̃) = p.
(2) Let (t, p̃) ∈ StepsG〈s, ν〉 if:

(a) the valuation ν + t′ satisfies inv(s) for all 0 ≤ t′ ≤ t; and
(b) for any 〈s′, ν ′〉 ∈ QG:

p̃〈s′, ν ′〉 =

 1 if 〈s′, ν ′〉 = 〈s, ν + t〉

0 otherwise.

We refer to p̃ as having type ⊥; that is, type(p̃) = ⊥.
Labelling function The labelling function L : Q → 2AP is defined as follows.

For each 〈s, ν〉 ∈ QG, let LG〈s, ν〉 = L(s).

It is now possible to define the set AG of adversaries of MG using Definition 5.

14

Note that AG
div denotes the divergent adversaries of G. Where G is clear from

the context, we drop the superscript from AG and AG
div .

The following example motivates our choice of probabilistic time divergent ad-
versaries, as given in Definition 8. Consider the probabilistic timed automaton
G2 in Figure 2. If we consider any adversary of the corresponding probabilistic

x = 0

true

s1

x ≤ 1

s2

0.5

x ≤ 1

0.5

Fig. 2. The probabilistic timed automaton G2

timed structure MG2 , then there will always exist a unique infinite path of
the adversary which loops continually in s1; that is, the adversary exhibits a
path of the form

ω = 〈s1, ν0〉
t0,p−−→ 〈s1, ν1〉

t1,p−−→ 〈s1, ν2〉
t2,p−−→ . . .

such that
∑∞

i=0 ti ≤ 1. It is clear that ω is not time divergent. Therefore, using
a stronger definition of divergent adversaries which requires all of the paths of
the adversary to be divergent, there would not exist any divergent adversaries
of this model. However, the probability of the above path ω occurring is 0.
Therefore, Definition 8 is motivated by the view that adversaries for which
there exist unrealisable, non-divergent paths should be considered, provided
that the probability measure of these paths is 0.

5 Probabilistic Timed Computation Tree Logic

We now describe the probabilistic real-time logic PTCTL (Probabilistic Timed
Computation Tree Logic) which can be used to specify properties of proba-
bilistic timed systems. PTCTL synthesizes elements from two extensions of the
branching temporal logic CTL, namely the real-time temporal logic TCTL [21]
and the essentially equivalent, probabilistic temporal logics pCTL and PBTL
[8,6]. In particular, the temporal operator U (“until”) and the path quantifiers
∀ and ∃ (“for all” and “there exists”, respectively) are taken from CTL, the
reset quantifier z.φ and the facility to refer directly to clock values are taken
from TCTL, and the probabilistic operators [φ1 ∃U φ2]wλ and [φ1 ∀U φ2]wλ are
taken from PBTL. Note that the reset quantifier z.φ is used to reset the clock
z, so that φ is evaluated from a state at which z = 0. Using our new logic, we

15

can express properties such as, “with probability 0.6 or greater, the value of
the system clock x does not exceed 3 before 5 time units have elapsed”, which
is represented as the PTCTL formula z.[(x ≤ 3) ∀U (z = 5)]≥0.6.

Similarly, we can write the properties of Section 3.1 in terms of PTCTL formu-
lae. The property,“with probability 0.9999 or greater, it is possible to correctly
deliver a data packet”, can be written as [true ∃U ri]≥0.9999. The time bounded
reachability property “with probability 0.975 or greater, it is possible to cor-
rectly deliver a data packet within 5 time units”, can be expressed by the
formula z.[true∃U (ri ∧ ≤ 5)]≤0.975. The PTCTL formula ¬[true ∃U aa]>0.125

represents the property “with probability 0.875 or greater, the system never
aborts” (that is, it is not true that the abort state aa can be reached with
with probability greater than 0.125). The bounded response property, “with
probability 0.99 or greater, a data packet will always be delivered within 5
time units”, can be written as z.[true ∀U (ri ∧ z ≤ 5)]≥0.99.

As with TCTL, PTCTL employs a set of clock variables in order to express
timing properties; for this purpose, we introduce a set of formula clocks, Z,
which is disjoint from X . Such clocks are assigned values by a formula clock
valuation E : Z → R, which uses the notation for clock valuations in the
standard way.

Definition 10 (Syntax of PTCTL) The syntax of PTCTL is defined as fol-
lows:

φ ::= true | a | ζ | φ ∧ φ | ¬φ | z.φ | [φ ∃U φ]wλ | [φ ∀U φ]wλ

where a ∈ AP is an atomic proposition, ζ ∈ ZX∪Z is a zone, z ∈ Z, λ ∈ [0, 1],
and w is either ≥ or >.

Note that the values of system clocks in X and formula clocks in Z can
be obtained from a state and a formula clock valuation, respectively. Take
a particular ζ ∈ ZX∪Z , and consider the syntactic interpretation of ζ as a
conjunction of constraints. Then, given a state 〈s, ν〉 and a formula clock
valuation E , we denote by ζ[〈s, ν〉, E] the boolean value obtained by replacing
each occurrence of a system clock x ∈ X in ζ by ν(x), and each occurrence of
a formula clock z ∈ Z in ζ by E(z).

As in the case of probabilistic timed automata, it is useful to identify the
maximal integer constant that is referred to in a zone appearing in a PTCTL
formula φ. Let ZX∪Z(φ) = {ζ ∈ ZX∪Z | ζ is a subformula of φ} be the set of
zones occurring in φ, and define cmax(φ) = max{cmax(ζ) | ζ ∈ ZX∪Z(φ)} be
the required maximal constant.

Definition 11 (Satisfaction Relation for PTCTL) Given a probabilistic
timed structure M = (Q, Steps , L) and a set A of adversaries of M, then

16

for any state q of M, formula clock valuation E, and PTCTL formula φ, the
satisfaction relation q, E |=A φ is defined inductively as follows:

q, E |=A true for all q and E

q, E |=A a ⇔ a ∈ L(q)

q, E |=A ζ ⇔ ζ[q, E] = true

q, E |=A φ1 ∧ φ2 ⇔ q, E |=A φ1 and q, E |=A φ2

q, E |=A ¬φ ⇔ q, E 6|=A φ

q, E |=A z.φ ⇔ q, E [z := 0] |=A φ

q, E |=A [φ1 ∃U φ2]wλ ⇔ Prob({ω |ω ∈ PathA
ful(q) & ω, E |=A φ1 U φ2}) w λ

for some A ∈ A

q, E |=A [φ1 ∀U φ2]wλ ⇔ Prob({ω |ω ∈ PathA
ful(q) & ω, E |=A φ1 U φ2}) w λ

for all A ∈ A

ω, E |=A φ1 U φ2 ⇔ there exists a position (i, t) of ω such that

ω(i) + t, E +Dω(i) + t |=A φ2, and

for all positions (j, t′) of ω such that (j, t′) ≺ (i, t),

ω(j) + t′, E +Dω(j) + t′ |=A φ1 ∨ φ2 .

6 Model Checking Probabilistic Timed Automata Against PTCTL
Properties

Note that, because all clocks are real-valued, the state space of a probabilistic
timed automaton is infinite. However, a fundamental result of [3] is that the
space of clock valuations of a timed automaton can be partitioned into a finite
set of zones called clock regions, each containing a finite or infinite number of
valuations which, as noted by [2], satisfy the same TCTL formulae. Combi-
nation of this partitioning with the discrete transitions of a timed automaton
induces a structure called a region graph, which can be used for model check-
ing. This section will show that a similar construction can be used for model
checking probabilistic timed automata against PTCTL formulae.

17

6.1 Equivalence of Clock Valuations

We first define an equivalence relation on the space of clock valuations, which
can then be used to obtain a finite partitioning of this space. Consider the prob-
abilistic timed automaton G, and let c = cmax(G). Definition 12 to Lemma 14
recall standard notions of equivalence of clock valuations [2,3].

Definition 12 For any t ∈ R, btc denotes the integral part of t. Then, for
any t, t′ ∈ R, t and t′ agree on their integral parts if and only if:

(1) btc = bt′c, and
(2) both t and t′ are integers or neither is an integer.

Definition 13 (Clock equivalence) The valuations ν, ν ′ ∈ RX are clock
equivalent, denoted by ν ∼= ν ′, if and only if they satisfy the following condi-
tions:

(1) ∀x ∈ X , either ν(x) and ν ′(x) agree on their integral parts, or both ν(x) >
c and ν ′(x) > c, and

(2) ∀x, x′ ∈ X , either ν(x) − ν(x′) and ν ′(x) − ν ′(x′) agree on their integral
parts, or both ν(x)− ν(x′) > c and ν ′(x)− ν ′(x′) > c.

Lemma 14 Let the valuations ν, ν ′ ∈ RX be such that ν ∼= ν ′. Then the
following conditions hold:

(1) ν[X := 0] ∼= ν ′[X := 0] for all X ⊆ X ,
(2) for any zone ζ ∈ ZX (G) appearing in the description of G, ν satisfies ζ

if and only if ν ′ satisfies ζ.

PROOF. The proof follows from the definition of ∼=. 2

Note that clock equivalence classes can be regarded as special types of zones
(see [3]). Let [ν] denote the equivalence class of ∼= to which ν belongs. We
refer to elements such as 〈s, [ν]〉 as regions. Observe that, for finite c, clock
equivalence has a finite number of classes. As cmax(G) is finite, and S is a finite
set, we conclude that the set of the regions of G is also finite.

Remark. Note that a smaller set of clock equivalence classes can be obtained
if, for each clock x ∈ X , we maintain a maximal constant cx with which x is
compared in a zone of G, and then use the resulting maxima in the definition of
clock equivalence. Although this may result in fewer regions, and thus improve
the efficiency of the model checking techniques presented in this paper, we do

18

not use this approach for reasons of convenience. All of the results of this
paper continue to hold if this approach is taken.

We now extend the concept of clock equivalence to formula clocks. Let (ν, E) :
X ∪ Z → R be the clock valuation that assigns a real value to each of the
system and formula clocks, and let RX∪Z be the set of all such valuations for
G. For a (ν, E) ∈ RX∪Z , and X ⊆ X ∪ Z, we use the notation (ν, E)[X := 0]
in the usual way. For some t ∈ R, (ν + t, E + t) denotes the clock valuation for
which all clocks x in X ∪ Z take the value (ν, E)(x) + t.

The equivalence relation for such a valuation is defined with respect to a
particular PTCTL formula φ. Let E ′ be the restriction of E over the clocks of
Z that are referred to in φ. We can then extend the equivalence relation from
∼= to ∼=∗ simply by taking (ν, E ′) instead of ν and X ∪ Z instead of X , and
requiring that c = max{cmax(G), cmax(φ)}; the definition of equivalence classes
of the form [ν, E ′] then follows in an obvious manner. Furthermore, Lemma 14
holds for ∼=∗ (in particular, part (2) applies to all zones ζ ∈ ZX (G)∪ZX∪Z(φ)
appearing either in G or φ). Because our construction of the equivalence classes
will always be with respect to a particular φ, we henceforth write E for E ′.
An element of the form 〈s, [ν, E]〉 is called an augmented region. As cmax(φ) is
finite, we conclude that the set of augmented regions is also finite.

Let α be an equivalence class of the form [ν, E]. Observing that α is a zone,
we recall the definition of clock resets on zones to denote by α[X := 0] the
equivalence class obtained from α by setting all of the clocks in X to 0.

6.2 The Region Graph

6.2.1 Definition of the Region Graph

We now define an edge relation over the augmented regions to obtain the
region graph. The non-probabilistic region construction of [2] results in a state-
labelled transition system which can be model checked using well-established
methods. However, in our case the region graph takes the form of a Markov
decision process for which there exist model checking techniques for temporal
logics with probability bounds [8,6].

First, we require some preliminary definitions. We explain how a region may
be thought of as satisfying a a conjunction of clock constraints represented as
a zone; then we categorize regions in a number of ways.

Definition 15 (Satisfaction of clock constraints) Let α be an equivalence
class of the relation ∼=∗ on RX∪Z and ζ ∈ ZX (G) ∪ ZX∪Z(φ) be a zone either
appearing in the description of G or as a subformula of φ. Then α satisfies ζ

19

if and only if, for any (ν, E) ∈ α, the value of ζ after substituting each occur-
rence of x ∈ X with ν(x), and each occurrence of z ∈ Z with E(z), is true.
(Note that the value of ζ will be the same for all (ν, E) ∈ α, by the extension
of Lemma 14(2) to augmented regions.)

Definition 16 (Categorization of regions) Let α and β be distinct clock
equivalence classes of RX∪Z .

Successor class The equivalence class β is said to be the successor of α if
and only if, for each (ν, E) ∈ α, there exists a positive t ∈ R such that
(ν + t, E + t) ∈ β, and (ν + t′, E + t′) ∈ α ∪ β for all t′ ≤ t.

x-zero class For a clock x ∈ X ∪ Z, the equivalence class α is said to be
x-zero if and only if, for each (ν, E) ∈ α, (ν, E)(x) = 0.

x-unbounded class For a clock x ∈ X ∪ Z, the equivalence class α is
said to be x-unbounded if and only if, for each (ν, E) ∈ α, (ν, E)(x) >
max(cmax(G), cmax(φ)).

The successor relation can be extended to augmented regions in the following
way: 〈s′, β〉 is the successor region of 〈s, α〉 if s′ = s and β = succ(α). Simi-
larly, the region 〈s, α〉 is x-zero (x-unbounded) if α is x-zero (x-unbounded).

We now define a region graph which captures both the probabilistic tran-
sitions in G and the movement to new regions due to the passage of time,
and which takes the form of a Markov decision process. As with probabilis-
tic timed structures, transitions are made according to a two-phase process:
firstly, a nondeterministic choice of a probabilistic distribution is made, and
then a transition to a state in the support of the distribution is executed
probabilistically. Naturally, in contrast to probabilistic timed structures, the
transition relation of the region graph abstracts from exact timing informa-
tion. Note that we associate a notion of type with certain transitions of the
region graph, and use the notation type as introduced in Section 4.1.

The labelling function of the region graph requires the introduction of addi-
tional atomic propositions, which are taken to represent the satisfaction of the
zones appearing as subformulae of φ. More precisely, for every zone ζ appear-
ing in the given PTCTL formula φ (that is, for every zone in the set ZX∪Z(φ)),
we extend the set AP with the atomic proposition aζ . We denote the resulting
set of atomic propositions by AP∗.

Definition 17 (Region Graph) The region graph R(G, φ) is defined to be
the Markov decision process (V ∗, Steps∗, L∗). The vertex set V ∗ is the set of
augmented regions. The transition function Steps∗ : V ∗ → Pfn(µ(V ∗)) includes
three classes of transitions 2 . For each augmented region 〈s, α〉 ∈ V ∗:

2 If the model includes the distributions pinv
s then we need to add an extra condition

in the definition of transitions.

20

Passage of time: if the invariant condition inv(s) is satisfied by succ(α),
then ps,α

succ ∈ Steps∗〈s, α〉 where for any 〈s′, β〉 ∈ V ∗:

ps,α
succ〈s′, β〉 =

 1 if 〈s′, β〉 = 〈s, succ(α)〉

0 otherwise.

Let the type of ps,α
succ be ⊥; that is, type(ps,α

succ) =⊥.
Discrete transitions of G: ps,α

p′ ∈ Steps∗〈s, α〉 if there exists p′ ∈ prob(s)
and α satisfies the enabling condition τs(p

′) such that for any s′ ∈ S and
equivalence class β:

ps,α
p′ 〈s′, β〉 =

∑
X⊆X &

α[X:=0]=β

p′(s′, X).

Let the type of ps,α
p′ be p′; that is, type(ps,α

p′) = p′.
Self loops: let ps,α

loop ∈ Steps∗〈s, α〉, where for any 〈s′, β〉 ∈ V ∗:

ps,α
loop〈s′, β〉 =

 1 if 〈s′, β〉 = 〈s, α〉

0 otherwise.

Let the type of ps,α
loop be ⊥; that is, type(ps,α

loop) = ⊥.

The labelling function L∗ : V ∗ → 2AP∗ is defined in the following way. For
each augmented region 〈s, α〉 ∈ V ∗, we let:

L∗〈s, [ν, E]〉=L(s) ∪ {aζ | [ν, E] satisfies ζ, for ζ ∈ ZX∪Z(φ)}.

Self loops are included purely for technical convenience, and could be removed
in certain contexts (for example, in an implementation of the model checking
method).

Definition 18 (Path on the Region Graph) Given an augmented region
〈s, α〉, a 〈s, α〉-path is a finite or infinite path of the form:

ω∗ = 〈s0, α0〉
ps0,α0−−−→ 〈s1, α1〉

ps1,α1−−−→ 〈s2, α2〉
ps2,α2−−−→ · · ·

where 〈s0, α0〉 = 〈s, α〉, si ∈ S, αi is an equivalence class of ∼=∗ on RX∪Z and
psi,αi ∈ Steps∗〈si, αi〉 such that psi,αi〈si+1, αi+1〉 > 0.

We define adversaries on the region graph R(G, φ) as follows:

Definition 19 (Adversaries on the Region Graph) An adversary A∗ on
the region graph is a function A∗ mapping every finite path ω∗ of R(G, φ) to
a distribution p such that p ∈ Steps∗(last(ω∗)).

21

We can then define the sets of paths Path∗fin and Path∗ful , and those associated

with an adversary, PathA∗

fin and PathA∗

ful , as before. Note that an adversary on
the region graph R(G, φ) corresponds to an infinite number of adversaries on
the underlying probabilistic timed structure. This is because the time com-
ponent t in the choice of a transition (t, p̃) of MG allows positive reals to be
chosen, whereas the passage of time in any state 〈s, α〉 of the region graph is
given by the single distribution ps,α

succ.

With each adversary A∗ we can associate a Markov chain. If A∗ is an adversary
of the region graph R(G, φ), then MC A∗

= (PathA∗

fin ,PA∗
) is a Markov chain

where, for the augmented regions 〈s, α〉, 〈s′, α′〉, and last(ω∗) = 〈s, α〉:

PA∗
(ω∗, ω′∗) =

 ps,α〈s′, α′〉 if A∗(ω∗) = ps,α and ω′∗ = ω∗
ps,α

−−→ 〈s′, α′〉

0 otherwise.

As in, for example, [6,8], we define the function ProbA∗

fin on the set of finite paths

PathA∗

fin and extend to the unique measure ProbA∗
on the σ-algebra FA∗

Path .

6.2.2 Divergence on the Region Graph

We now introduce our notion of divergence on region graph paths, which is
defined in terms of the classification of regions appearing infinitely often along
such paths. The following definition is inspired by that of [9], and differs from
that of [2] because, we allow for the possibility of an infinite number of discrete
transitions in zero time. The definition proceeds by identifying two subsets of
region graph paths. Possibly progressive paths are those which, for all clocks
x ∈ X ∪ Z, feature either infinitely many x-zero regions or, from some point
onwards, the regions appearing along the path are x-unbounded. The intuition
underlying the identification of such paths is that we are interested in charac-
terizing behaviours in which, for each clock, either the clock is reset infinitely
often, or eventually the value of the clock could be arbitrarily large. However,
possibly progressive paths do not capture the concept of the divergence of
time: consider a path for which there exists a clock x ∈ X ∪Z such that, from
some point onwards, all the regions along the path are x-zero. Then this paths
is possibly progressive, but, because it has an infinite suffix for which all of
the regions are x-zero, it only corresponds to the passage of a finite amount
of time. We call such paths zero. Therefore, we say that a region graph path
is divergent provided that it is possibly progressive but not zero.

Definition 20 (Divergent region graph paths) Let ω∗ = 〈s0, α0〉
ps0,α0−−−→

〈s1, α1〉
ps1,α1−−−→ · · · be an infinite path of the region graph.

Possibly progressive The path ω∗ is possibly progressive if and only if, for

22

each clock x ∈ X ∪ Z, either:
(1) for every i ∈ N, there exists j ≥ i such that αj is an x-zero class, or
(2) there exists i ∈ N such that, for all j ≥ i, αj is an x-unbounded class.

Zero The path ω∗ is zero if and only if there exists a clock x ∈ X and i ∈ N
such that, for all j > i, αj is x-zero.

Divergent The path ω∗ is divergent if and only if it is possibly progressive
and not zero.

Definition 21 (Divergent Adversaries on the Region Graph) An adver-
sary A∗ is divergent if and only if

Prob∗{ω∗ |ω∗ ∈ PathA∗

ful and ω∗ is divergent} = 1 .

Let A∗
div be the set of divergent adversaries on the region graph.

Such divergent adversaries on the region graph R(G, φ) correspond to an in-
finite number of adversaries on the underlying probabilistic timed structure
MG, some of which will be divergent in the sense of Definition 8. Conversely,
for any divergent adversary of MG, the corresponding adversary on R(G, φ)
is divergent.

6.3 Model Checking for PTCTL Using the Region Graph

A method for model checking probabilistic timed automata against PTCTL
formulae will now be presented. This approach proceeds in three steps: con-
struction of the region graph as a finite state representation of the proba-
bilistic timed automaton in question; translating a formula of an extension
of the probabilistic logic PBTL from the original PTCTL formula; and then
resolving this new formula on the region graph.

First, we present an adjusted syntax of PBTL. Note that we omit PBTL’s
“bounded until” operator, because an equivalent, dense time, concept can be
defined by nesting a PTCTL until operator within a reset quantifier, and its
“next step” operator, which has no analogue in the case of dense real-time.
However, we extend PBTL with a reset quantifier expression.

Definition 22 (Syntax of PBTL) The syntax of PBTL is defined as fol-
lows:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | z.Φ | [Φ ∃U Φ]wλ | [Φ ∀U Φ]wλ

where a ∈ AP∗ is an atomic proposition, z ∈ Z, λ ∈ [0, 1], and w is either ≥
or >.

Definition 23 (Satisfaction Relation for PBTL) Given a region graph

23

R(G, φ) and a set A∗ of adversaries on R(G, φ), then for any augmented
region 〈s, [ν, E]〉 of R(G, φ), and PBTL formula Φ, the satisfaction relation
〈s, [ν, E]〉 |=A∗ Φ is defined inductively as follows:

〈s, [ν, E]〉 |=A∗ true for all 〈s, [ν, E]〉

〈s, [ν, E]〉 |=A∗ a ⇔ a ∈ L∗〈s, [ν, E]〉

〈s, [ν, E]〉 |=A∗ Φ1 ∧ Φ2 ⇔ 〈s, [ν, E]〉 |=A∗ Φ1 and 〈s, [ν, E]〉 |=A∗ Φ2

〈s, [ν, E]〉 |=A∗ ¬Φ ⇔ 〈s, [ν, E]〉 6|=A∗ Φ

〈s, [ν, E]〉 |=A∗ z.Φ ⇔ 〈s, [ν, E [z := 0]]〉 |=A∗ Φ

〈s, [ν, E]〉 |=A∗ [Φ1 ∃U Φ2]wλ ⇔ Prob∗({ω |ω ∈ PathA∗

ful 〈s, [ν, E]〉 &

ω |=A∗ Φ1 U Φ2}) w λ for some A∗ ∈ A∗

〈s, [ν, E]〉 |=A∗ [Φ1 ∀U Φ2]wλ ⇔ Prob∗({ω |ω ∈ PathA∗

ful 〈s, [ν, E]〉 &

ω |=A∗ Φ1 U Φ2}) w λ for all A∗ ∈ A∗

ω |=A∗ Φ1 U Φ2 ⇔ there exists i ∈ N, such that ω(i) |=A∗ Φ2,

and for all j ∈ N such that 0 ≤ j < i and

ω(j) |=A∗ Φ1 .

For technical reasons, we require the following lemma, which follows immedi-
ately from the definition of the semantics of the formula Φ1 U Φ2 as given in
Definition 23. Intuitively, the lemma gives a slightly different, but equivalent,
semantics for the formula Φ1 U Φ2.

Subformula of φi Subformula of Φi

true true

a a

ζ aζ

φ1 ∧ φ2 Φ1 ∧ Φ2

¬φ ¬Φ

z.φ z.Φ

[φ1 ∃U φ2]wλ [Φ1 ∃U Φ2]wλ

[φ1 ∀U φ2]wλ [Φ1 ∀U Φ2]wλ

Fig. 3. Rules for the derivation of a PBTL formula from a PTCTL formula.

24

Lemma 24 For any path ω of (R(G, φ), L∗), set of adversaries A∗ on R(G, φ),
and PBTL formulae Φ1, Φ2, we have ω |=A∗ Φ1 U Φ2 if and only if there ex-
ists i ∈ N such that ω(i) |=A∗ Φ2, and for all j ∈ N such that 0 ≤ j ≤ i,
ω(j) |=A∗ Φ1 ∨ Φ2.

Furthermore, a PBTL formula, Φ, can be derived from a PTCTL formula, φ,
by applying the rules in Figure 3 inductively.

Consider the probabilistic timed automaton given in Figure 4. A region con-

s1 s2

x ≤ 1 ∧ y ≤ 1x ≤ 1 ∧ y ≤ 1

x = y = 0

{x, y := 0}

{x, y := 0}

x = 1

y = 1

{x := 0}
y > 0

0.3

0.7

1

1

Fig. 4. The probabilistic timed automaton G3

struction of the probabilistic timed automaton of G2 is given in Figure 5 (note
that we omit self loops of the form ps,α

loop from the figure). As before, the proba-
bilistic transitions are linked with an arc at their source vertex. In order for the
reader to easily comprehend the behaviour of the region graph, each vertex has
been labelled with a constraint that is satisfied by all of the clock valuations
within that augmented region. Consider the following PTCTL formula:

φ1 = [(y = 0) ∃U (x > 0) ∧ [(x > 0) ∃U (y = 0)]≥0.7]≥1.

φ1 can be interpreted over this graph by first converting it into the equivalent
PBTL formula:

Φ1 = [a(y=0) ∃U a(x>0) ∧ [a(x>0) ∃U a(y=0)]≥0.7]≥1.

Φ1 is satisfied by this region graph, and therefore we conclude that the prob-
abilistic timed automaton G2 satisfies φ1. Note that the following PTCTL
formula, φ2, is not satisfied by the region graph:

φ2 = [(y = 0) ∃U (x > 0) ∧ [(x > 0) ∃U (y = 0)]>0.7]≥1

25

H I J

K

E

G L

M

0=x<y=1

0=x<y=1

x=y=1

x=y=0

0<x=y<1

0<x=y<1

x=y=1

0=x<y<1 0=x<y<1

0<x<y<1

0<x<y=1

0<x<y<1

0<x<y=1

BC

F

D
A

s2

s1

s1

s1

s1

s2

s2

s1 s2

s1

s1

s2

s2

1

0.3

1

succ

succ
0.7

0.3

0.3
0.7

succ

0.7

succ

1

succ

succ
succ

0.7

0.3

0.7

0.3

0.7

0.3

Fig. 5. The region graph of the probabilistic timed automaton G3

Proposition 25 (Correctness of the model checking procedure) Given
the probabilistic timed automaton G, we say that the state 〈s, ν〉 of MG and
formula clock valuation E satisfy the PTCTL formula φ if and only if vertex
〈s, [ν, E]〉 of R(G, φ) satisfies the PBTL formula Φ, where Φ is derived from
φ.

PROOF. We proceed to show this by induction on the structure of φ. The
case of true and the boolean connectives, ¬ and ∧, are self-evident.

If φ = a, where a ∈ AP, then it is true for state 〈s, ν〉 of MG and all formula
clock valuations if and only if a ∈ L〈s, ν〉. We also know that a ∈ L〈s, ν〉 if
and only if a ∈ L(s). By Definition 17, a ∈ L∗〈s, [ν, E]〉 if a ∈ L(s), so Φ = a
is true for the vertex 〈s, [ν, E]〉.

If φ = ζ, then the state 〈s, ν〉 of MG and formula clock valuation E satisfies
ζ if ζ[〈s, ν〉, E] = true. Then, from Definition 17, aζ ∈ L∗〈s, [ν, E]〉. Because
Φ = aζ , and Φ is derived from φ, both φ and Φ resolve to true in 〈s, ν〉, E and
〈s, [ν, E]〉 respectively.

If φ = z.φ1, then, for a given state 〈s, ν〉 and formula clock valuation E that
satisfies φ, we know that the augmented region 〈s, [ν, E]〉 will also satisfy z.Φ1,

26

by observing the following argument. By Definition 11:

〈s, ν〉, E |=AG
div

z.φ ⇔ 〈s, ν〉, E [z := 0] |=AG
div

φ

⇔ 〈s, [ν, E [z := 0]]〉 |=A∗
div

Φ by induction

⇔ 〈s, [ν, E]〉 |=A∗
div

z.Φ by Definition 23.

Now we show that 〈s, ν〉, E |=AG
div

[φ1 ∃U φ2]wλ, if and only if 〈s, [ν, E]〉 |=A∗
div

[Φ1 ∃U Φ2]wλ. Our presentation is split into three sections:

1. showing that, for a path ω ofMG, a corresponding path of R(G, φ), [ω], can
be constructed. Furthermore, ω is divergent if and only if [ω] is divergent.
It also follows that, given path ω∗ of the region graph, we can construct ω
such that [ω] = ω∗.

2. showing that the two finite paths ω and [ω] are associated with the same
probability value.

3. showing ω, E |=AG
div

φ1 U φ2 if and only if [ω] |=A∗
div

Φ1 U Φ2, where the

initial augmented state of [ω] comprises of E .

1. Consider the following property, which shall henceforth be referred to as the
sequence property. Take a particular node of G, s ∈ S, and a clock valuation
(ν, E). We say the sequence of equivalence classes, [ν + d1, E + d1], . . . , [ν +
dk, E +dk], has the sequence property if each equivalence class satisfies inv(s),
di ∈ R for all 1 ≤ i ≤ k, and for all 1 ≤ l < k, succ([ν + dl, E + dl]) =
[ν + dl+1, E + dl+1]. Then, for every time value d ∈ R, where d1 ≤ d ≤ dk, we
know that (ν + d, E + d) ∼=∗ (ν + dj, E + dj), for some 1 ≤ j ≤ k. We can then
write (ν + d, E + d) ∈ [ν + dj, E + dj].

The sequence property allows us to state the following. Consider the path ω
of MG, such that:

ω = 〈s0, ν0〉
t0,p̃0−−→ 〈s1, ν1〉

t1,p̃1−−→ · · ·

Take a particular i ≥ 0. From 〈si, νi〉, and letting ti time units elapse, we
may pass through a number of equivalence classes before taking the discrete
transition p̃i. We let mi be this number. Let vi0 = 〈si, [νi, E +Dω(i)]〉, and, if
mi > 0, let vij = 〈si, [νi + dj, E + Dω(i) + dj]〉 for all 1 ≤ j ≤ mi, and some
dj ∈ R.

Furthermore, we emulate the choice of the distribution p̃i by the choice of p
vimi
i

in the vertex vimi
so that type(p̃i) = type(p

vimi
i). That is, we choose p

vimi
i to

be derived from a discrete transition of the same type as p̃i, or a self loop if
type(p̃i) = ⊥. Then we can construct the finite path [ωi] of the region graph,
such that:

[ωi] = vi0
p

vi0
succ−−→ vi1

p
vi1
succ−−→ · · · vimi

p
vimi
i−−−→ v(i+1)0 .

27

Note that [ωi] must comprise of at least one transition. Let [ω] = [ω0][ω1] · · ·
be the concatenation of all such segments.

This construction also works in the opposite direction. Let ω∗ = 〈s0, α0〉
ps0,α0−−−→

〈s1, α1〉
ps1,α1−−−→ · · · be a path of the region graph. We proceed to construct the

path ω of MG inductively by progressing along the length of the path ω∗.
For the base case of length 0, let 〈s0, ν0〉 be the state such that ν0, E ∈ α0

for some formula clock valuation E ∈ RZ ; then, 〈s0, ν0〉 is the first state of
the path ω. Now say we have partially constructed ω up to length i, for

some i ∈ N. Let 〈si, νi〉 = ω(i). Then the transition 〈si, αi〉
psi,αi−−−→ 〈si+1, αi+1〉

of ω∗ can be copied by a transition 〈si, νi〉
ti,p̃i−−→ 〈si+1, νi+1〉, where ti ∈ R,

type(p̃i) = type(psi,αi), and νi+1, E + Dω(i + 1) ∈ αi+1. Then it follows that,
given ω∗ of R(G, φ), we can construct ω of MG such that [ω] = ω∗.

We now show that, if the path ω of MG is divergent, then [ω] will also be di-
vergent, where [ω] is the region graph path constructed from ω. First, suppose
for a contradiction that [ω] is a zero path, then by definition there exists i ∈ N
and x ∈ X ∪ Z such that [ω](j) is x-zero for all j > i. By the construction
of [ω] above, this corresponds to the situation in which the value of x does
not advance from some point on in the path ω, and therefore time also cannot
advance. However, this contradicts the fact that ω is divergent, and hence [ω]
is not zero.

Secondly, for any clock x ∈ X∪Z, if there exists i ∈ N such that there does not
exist an x-zero region after the vertex [ω](i), then the clock x is not reset after
this point in the path. Therefore, since the total time elapsed in ω must exceed
any bound, the value of the clock x must also exceed any bound. Therefore,
there must exist a j ≥ i for which all regions appearing along the path after
[ω](j) are x-unbounded. We conclude that [ω] must be possibly progressive,
and therefore [ω] is also be divergent.

Conversely, we can show that, if the region graph path ω∗ is divergent, then
the path ω of MG that is constructed from ω∗ can be chosen to be divergent.
Firstly, as ω∗ is not a zero path, it follows that it is possible to select the
states and transitions along ω such that it is possible for a positive amount
of time to elapse infinitely often. Secondly, as ω∗ is possibly progressive, it
follows that the value of each clock is either reset infinitely often or is not
bounded from above from some point along the path onwards. Therefore, the
durations of time transitions are not forced to converge to 0 to prevent a clock
from exceeding an upper bound. We conclude that the transitions along ω can
be chosen in such a way as to ensure divergence.

2. Now we show that the probability value associated with all of the finite

prefixes of ω and [ω] are the same. Consider the segment of ω, ωi = 〈si, νi〉
ti,p̃i−−→

28

〈si+1, νi+1〉, and the corresponding segment of [ω], constructed as in 1:

[ωi] = vi0
p

vi0
succ−−→ vi1

p
vi1
succ−−→ · · · vimi

p
vimi
i−−−→ v(i+1)0 ,

where p
vimi
i is either a discrete transition or a self loop. We wish to show that

Probfin(ωi) = Prob∗fin([ωi]). Say mi ≥ 1, and consider the transition vij
p

vij
succ−−→

vi(j+1), for 1 ≤ j < mi. Then, from the sequence property and the above
construction of [ω], we know that vi(j+1) is a time successor of vij, and therefore
p

vij
succ = 1. Therefore (and in the case in which mi = 0), our problem reduces

to showing that:

Probfin(〈si, νi〉
ti,p̃i−−→ 〈si+1, νi+1〉) = Prob∗fin(vimi

p
vimi
i−−−→ v(i+1)0) .

By the definitions of Prob and Prob∗, this reduces to showing that:

p̃i〈si+1, νi+1〉 = p
vimi
i 〈si, [νi+1, E +Dω(i + 1)]〉 .

We have two cases, depending on whether type(p̃i) = type(p
vimi
i) = ⊥ or

type(p̃i) = type(p
vimi
i) 6=⊥.

Case: type(p̃i) = type(p
vimi
i) 6=⊥. Then type(p̃i) = type(p

vimi
i) = pi, for some

distribution pi ∈ prob(si). Recall from Definition 9 that:

p̃i〈si+1, νi+1〉 =
∑

X⊆X &
(νi+ti)[X:=0]=νi+1

pi(si+1, X) ,

and from the definition of the region graph:

psi,α
i 〈si+1, β〉 =

∑
X⊆X &

α[X:=0]=β

pi(si+1, X) ,

where α = [νi + dmi
, E +Dω(i) + dmi

] and β = [νi+1, E +Dω(i + 1) + di+1].
We know that, for any X ⊆ X , (νi + ti)[X := 0] ∈ [νi + dmi

][X := 0], and,
trivially, that νi+1 ∈ [νi+1], and so the combinations of X ⊆ X used in both
summations above will be the same. Therefore, the same probability values
will be summed in the case of MG and that of R(G, φ), and we can conclude
that p̃i〈si+1, νi+1〉 = psi,α

i 〈si+1, β〉.
Case: type(p̃i) = type(p

vimi
i) =⊥. Observe that, as p

vimi
i is not a time succes-

sor transition, then it must be a self loop. Then, from the definitions of
transitions with type ⊥ in Definition 9 and self loops in Definition 17:

p̃i〈si+1, νi+1〉 = p
vimi
i 〈si, [νi+1, E +Dω(i + 1)]〉 = 1 .

We can repeat such a process for all i ∈ N and, by the definitions of Probfin

and Prob∗fin , show that the probability value associated with all of the finite
prefixes of ω and [ω] are the same.

29

3. Next we prove ω, E |=AG
div

φ1 U φ2 if and only if [ω] |=A∗
div

Φ1 U Φ2. If

ω(i) = 〈si, νi〉 for all i ∈ N, then ω, E |=AG
div

φ1 U φ2

⇔ exists position (i, t) of ω such that ω(i) + t, E +Dω(i) + t |=AG
div

φ2

and for all positions (j, t′) of ω such that (j, t′) ≺ (i, t),

ω(j) + t′, E +Dω(j) + t′ |=AG
div

φ1 ∨ φ2

by Definition 11

⇔ exists position (i, t) of ω such that 〈si, [νi + t, E +Dω(i) + t]〉 |=A∗
div

Φ2

and for all positions (j, t′) of ω such that (j, t′) ≺ (i, t),

〈sj, [νj + t′, E +Dω(j) + t′]〉 |=A∗
div

Φ1 ∨ Φ2

by induction

⇔ ∃i′ ∈ N such that [ω](i′) |=A∗
div

Φ2 and [ω](j′) |=A∗
div

Φ1 ∨ Φ2 ∀j′ ≤ i′

by construction of [ω]

⇔ [ω] |=A∗
div

Φ1 U Φ2 by Lemma 24.

It follows by the definition of adversaries, both on probabilistic timed struc-
tures and the region graph, and the construction in 1, that for all A ∈ AG

div ,
there exists an adversary [A] ∈ A∗

div such that, for some E ,

Path
[A]
ful 〈s, [ν, E]〉 = {[ω] | ω ∈ PathA

ful〈s, ν〉} .

Similarly, we can show that, for all adversaries A∗ ∈ A∗
div of the region graph,

there exists an adversary A ∈ AG
div such that [A] = A∗.

From 2, we know that the probability values associated with all finite prefixes
of ω and [ω] are the same. Then we can conclude that:

Prob∗{ω∗ | ω∗ ∈ PathA∗

ful 〈s, [ν, E]〉 & ω |=A∗
div

Φ1 U Φ2}

= Prob{ω | ω ∈ PathA
ful〈s, ν〉 & ω, E |=AG

div
φ1 U φ2}

for some A ∈ AG
div . 2

Using the transformation presented above, we can obtain a PBTL formula, Φ,
from the PTCTL formula, φ. Now we can use the model checking algorithm
of [6] in order to verify whether the PBTL formula Φ holds in an initial state
of the region graph, 〈s̄, (0, E)〉, where, for all x ∈ X , (0, E)(x) = 0 and E is an
arbitrary formula clock valuation.

30

7 Model Checking Probabilistic Timed Automata Against Reach-
ability Properties

Although the verification technique of the previous section can establish the
correctness of a probabilistic timed automaton model against a broad class of
properties, it suffers from potential inefficiency as a result of the high granular-
ity involved in the region construction of the finite state space. In particular,
the size of the region graph is exponential in the number of clocks and the
magnitude of the maximal constants with which they are compared in zones,
either in the system description or in the temporal logic formula. Consider-
ation of a narrower class of properties than those of PTCTL allows us to
adopt a different approach when constructing a finite-state representation of
a probabilistic timed automaton.

Here, we extend the real-time reachability properties of [13,24] with proba-
bility to obtain probabilistic real-time reachability properties. Such properties
are expressed in terms of a target set of states and a probability bound; for
example, the property “with probability 0.9999 or greater, it is possible to cor-
rectly deliver a data packet” from the example in Section 3.1 can be expressed
as a probabilistic real-time reachability property. It will also be shown how
to represent invariance properties, such as “with probability 0.875 or greater,
the system never aborts”, and time bounded reachability properties, such as
“with probability 0.975 or greater, it is possible to correctly deliver a data
packet within 5 time units”, as reachability properties.

As in the non-probabilistic, real-time reachability case, our finite state model
derived from the probabilistic timed automaton G is obtained, not by the re-
gion construction, but by forward search through the infinite state space of G.
Once this has been done, probabilistic reachability analysis is then performed
on the finite state model through computation of probabilities using linear
programming [15,16]. We introduce the reachability algorithm in Section 7.1
and Section 7.2, and, in Section 7.3, give an example of its application to the
communication protocol of Section 3.1. In Section 7.4, it will be shown that
the maximal probability of reaching the target set of states computed for the
finite state representation is an upper bound on the actual maximal probability
of the probabilistic timed automaton G reaching the target set. We conclude
that our technique is less appropriate for the verification of reachability prop-
erties, for which we wish to establish whether the maximal probability of
reaching a target set of states exceeds some bound, than invariant properties,
for which we wish to establish whether the maximal probability of reaching
certain “unsafe” states is less than some bound.

31

7.1 Introduction to probabilistic real-time reachability

Given a probabilistic timed automaton G = (S,L, s̄,X , inv , prob, 〈τs〉s∈S), let
R be a set of nodes called the target set, let w∈ {≥, >}, and let λ ∈ [0, 1] be
the target probability. Then the probabilistic real-time reachability problem for
G can be defined as the triple (R,w, λ), with the intuition that the answer to
the problem is “Yes” if and only if G can reach a state in the target set R
with probability w λ, and “No” otherwise.

To formalize probabilistic real-time reachability, we first must weaken the
notion of divergent adversaries of probabilistic timed structures to take ac-
count of reachable states. Intuitively, an adversary of MG is R-divergent if
the probability measure over its paths which either reach R or exhibit realiz-
able behaviour is 1. For a state 〈s, ν〉, we define discrete〈s, ν〉 = s.

Definition 26 Let A be an adversary of MG. A path ω ∈ PathA
ful is R-

divergent if it is either divergent or there exists i ∈ N such that discrete(ω(i)) ∈
R.

An adversary A of MG is R-divergent if and only if

Prob{ω |ω ∈ PathA
ful and ω is R-divergent} = 1 .

Let ARdiv be the set of all R-divergent adversaries of MG.

Then the answer to the real-time reachability problem (R,w, λ) is “Yes” if
and only if there exists an R-divergent adversary A ∈ ARdiv such that:

Prob{ω | ω ∈ PathA
ful〈s̄,0〉 & ∃i ∈ N.discrete(ω(i)) ∈ R} w λ ,

and “No” otherwise. That is, the answer is “Yes” if and only if an R-divergent
adversary can be found for which the probability measure over paths which
reach a node in R is w λ. In contrast to non-probabilistic real-time reachability
problems [14,27], which consider finite paths only, in accordance with standard
notions of reachability in probabilistic systems [15] we consider the reachability
of states in infinite paths.

Consider the fact that probabilistic real-time reachability properties require
that it is possible to reach a certain set of states with probability λ or greater. It
then follows that we are able to verify properties which specify the inevitability
of reaching a certain set of states with a given probability λ or less. Clearly,
such a property is true if it is not possible to reach the set of states with
probability greater than λ. Note that inevitability properties with which we
associate a lower bound on probability, such as the bounded response property
of Section 3.1, “with probability 0.99 or greater, a data packet will always be
delivered within 5 time units”, cannot be expressed as a probabilistic real-time

32

reachability property introduced in this section. However, verification of such
a property is possible using PTCTL and the region graph.

Special case: reachability of symbolic states. As in the non-probabilistic
context (see [27]), the reachability problem for symbolic states of a proba-
bilistic timed automaton G = (S,L, s̄,X , inv , prob, 〈τs〉s∈S) can be reduced
to a problem of reachability of nodes, without loss of generality. By a sym-
bolic state we mean a pair of the form 〈s, ζ〉, where s ∈ S and ζ ∈ ZX .
The method is based on the addition of extra transitions to G which are en-
abled when the target symbolic state is reached, and lead to another node s′,
which we then regard as the target node. Formally, we can reduce the proba-
bilistic real-time reachability problem for symbolic states of G, (Rsymb ,w, λ),
where Rsymb = {〈s1, ζ1〉, . . . , 〈sm, ζm〉} is a set of symbolic states, and w and λ
have their usual meanings, to the standard real-time reachability problem
on a new probabilistic timed automaton G′ in the following manner. Let
G′ = (S ∪ {s′},L′, s̄,X , inv ′, prob ′, 〈τ ′s〉s∈S∪{s′}), where:

• L′(s′) = ∅, inv ′(s′) = true, and prob ′(s′) = {p}, where p(s′, ∅) = 1 and
τ ′s′(p) = true,

• for all s ∈ S, let L′(s) = L(s), inv ′(s) = inv(s), prob ′(s) = prob(s)∪{p〈s,ζ〉 |
〈s, ζ〉 ∈ Rsymb}, where p〈s,ζ〉(s

′, ∅) = 1, τ ′s(p〈s,ζ〉) = ζ, and, for all other
p ∈ prob(s), τ ′s(p) = τs(p).

The problem (Rsymb ,w, λ) on G is then reduced to the associated problem
({s′},w, λ) on G′.

Application 1: time bounded reachability. In certain cases, we may be
interested in the reachability of certain nodes either before or after a time
deadline has expired. For example, recall the communication protocol of Sec-
tion 3.1, and consider the property, “with probability 0.975 or greater, it is
possible to correctly deliver a data packet within 5 time units”. Problems
of this type can be solved in our framework in the following manner. First,
the probabilistic timed automaton of interest, G, is augmented with a sin-
gle clock z, which is intended to count the total elapsed time of system ex-
ecution. The clock z does not feature in any of the invariant or enabling
conditions, or in any clock resets of the new probabilistic timed automaton,
which will be denoted by G+z (although observe that, as usual, z is 0 ini-
tially). Say that we are interested in the reachability of the set R of nodes in
time ∼ c, where ∼∈ {<,≤, =,≥, >} and c ∈ N. Then this problem can be
phrased as the reachability problem (R∼c

symb ,w, λ) on symbolic states, where
R∼c

symb = {〈s, z ∼ c〉 | s ∈ R}. G+z then undergoes a further transformation to
G′

+z in the manner described in the previous paragraph, on which the standard
probabilistic real-time reachability analysis is then performed.

Application 2: invariance verification. Another type of property of inter-

33

est requires that the probabilistic timed automaton G does not leave a certain
set of nodes I ⊆ S with a given probability or greater. For example, in Sec-
tion 3.1, the property, “with probability 0.875 or greater, the system never
aborts”, falls into this category. Such invariance verification properties can
be reduced to standard probabilistic real-time reachability problems in the
following way. Let the probabilistic invariance verification problem I be the
tuple (I,w, λ), where w and λ have their usual meanings. Then I reduces to
the probabilistic real-time reachability problem (S \ I, w̄, 1−λ), where w̄ =>
if w=≥ and w̄ =≥ if w=>. That is, we solve the problem of reachability of
nodes that are not in the required invariant I with probability 1−λ or greater.
If the answer to the problem (S \ I, w̄, 1− λ) is “Yes”, then the answer to I
is “No”, otherwise the answer to I is “Yes”.

Reachability properties and PTCTL. In the non-probabilistic context,
property specification languages such as TCTL do not capture reachable states
[27], for the simple reason that the former are evaluated over infinite, diver-
gent paths, whereas the latter are defined by finite paths. This characteristic
also transfers to the probabilistic context, albeit in a slightly different manner;
that is, PTCTL is interpreted over divergent adversaries, whereas reachabil-
ity properties are interpreted over R-divergent adversaries. However, if all
adversaries of the probabilistic timed structure MG of G are divergent (re-
call that the property of divergence is stronger than that of R-divergence),
then we can identify correspondences between PTCTL formulae and reach-
ability properties. Without loss of generality, for a given set S of nodes, we
extend the labelling function L of the probabilistic timed automaton G to
LS : S → 2AP∪{aS} where, for each s ∈ S, LS(s) = L(s) ∪ {aS} if s ∈ S, and
LS(s) = L(s) otherwise.

7.2 Probabilistic real-time reachability algorithm

7.2.1 Preliminaries

Before the probabilistic real-time reachability algorithm is introduced formally,
we present the following concepts for representing and manipulating state
sets of a probabilistic timed automaton. The concepts of c-equivalence and
c-closure are defined in a similar manner to [27] (note that they are related
to the extrapolation abstraction of [14]). Given c ∈ N, two valuations ν, ν ′ are
described as c-equivalent if:

• for any clock x ∈ X , either ν(x) = ν ′(x), or ν(x) > c and ν ′(x) > c; and,
• for any two clocks x1, x2 ∈ X , ν(x1) − ν(x2) = ν ′(x1) − ν ′(x2), or ν(x1) −

ν(x2) > c and ν ′(x1)− ν ′(x2) > c.

34

We define the c-closure of ζ, denoted by close(ζ, c), to be the greatest zone
ζ ′ ⊇ ζ satisfying, for all ν ′ ∈ ζ ′, there exists ν ∈ ζ such that ν and ν ′ are
c-equivalent. Intuitively, the c-closure of a zone is obtained by removing all of
its boundaries which correspond to constraints which refer to integers greater
than c. Observe that, for a given c, there are only a finite number of c-closed
zones.

Consider a particular probabilistic timed automaton G. Recall a pair of the
form 〈s, ζ〉, where s ∈ S and ζ ∈ ZX is a zone, is called a symbolic state.
We say that a state 〈s, ν〉 is contained within a symbolic state 〈s′, ζ〉, written
〈s, ν〉 ∈ 〈s, ζ〉, if s = s′ and ν ∈ ζ.

The function close is extended to symbolic states, by defining close(〈s, ζ〉, c) =
〈s, close(ζ, c)〉. We also overload the function discrete to the case of symbolic
states; that is, for a symbolic state 〈s, ζ〉, we define discrete〈s, ζ〉 = s.

For the purposes of the forward reachability algorithm, it is convenient to
regard the discrete transitions of a probabilistic timed automaton G as defining
edges between the nodes of G. Formally, an edge e is a tuple of the form
(s, s′, X, p) ∈ S2 × 2X × µ(S × 2X). We define the set E of edges of the
probabilistic timed automaton G such that (s, s′, X, p) ∈ E if and only if
p ∈ prob(s) and p(s′, X) > 0. For any s ∈ S, the set out(s) contains all edges
of the form (s, , ,).

Our aim of forward exploration through the state space of a probabilistic timed
automaton requires operations to return the successor states of all of the states
in a particular set (where the set is represented as a symbolic state). More
precisely, we introduce a discrete successor operation which, given an edge e ∈
E and a symbolic state 〈s, ζ〉, returns all of the states obtained by traversing e
from a state in 〈s, ζ〉. Similarly, our time successor operation on the symbolic
state 〈s, ζ〉 returns the set of states which can be obtained from a state in
〈s, ζ〉 by letting some time elapse. These two operations can be composed to
define a generalized successor operation, called the post operation. For a given
symbolic state 〈s, ζ〉 and an edge e ∈ E, the post operation returns the set
of states that can be obtained from 〈s, ζ〉 by traversing the edge e and then
letting time elapse. Note that we also parameterize the post operation by an
integer c ∈ N, and only compute the c-closure of symbolic states obtained by
the time successor operation; in Section 7.2.2, this fact will be used to ensure
the termination of our forward reachability algorithm.

Definition 27 (Successor operations) The forward projection of a zone
ζ ∈ ZX is defined to be the zone ↗ζ in ZX , such that ν ∈↗ζ if and only if
∃t ∈ R . ν − t ∈ ζ.

For a symbolic state 〈s, ζ〉:

35

Time successor The time successor of 〈s, ζ〉 is defined as time succ〈s, ζ〉 def
=

〈s,↗ζ ∩ inv(s)〉.
Discrete successor The discrete successor of 〈s, ζ〉 with respect to the edge

e = (s, s′, X, p) is defined as:

disc succ(e, 〈s, ζ〉) def
= 〈s′, ((ζ ∩ τs(p))[X := 0]) ∩ inv(s′)〉 .

Post For a constant c ∈ N and an edge e ∈ out(s), the post operation is
defined according to:

post[e, c]〈s, ζ〉 def
= close(time succ(disc succ(e, 〈s, ζ〉)), c) .

Observe that all of the operations in Definition 27 preserve the convexity of
zones [27].

7.2.2 The algorithm ForwardReachability

An algorithm for generating a finite representation of the state space of a
probabilistic timed automaton for a given set of target states R is presented
in Figure 6. As in the case of similar algorithms in the non-probabilistic context
[13,24], the algorithm searches forward through a reachable portion of the state
space of the system by successively iterating the transition relation a finite
number of times. Note that the introduction of probabilistic information in
the discrete transition relation of probabilistic timed automata means that we
now regard the portion of the state space that is computed by this method to
be reachable with non-zero probability. Given that this set has been generated
for the probabilistic timed automaton G, we can then obtain an upper bound
on the maximal probability of computations of G reaching the target set; this
is achieved by solving a linear programming problem on the generated state
space, in the manner of [15,16]. Therefore, our strategy consists of two distinct
computation steps: firstly, generation of the state space which is reachable with
non-zero probability from the initial state, and secondly, performing another
computation on this state space to find the maximum probability relevant to
our problem.

One important difference between the algorithm in Figure 6 and analogous
algorithms in the non-probabilistic, real-time literature, is the fact that the
on-the-fly property of the latter algorithms is compromized in our context.
This property refers to the fact that, if a symbolic state which reaches the
target set is computed, then the algorithm can terminate immediately with
a “Yes” answer to the reachability problem. Such a strategy is insufficient
for probabilistic timed automata. For example, consider the case in which we
have found a path of symbolic states reaching the target set R, and which
corresponds to the probability λ. Then it may be possible to find another
path to R, thus increasing the probability of reaching this target set. Given

36

the expense of the probability computation step, we opt to perform it only
after all of the relevant symbolic states which are reachable with positive
probability have been computed.

ForwardReachability(〈s̄, ζ0〉, R){
c := cmax(G)
Z := ∅
Reached := ∅
Fringe := {close(time succ〈s̄, ζ0〉, c)}
repeat

choose 〈s, ζ〉 ∈ Fringe
Fringe := Fringe \ {〈s, ζ〉}
if s ∈ R then Reached := Reached ∪ {〈s, ζ〉}
else

for each e ∈ out(s) do
let 〈s′, ζ ′〉 := post[e, c]〈s, ζ〉
if ζ ′ 6= ∅ and 〈s′, ζ ′〉 6∈ Z then

Fringe := Fringe ∪ {〈s′, ζ ′〉}
end if

end for each
end if
Z := Z ∪ {〈s, ζ〉}

until Fringe = ∅
return Z ,Reached

}

Fig. 6. The algorithm ForwardReachability

The portion of the state space that is generated by ForwardReachability
takes the form of a set Z of symbolic states 〈s, ζ〉. The set Fringe is used to
represent the set of symbolic states that are reachable from the initial state
with non-zero probability, but whose successors may not have been explored.

Given the probabilistic timed automaton G = (S,L, s̄,X , inv , prob, 〈τs〉s∈S),
and the target set R ⊆ S, the sets Z and Reached , obtained by the algorithm
ForwardReachability, are now used to define a Markov decision process
NR

G = (QR
G, StepsR

G) called the zone graph, which contains the information
relevant to the probabilistic real-time reachability problem. As in Section 4.1
and Section 6.2, we associate a notion of type with the transitions of the zone
graph, and overload the notation type for this purpose.

Definition 28 (Zone Graph) The zone graph NR
G of the probabilistic timed

automaton G with respect to R is the Markov decision process (QR
G, StepsR

G)
such that QR

G = Z is the set of symbolic states computed by ForwardReach-

37

ability, and StepsR
G : QR

G → Pfn(µ(QR
G)) is a set of transitions of the following

form:

Discrete transitions For all 〈s, ζ〉 ∈ Z \ Reached and p ∈ prob(s) where
ζ ∩ τs(p) 6= ∅, there exists p̂ ∈ StepsR

G〈s, ζ〉, such that, for each 〈s′, ζ ′〉 ∈ Z:

p̂〈s′, ζ ′〉 =
∑

X⊆X &
〈s′,ζ′〉=post[(s,s′,X,p),c]〈s,ζ〉

p(s′, X) .

Let type(p̂) = p.
Self loops For every 〈s, ζ〉 ∈ Z, let p̂loop ∈ StepsR

G〈s, ζ〉, where p̂loop〈s′, ζ ′〉 =
1 if and only if 〈s′, ζ ′〉 = 〈s, ζ〉. Let type(p̂loop) =⊥.

The initial state of the zone graph is close(time succ〈s̄, ζ0〉, c), which we denote
by q̄. As in the standard manner for Markov decision processes [8,6], we can
define notions of paths, the function Prob ′fin on finite paths, and the probability
measure Prob ′ on infinite paths. Furthermore, the notion of adversaries of
Markov decision processes is also standard; we denote the set of all adversaries
of the zone graph by B.

Recall that, for a given c ∈ N, there are a finite number of c-closed zones.
Lemma 29 then follows from the cmax(G)-closure of all symbolic states of NR

G ,
and the fact that the number of nodes is finite [14,27].

Lemma 29 For any probabilistic timed automaton G and target set R ⊆ S,
QR

G is finite.

Observe that Lemma 29 also implies the termination of the algorithm. Note
that, as any symbolic state is a union of regions, and that the algorithm only
generates distinct symbolic states, the size of the zone graph, and therefore the
complexity of the verification problem, is the same as that of the associated
region graph only in the worst case.

7.2.3 Computation of the maximal reachability probability

Given that the zone graph of the probabilistic timed automaton G with respect
to the target set R has been constructed, the probabilistic real-time reachabil-
ity problem (R,w, λ) can be solved in the following way. First, observe that if
Reached = ∅, then the forward search through the reachable state space has
found that R is not reachable with positive probability, and therefore we con-
clude that the answer to the problem is “No” (the problem for whichw=≥ and
λ = 0 is meaningless, and therefore is not considered here). If Reached 6= ∅,
we propose to perform a maximal reachability probability computation on the
state space of the zone graph, following established techniques for finite state
Markov decision processes [11,15,16]. Unfortunately, the probability obtained

38

via this approach may be greater than the probability of reaching the target
set via any adversary of the probabilistic timed automaton.

s̄

sR

x = y = 0

true

s1

0.5
{x := 0}

0.5

11

{y := 0}

s2

x = 0 ∧ y = 1 x = 0 ∧ y = 0

0.5 0.5

〈s1, x ≤ y〉

1 1

〈s̄, x = y〉

1

1

1

1

〈sR, x = y〉

〈s2, x = y〉

Fig. 7. The probabilistic timed automaton G4 and the zone graph N {sR}
G4

This is illustrated by the example of the probabilistic timed automaton G4,
and its associated zone graph shown in Figure 7. Say that the target set of
interest consists of the single node sR. Then it is clear that there are only two
adversaries of G4 (or, rather, of its probabilistic timed structure MG4) such
that there is a non-zero probability of reaching sR. Intuitively, these correspond
to two possible times at which the probability distribution associated with the
initial state is chosen: either when x = y = 0, or when x = y = 1. In the former
case, if the left-hand edge to s1 is taken, then the outgoing edge of s1 can never
be taken, and so we must remain in this node; however, if the right-hand edge
to s2 is taken, then the outgoing edge to sR can be selected immediately. The
case for the selection of the transition of s̄ when x = y = 1 is symmetrical.
Therefore, for each of the two adversaries that have been described informally,
the probability of reaching the target node sR is 0.5. Now consider the zone
graph N {sR}

G4
shown in Figure 7 (the reader can verify that this is indeed

the zone graph corresponding to the reachability problem in question). If, in
〈s̄, x = y〉, the distribution to 〈s1, x ≤ y〉 and 〈s2, x = y〉 is selected, and then,
whichever symbolic state is chosen, a transition to 〈sR, x = y〉 is made, then the
probability of reaching a symbolic state for which the discrete part is sR is 1.
If the probabilistic real-time reachability problem in question is ({sR},≥, 0.7),
then the maximal reachability probability that is computed on the zone graph
will be greater than or equal to 0.7, whereas the answer to the probabilistic
real-time reachability problem, as presented in Section 7.1, will be “No”.
Therefore, we advocate the strategy of returning an answer of “Maybe”,
rather than “Yes” if the maximal reachability probability computed on the
zone graph is w λ, and “No” otherwise.

The maximal reachability probability problem on a Markov decision pro-

39

cess is solved by reduction to an appropriate linear programming problem
[11,15,16]. We now apply this solution to the Markov decision process NR

G ,
where the set of destination states (see [15]) is set equal to Reached . Let
Pr(close(time succ〈s̄, ζ0〉, c) be the maximal reachability probability value com-
puted for the state close(time succ〈s̄, ζ0〉, c). Then, for a given probabilis-
tic timed automaton G and a probabilistic real-time reachability problem
(R,w, λ), the answer to the problem is:

• “Maybe”, if Reached 6= ∅ and Pr(close(time succ〈s̄, ζ0〉, c)) w λ, and
• “No”, otherwise.

Recall that invariance properties can be stated in terms of reachability prop-
erties, and that if the answer to the reachability property is “Yes” (“No”)
then the answer to the invariant property is “No” (“Yes”, respectively). The
introduction of the possibility of a “Maybe” result to the probabilistic real-
time reachability problem has the following implications for the verification
of invariance properties: if the answer to the reachability problem obtained
from the invariance problem is “Maybe”, then the answer to the invariance
problem is also “Maybe”; however, if “No” is returned, then the answer to
the invariance problem is “Yes”. This leads us to conclude that our forward
reachability method may be particularly appropriate for establishing the sat-
isfaction of probabilistic, real-time invariance properties.

7.3 Example of probabilistic real-time reachability

Consider again the probabilistic timed automaton G1 of Figure 1. Say we
are interested in the untimed, reachability property “with probability 0.9999
or greater, it is possible to correctly deliver a data packet” (we consider an
untimed property for simplicity). This requirement can be specified in terms
of the probabilistic real-time reachability problem ({ri},≥, 0.9999), with the
computation of the algorithm ForwardReachability taking the form given
in Figure 8. A typical iteration of the algorithm consists of the following steps:
first, a symbolic state 〈s, ζ〉 is taken from Fringe; second, for all edges that are
enabled in 〈s, ζ〉, the discrete successor is generated; third, the time successors
of the discrete successors computed in the previous step are generated; finally,
the sets Fringe and Z are adjusted, so that Fringe now contains the newly
generated symbolic states (provided that they do not already exist in Fringe
or Z), and 〈s, ζ〉 is added to Z. Note that the second and third steps relate
to the application of the post[., .](.) operation, and that the cmax(G)-closure
of the time successors is implicit (as cmax(G) = 7, we take the 7-closure of
the time successors). The notation s → s′, for nodes s, s′ ∈ S, refers to the
edge from node s to s′. A special case is iteration 4, in which the node of the
symbolic state 〈ri , x = y〉 is found to be in the target set R, and therefore

40

〈ri , x = y〉 is added to Reached .

The resulting zone graph N {ri}
G1

is shown in figure Figure 9 (we omit the self
loops that are associated with every symbolic state for simplicity). Observe
that the most important nondeterministic choice made in this Markov deci-
sion process is featured in the symbolic state 〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉,
and that the single destination state of N {ri}

G1
is the symbolic state in Reached ,

〈ri , x = y〉. After application of a linear programming problem, we find that
the maximal reachability probability value of reaching 〈ri , x = y〉 from the
initial state 〈hi , x = y ≤ 3〉 is 0.9998737375. As this value is less than
that as 0.9999, we conclude that the answer to the reachability problem,
“with probability 0.9999 or greater, it is possible to correctly deliver a data
packet”, is “No.” Observe that the region graph of G1 and the PTCTL
property [true ∃U ri]≥0.9999, which is equivalent to the reachability property
({ri},≥, 0.9999), consists of 101 reachable states, compared to the 8 states
constructed by the forward reachability method of Figure 6.

Note that it is straightforward to verify G1 against a time bounded reachability
property such as “with probability 0.975 or greater, it is possible to correctly
deliver a data packet within 5 time units”. As explained in Section 7.1, all
that is required is to augment G1 with an additional clock z, an extra node
s′, and an additional distribution in the node ri , which is enabled only when
z ≤ 5 and leads to the new target node s′ with probability 1. We then perform
reachability analysis on the new probabilistic timed automaton in a similar
way to that described above. It also follows that verification of invariance
properties of G1, such as “with probability 0.875 or greater, the system never
aborts” is possible.

7.4 Proof of the partial correctness of the probabilistic real-time reachability
algorithm

We have shown that our forward reachability procedure will compute a max-
imal reachability probability on the zone graph that may be greater than the
actual maximal probability on the probabilistic timed automaton G. How-
ever, we now show that the computed probability will not be less than the
actual probability by proving that, for every adversary of the probabilistic
timed structure MG of G, there exists a sufficiently “similar” adversary of
NR

G , where the notion of “similarity” means that the probability of reach-
ing the target set R is the same for both adversaries. The proof proceeds in
two steps: first, properties of single transitions of the zone graph NR

G and the
probabilistic timed structure MG of G are studied, providing the basis of the
second step, which concerns the paths and adversaries of MG and NR

G .

41

Initially: Fringe = {〈hi , x = y ≤ 3〉}, Z = ∅

Iteration 1: take 〈hi , x = y ≤ 3〉 from Fringe

disc succ hi → wr : 〈wr , ζ0〉 hi → wi : 〈wi , x = 0 ∧ 2 ≤ y ≤ 3〉

time succ hi → wr : 〈wr , x = y ≤ 1〉 hi → wi : 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉

Fringe = {〈wr , x = y ≤ 1〉, 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉}, Z = {〈hi , x = y ≤ 3〉}

Iteration 2: take 〈wr , x = y ≤ 1〉 from Fringe

disc succ wr → ri : 〈ri , x = y ≤ 1〉 wr → wi : 〈wi , x = y ≤ 1〉

time succ wr → ri : 〈ri , x = y〉 wr → wi : 〈wi , x = y ≤ 3〉

Fringe = {〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉, 〈ri , x = y〉, 〈wi , x = y ≤ 3〉},

Z = {〈hi , x = y ≤ 3〉, 〈wr , x = y ≤ 1〉}

Iteration 3: take 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉 from Fringe

disc succ wi → wr : 〈wr , ζ0〉 wi → wi : 〈wi , x = 0 ∧ 4 ≤ y ≤ 6〉

time succ wi → wr : 〈wr , x = y ≤ 1〉 wi → wi : 〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉

Fringe = {〈ri , x = y〉, 〈wi , x = y ≤ 3〉, 〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉},

Z = {〈hi , x = y ≤ 3〉, 〈wr , x = y ≤ 1〉, 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉}

Iteration 4: take 〈ri , x = y〉 from Fringe

Add 〈ri , x = y〉 to Reached

Fringe = {〈wi , x = y ≤ 3〉, 〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉},

Z = {〈hi , x = y ≤ 3〉, 〈wr , x = y ≤ 1〉, 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉, 〈ri , x = y〉}

Iteration 5: take 〈wi , x = y ≤ 3〉 from Fringe

disc succ wi → wr : 〈wr , ζ0〉 wi → wi : 〈wi , x = 0 ∧ 2 ≤ y ≤ 3〉

time succ wi → wr : 〈wr , x = y ≤ 1〉 wi → wi : 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉

Fringe = {〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉},

Z = {〈hi , x = y ≤ 3〉, 〈wr , x = y ≤ 1〉, 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉, 〈ri , x = y〉, 〈wi , x = y ≤ 3〉}

Iteration 6: take 〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉 from Fringe

disc succ wi → wr : 〈wr , ζ0〉 wi → wi : 〈wi , x = 0 ∧ 6 ≤ y ≤ 7〉 wi → aa : 〈aa, ζ0〉

time succ wi → wr : 〈wr , x = y ≤ 1〉 wi → wi : 〈wi , x ≤ 1 ∧ x + 6 ≤ y ≤ 7〉 wi → aa : 〈aa, x = y〉

Fringe = {〈wi , x ≤ 1 ∧ x + 6 ≤ y ≤ 7〉, 〈aa, x = y〉},

Z = {〈hi , x = y ≤ 3〉, 〈wr , x = y ≤ 1〉, 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉, 〈ri , x = y〉, 〈wi , x = y ≤ 3〉,

〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉}

Iteration 7: take 〈wi , x ≤ 1 ∧ x + 6 ≤ y ≤ 7〉 from Fringe

disc succ wi → aa : 〈aa, ζ0〉

time succ wi → aa : 〈aa, x = y〉

Fringe = {〈aa, x = y〉},

Z = {〈hi , x = y ≤ 3〉, 〈wr , x = y ≤ 1〉, 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉, 〈ri , x = y〉, 〈wi , x = y ≤ 3〉,

〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉, 〈wi , x ≤ 1 ∧ x + 6 ≤ y ≤ 7〉}

Iteration 8: take 〈aa, x = y〉 from Fringe

disc succ aa → aa : 〈aa, ζ0〉

time succ aa → aa : 〈aa, x = y〉

Fringe = ∅,

Z = {〈hi , x = y ≤ 3〉, 〈wr , x = y ≤ 1〉, 〈wi , x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉, 〈ri , x = y〉, 〈wi , x = y ≤ 3〉,

〈wi , x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉, 〈wi , x ≤ 1 ∧ x + 6 ≤ y ≤ 7〉, 〈aa, x = y〉}

Fringe = ∅, therefore terminate

Fig. 8. Computations of ForwardReachability on G1.

42

0.99

0.01

0.05

0.05

0.05

1

0.95

0.95

0.95

0.95 0.05

1

1

〈wi, x = y ≤ 3〉

〈wi, x ≤ 1 ∧ x + 6 ≤ y ≤ 7〉

〈wi, x ≤ 3 ∧ x + 4 ≤ y ≤ 7〉

〈wi, x ≤ 3 ∧ x + 2 ≤ y ≤ x + 3〉
〈wr, x = y ≤ 1〉

〈ri, x = y〉

〈hi, x = y ≤ 3〉

〈aa, x = y〉

Fig. 9. The zone graph N {ri}
G1

.

7.4.1 Properties of single-step transitions of the zone graph

We commence by exploring the way in which a single transition of the prob-
abilistic timed structure MG of G may be mimicked by a transition of the
zone graph NR

G , such that both transitions have the same type (as given by
the functions denoted by type). Our concerns are twofold: first we show that,
for any state 〈s, ν〉 of MG contained within a symbolic state 〈s, ζ〉 of NR

G , any
transition from 〈s, ν〉 can be mimicked by a transition from 〈s, ζ〉 of the same
type; then we show that, for any target state 〈s′, ν ′〉 of the transition from
〈s, ν〉, the set of clock resets which can be used to obtain 〈s′, ν ′〉 can be used
to obtain a set of successor symbolic states of 〈s, ζ〉, each element of which
contains 〈s′, ν ′〉.

Existence of transitions

First, we show that the existence of a transition from a state 〈s, ν〉 of MG

implies the existence of a transition with the same type from any symbolic
state of NR

G which contains 〈s, ν〉.

Lemma 30 For any symbolic state 〈s, ζ〉 ∈ QR
G, state 〈s, ν〉 ∈ QG such that

〈s, ν〉 ∈ 〈s, ζ〉, and transition 〈s, ν〉 t,p̃−→ 〈s′, ν ′〉 of MG, there exists a transition

〈s, ζ〉 p̂−→ 〈s′, ζ ′〉 of NR
G , such that type(p̃) = type(p̂) and 〈s′, ν ′〉 ∈ 〈s′, ζ ′〉.

43

PROOF. The correctness of this lemma follows from the definitions of post
and of the zone graph NR

G (Definition 27 and Definition 28). We have two
cases, depending on whether type(p̃) = p, for some p ∈ prob(s), or whether
type(p̃) =⊥.

Case: type(p̃) = p. Observe that there must exist an X ⊆ X such that both
ν ′ = ν[X := 0] and p(s′, X) > 0. Furthermore, from p(s′, X) > 0, there
exists an edge e = (s, s′, X, p) in the set of edges of G. From the definition
of post[., .](.) (and the fact that the initial symbolic state of the zone graph
is close(time succ〈s̄,0〉, c)), all of the time successors of any state in 〈s, ζ〉
(and all of the state that are c-equivalent to such time successors) are also in

〈s, ζ〉. Because the transition 〈s, ν〉 t,p̃−→ 〈s′, ν ′〉 and the fact that p = type(p̃)
encode the information of letting t time units elapse from the state 〈s, ν〉,
and then choosing the distribution p, we conclude that ν + t ∈ τs(p), and,
since ν + t ∈ ζ, we have ζ ∩ τs(p) 6= ∅. Furthermore, by the assumption
of admissible targets of G, ((ζ ∩ τs(p))[X := 0]) ∩ inv(s′) 6= ∅. This gives
us that disc succ(e, 〈s, ζ〉) = 〈s′, ζ ′′〉, where ζ ′′ 6= ∅. As ν + t ∈ τs(p), and
ν ′ = (ν + t)[X := 0], it must be the case that ν ′ ∈ ζ ′′, and therefore
〈s′, ν ′〉 ∈ 〈s′, ζ ′′〉. Next, because close(time succ〈s′, ζ ′′〉, c) ⊇ 〈s′, ζ ′′〉, it must
be the case that 〈s′, ν ′〉 ∈ post[e, c]〈s, ζ〉. Then we let 〈s′, ζ ′〉 = post[e, c]〈s, ζ〉
and 〈s′, ν ′〉 ∈ 〈s′, ζ ′〉 as required.

Case: type(p̃) =⊥. From Definition 9, it must be the case that 〈s′, ν ′〉 =
〈s, ν + t〉. Furthermore, by Definition 28, the only distribution available in
〈s, ζ〉 with type ⊥ is a self loop p̂loop ; therefore, we mimic the transition

〈s, ν〉 t,p̃−→ 〈s, ν + t〉 with the transition 〈s, ζ〉 p̂loop−−→ 〈s′, ζ ′〉, where 〈s′, ζ ′〉 =
〈s, ζ〉. Because all of the time successors of any state in 〈s, ζ〉, together with
all of the states that are c-equivalent to any such time successor, are also
in 〈s, ζ〉, we have that 〈s, ν + t〉 ∈ 〈s, ζ〉, which is equivalent to 〈s′, ν ′〉 ∈
〈s′, ζ ′〉. 2

Targets of transitions

We now proceed to the main lemma of this section. Intuitively, we highlight
the correspondence between transitions of the probabilistic timed structure
MG and the zone graph NR

G by establishing the following facts. Consider
the state 〈s, ν〉, the symbolic state 〈s, ζ〉 such that 〈s, ν〉 ∈ 〈s, ζ〉, and the
distributions p̃, p̂ which are available in 〈s, ν〉 and 〈s, ζ〉 respectively, and for
which type(p̃) = type(p̂) = p. Then:

• every state of MG which is in the support of p̃ is contained in a symbolic
state in the support of p̂; conversely, every symbolic state of NR

G in the
support of p̂ contains a state in the support of p̃;

• furthermore, with the intuition that the probability p̃〈s′, ν ′〉 is equal to the
sum of probabilities assigned by p to edges whose target is s′ and which

44

reset clocks in such a way as to result in the valuation ν ′, then traversing
each of these edges from the symbolic state will result in a target symbolic
state 〈s′, ζ ′〉 (not necessarily the same for each edge) which contains 〈s′, ν ′〉.

First, consider the following facts concerning the effects of clock resets on
valuations and zones. Given a valuation ν ∈ RX , a particular valuation ν ′ ∈ RX

may be obtained via more than one clock reset. For example, if X = {x, y},
and ν(x) = ν(y) = 0, then ν[{x} := 0] = ν[{y} := 0] = ν[{x, y} := 0].
However, note that the application of these reset sets to a given zone ζ may
result in different zones. Consider the zone ζ given by the constraint x ≤ y.
Then ν ∈ ζ, yet ζ[{x} := 0] is defined by 0 = x ≤ y, whereas ζ[{y} := 0] is
defined by 0 = y ≤ x, and ζ[{x, y} := 0] is defined by x = y = 0.

These concepts can be described formally in the following way.

Lemma 31 Given ζ ∈ ZX , X1, X2 ⊆ X such that ζ[X1 := 0] = ζ[X2 := 0], if
ν ∈ ζ, then ν[X1 := 0] = ν[X2 := 0].

The lemma states that, if the application of two different resets to a zone ζ
results in the same zone ζ ′, then the application of these resets to a valuation
ν contained in ζ must result in the same valuation ν ′. However, the converse
of Lemma 31 (that, if ν[X1 := 0] = ν[X2 := 0] and ν ∈ ζ, then ζ[X1 := 0] =
ζ[X2 := 0]) is not necessarily true. Therefore, although multiple reset sets may
result in the same valuation, these sets may result in different zones, although
it is clear that the valuation will be contained within all such zones. Consider
again the above example. Although ζ[{x} := 0] 6= ζ[{y} := 0] 6= ζ[{x, y} := 0],
it is the case that ν ′ = ν[{x} := 0] = ν[{y} := 0] = ν[{x, y} := 0] is such that
ν ′ ∈ ζ[{x} := 0], ν ′ ∈ ζ[{y} := 0] and ν ′ ∈ ζ[{x, y} := 0].

We now introduce three functions in order to reason about the relationship
between valuations and zones.

• SResets : RX × RX → 22X is the function such that, for any ν, ν ′ ∈ RX ,
SResets(ν, ν ′)

def
= {X ⊆ X | ν[X := 0] = ν ′}.

• Similarly, ZResets : ZX × ZX → 22X is the function such that, for any
ζ, ζ ′ ∈ ZX , ZResets(ζ, ζ ′)

def
= {X ⊆ X | ζ[X := 0] = ζ ′}.

• Finally, NewZones : ZX × 22X → 2ZX is the function such that, for any ζ ∈
ZX and Y ⊆ 2X , NewZones(ζ,Y)

def
= {ζ ′ ∈ ZX | ζ ′ = ζ[X := 0] for some X ∈

Y}.

The intuition underlying these functions is as follows. SResets(ν, ν ′) is the set
of clock resets which, if applied to the valuation ν, result in the valuation ν ′,
and ZResets(ζ, ζ ′) is the set of clock resets which, if applied to the zone ζ,
result in the zone ζ ′ (note that SResets(ν, ν ′) and ZResets(ζ, ζ ′) may contain
the empty clock reset ∅). NewZones(ζ,Y) is the set of zones which can be
obtained by the application of clock resets in Y to ζ.

45

The following lemma follows immediately from Lemma 31 and these defini-
tions.

Lemma 32 Let ζ ∈ ZX be a zone.

(1) For any valuations ν, ν ′ ∈ RX , and zone ζ ′ ∈ ZX , such that ν ∈ ζ and
ν ′ ∈ ζ ′, then ZResets(ζ, ζ ′) ⊆ SResets(ν, ν ′).

(2) For any distinct zones ζ ′, ζ ′′ ∈ ZX , ZResets(ζ, ζ ′) ∩ ZResets(ζ, ζ ′′) = ∅.
(3) For any valuations ν, ν ′ ∈ RX , and zone ζ ′ ∈ ZX , such that ν ∈ ζ

and ν ′ ∈ ζ ′, then
⋃{ZResets(ζ, ζ ′) | ζ ′ ∈ NewZones(ζ, SResets(ν, ν ′))} =

SResets(ν, ν ′).

Observe that part (2) of Lemma 32 implies that the elements of the set
{ZResets(ζ, ζ ′) | ζ ′ ∈ NewZones(ζ, SResets(ν, ν ′))} are themselves disjoint sets,
and therefore the union in part (3) of the lemma is a disjoint union.

We now proceed to the main lemma of this section.

Lemma 33 Let 〈s, ν〉 ∈ QG be a state of MG, and 〈s, ζ〉 ∈ QR
G be a symbolic

state of NR
G such that 〈s, ν〉 ∈ 〈s, ζ〉. If (t, p̃) ∈ StepsG〈s, ν〉 and type(p̃) = p

for some p ∈ µ(S × 2X), then for any 〈s′, ν ′〉 ∈ QG such that p̃〈s′, ν ′〉 > 0:

p̃〈s′, ν ′〉 =
∑

ζ′∈NewZones(ζ∩τs(p),SResets(ν+t,ν′))

p̂(close(time succ〈s′, ζ ′〉, c))

where p̂ is the corresponding distribution of StepsR
G〈s, ζ〉 given by Lemma 30.

PROOF. From the definition of the distribution p̃ in Definition 9, and from
the definition of SResets(., .):

p̃〈s′, ν ′〉 =
∑

X⊆X &
(ν+t)[X:=0]=ν′

p(s′, X) =
∑

X∈SResets(ν+t,ν′)

p(s′, X) . (1)

Furthermore, by the definition of the distribution p̂ in Definition 28, and from
the definition of ZResets(., .), for each ζ ′ ∈ NewZones(ζ ∩ τs(p), SResets(ν +
t, ν ′)):

p̂(close(time succ〈s′, ζ ′〉, c)) =
∑

X⊆X &
〈s′,ζ′〉=disc succ((s,s′,X,p)〈s,ζ〉)

p(s′, X)

=
∑

X∈ZResets(ζ∩τs(p),ζ′)

p(s′, X) .

Summing over all zones in NewZones(ζ ∩ τs(p), SResets(ν + t, ν ′)) gives the
following equation:

46

∑
ζ′∈NewZones(ζ∩τs(p),SResets(ν+t,ν′))

p̂(close(time succ〈s′, ζ ′〉, c))

=
∑

ζ′∈NewZones(ζ∩τs(p),SResets(ν+t,ν′))

 ∑
X∈ZResets(ζ∩τs(p),ζ′)

p(s′, X)

 . (2)

We now reconcile equations (1) and (2). The following equation relies on the
crucial observation of Lemma 32 that all of the elements of the set {ZResets(ζ∩
τs(p), ζ ′) | ζ ′ ∈ NewZones(ζ∩τs(p), SResets(ν, ν ′))} are themselves disjoint sets:

∑
X∈SResets(ν+t,ν′)

p(s′, X)

=
∑

ζ′∈NewZones(ζ∩τs(p),SResets(ν+t,ν′))

 ∑
X∈ZResets(ζ∩τs(p),ζ′)

p(s′, X)

 .

Therefore, from (1) and (2), after performing appropriate substitutions:

p̃〈s′, ν ′〉=
∑

ζ′∈NewZones(ζ∩τs(p),SResets(ν+t,ν′))

p̂(close(time succ〈s′, ζ ′〉, c)) . 2

We now present an analogous result to Lemma 33 for the case in which
type(p̃) = type(p̂) = ⊥, which follows immediately from the definition of the
probabilistic timed structure and the zone graph (Definition 9 and Defini-
tion 28, respectively).

Lemma 34 Let 〈s, ν〉 ∈ QG be a state of MG, and 〈s, ζ〉 ∈ QR
G be a symbolic

state of NR
G such that 〈s, ν〉 ∈ 〈s, ζ〉. If (t, p̃) ∈ StepsG〈s, ν〉 such that type(p̃) =

⊥ and p̂ is the corresponding distribution of StepsR
G〈s, ζ〉 given by Lemma 30,

then p̃〈s, ν + t〉 = p̂〈s, ζ〉 = 1.

We conclude this section with the following observation. For a distribution p̃
of the probabilistic timed structure, there will be a finite number l ∈ N of
states in the support of p̃; then, for a related distribution p̂ of the zone graph,
which is of the same type as p̃, there will be at least l symbolic states within
the support of p̂. Intuitively, the transitions of the zone graph can be though
of as “probabilistically branching more than” the associated transitions of the
probabilistic timed structure.

7.4.2 Properties of adversaries of the zone graph

The properties of Section 7.4.1 can be extended to reason about the corre-
spondence between the paths and adversaries of both the probabilistic timed
structure MG and the zone graph NR

G .

47

Adversary construction process. The lemmas of Section 7.4.1 suggest
the following result: for any adversary A of MG, an adversary B of NR

G can
be constructed. This construction process will proceed by starting from the
initial states of MG and NR

G , progressing along the length of paths of A and
successively adding transitions to the partially constructed paths of B. In
particular, for a path ω ∈ PathA

fin〈s̄,0〉, we construct a set of paths Πω ⊆
Pathfin(q̄) which mimic the transitions of ω.

We proceed by induction on the length of paths of ω ∈ PathA
fin〈s̄,0〉. Our aim

is to construct the set of paths Πω ⊆ Pathfin(q̄), defining the choices of the
adversary B as we proceed along their length. Our base case concerns paths
of length 0; that is, paths comprising of only the initial states 〈s̄,0〉 and q̄
of MG and NR

G respectively. As q̄ = close(time succ〈s̄, ζ0〉, c), it follows that
〈s̄,0〉 ∈ q̄.

Next, consider any path ω ∈ PathA
fin〈s̄,0〉 of length i+1, then ω is of the form

ω′
t,p̃−→ 〈s, ν〉 for some path ω′ of length i and 〈s, ν〉 ∈ QG. By induction we

have constructed the set of paths π ∈ Πω′ , and we show how to extend this
set to form Πω. We consider the following cases:

Case: R has already been reached. That is, there exists a j ≤ i such that
discrete(ω′(j)) ∈ R. From the induction hypothesis (recall that this says that
a state along a path ω′ is contained within a symbolic state at the same point
along the path π′ ∈ Πω′), we conclude that discrete(π′(j)) = discrete(ω′(j)).
From the definition of the zone graph (Definition 28), once a state ofNR

G has
reached a node in R, then it loops in its current symbolic state. Therefore,
regardless of the transition made by A after ω′, we let B(π′) = p̂loop for all

π′ ∈ Πω′ , and define Πω as the set of paths {π′ p̂loop−−→ last(π′) | π′ ∈ Πω′}.
Case: R has not already been reached. Consider any π′ ∈ Πω′ and say

π′(i) = 〈s′, ζπ′〉 and ω′(i) = 〈s′, ν ′〉. Then from our induction hypothesis and
Lemma 30, there exists p̂π′ ∈ StepsR

G〈s′, ζπ′〉 such that type(p̂π′) = type(p̃)
and we simply let B(π) = p̂π′ .

Now we must consider the preservation of the induction hypothesis by
the transition; that is, we extend π′ by a set of transitions for which we are
certain that the target symbolic state contains 〈s, ν〉. Then, to construct
the set Πω, we take the union of these extensions over all π′ ∈ Πω′ .

If type(p̃) =⊥, then by Lemma 34 we have 〈s, ν〉 ∈ 〈s′, ζπ′〉 and we simply

extend π′ to a single path π′
p̂π′−→ 〈s′, ζπ′〉.

On the other hand, if type(p̃) = p for some p ∈ µ(S × 2X), then by
Lemma 30, there exists at least one symbolic state 〈s, ζ〉 in the support
of p̂π′ such that 〈s, ν〉 ∈ 〈s, ζ〉. Furthermore, for all ζ ∈ NewZones(ζ ′ ∩
τs′(p), SResets(ν ′ + t, ν)), it must be the case that ν ∈ ζ, and therefore
〈s, ν〉 ∈ close(time succ〈s, ζ〉, c). Then we extend the path π′ to the set of

48

paths of the form

π′
p̂π′−→ close(time succ〈s, ζ〉, c)

such that ζ ∈ NewZones(ζ ′ ∩ τs′(p), SResets(ν ′ + t, ν) ∩ {X | p(s, X) >
0}). Note that for any such ζ, by Definition 27 and our assumption of
admissible targets: close(time succ〈s, ζ〉, c) = post[(s′, s, X, p), c]〈s′, ζ ′〉 for
some (s′, s, X, p) ∈ out(s′).

Furthermore, repeating the construction procedure for all ω ∈ PathA
fin〈s̄,0〉

results in an adversary B on NR
G . We say that B is constructed from A. Next,

we present the fundamental property of B: that the probability with which it
reaches the target set R of nodes is equal to the probability of A reaching the
set R.

Lemma 35 Let A be an adversary of MG, and B be the adversary of NR
G

constructed from A. If ω ∈ PathA
fin〈s̄,0〉 and discrete(ω(i)) 6∈ R for all 0 ≤

i < |ω|, then

Probfin(ω) = Prob ′fin(Πω) .

PROOF. The proof is by induction on the length of ω. If |ω| = 0, then by def-
inition of Probfin and Prob ′fin , and construct of Πω: Probfin(ω) = Prob ′fin(Πω) =
1 as required.

Now suppose that the lemma holds for all paths of length at most k, and
consider any path ω ∈ PathA

fin〈s̄,0〉 of length k+1 such that discrete(ω(i)) 6∈ R

for all 0 ≤ i < |ω|. If A(ω(k)) = (t, p̃), then ω is of the form

ω′
t,p̃−→ 〈s, ν〉

for some 〈s, ν〉 ∈ QG such that ω′ is of length k and discrete(ω′(i)) 6∈ R for all
0 ≤ i < |ω′|, and hence by induction we have:

Probfin(ω′) = Prob ′fin(Πω′) . (3)

For any π′ ∈ Πω′ , let last(π′) = 〈s′, ζπ′〉 and let p̂π′ ∈ StepsR
G〈s′, ζπ′〉 be the

distribution given by Lemma 30 and p̃. We now have the following two cases
to consider.

Case: type(p̃) = ⊥. By construction Πω = {π′ p̂π′−→ 〈s′, ζπ′〉 |π′ ∈ Πω′}, and

49

hence

Prob ′fin(Πω) =
∑

π′∈Πω′
Prob ′fin(π′

p̂π′−→ 〈s′, ζπ′〉)

=
∑

π′∈Πω′
Prob ′fin(π′) · p̂π′〈s′, ζπ′〉 by definition of Prob ′fin

=
∑

π′∈Πω′
Prob ′fin(π′) · p̃〈s, ν〉 by Lemma 34

=

(∑
π′∈Πω′

Prob ′fin(π′)

)
· p̃〈s, ν〉 rearranging

= Probfin(ω′) · p̃〈s, ν〉 by (3)

= Probfin(ω′
t,p̃−→ 〈s, ν〉) by definition of Probfin

= Probfin(ω) by construction.

Case: type(p̃) = p for some p ∈ µ(S × 2X). Suppose last(ω′) = 〈s′, ν ′〉, then
by the definition of Prob ′fin and the construction of B we have:

Prob ′fin(Πω) =∑
π′∈Πω′

Prob ′fin(π′) ·
(∑

ζ∈NewZones(ζπ′∩τs′ (p),SResets(ν′+t,ν))
p̂π′(close(time succ〈s, ζ〉, c))

)
.

Furthermore, by Lemma 33 and the construction of B for any π ∈ Πω:

p̃〈s, ν〉 =
∑

ζ∈NewZones(ζπ′∩τs′ (p),SResets(ν′+t,ν))

p̂π′(close(time succ〈s, ζ〉, c)) .

Putting this together, we have:

Prob ′fin(Πω) =
∑

π′∈Πω′
Prob ′fin(π′) · p̃〈s, ν〉

=

(∑
π′∈Πω′

Prob ′fin(π′)

)
· p̃〈s, ν〉 rearranging

= Prob ′fin(Πω′) · p̃〈s, ν〉 by definition of Prob ′fin

= Probfin(ω′) · p̃〈s, ν〉 by (3)

= Probfin(ω′
t,p̃−→ 〈s, ν〉) by definition of Probfin

= Probfin(ω) by construction

as required. 2

Proposition 36 Let A be an adversary of MG, and B be the adversary of
NR

G constructed from A. Then:

50

Prob{ω | ω ∈ PathA
ful〈s̄,0〉 & ∃i ∈ N.discrete(ω(i)) ∈ R}

=Prob ′{π | π ∈ PathB
ful(q̄) & ∃i ∈ N.discrete(π(i)) ∈ R} .

PROOF. The proof follows from Lemma 35 and the fact that the probability
measures Prob and Prob ′ are induced from the functions Probfin and Prob ′fin

respectively. 2

Divergence on the zone graph. The following notion of divergence of paths
of the zone graph agrees with the definition given for the non-probabilistic case
in [9]. We use the predicate unbounded(., .) of [27] to express the unbounded-
ness of a clock in a certain zone. Given a clock x ∈ X and a zone ζ ∈ ZX , we
define:

unbounded(x, ζ)
def
=

 true if ∀t ∈ R . ∃ν ∈ ζ . ν(x) > t

false otherwise.

This predicate is now used to express the manner in which the value of clock x
may become arbitrarily large before a certain discrete transition is executed.
The intuition underlying the following definition of divergent paths on the zone
graph is that, for each clock x ∈ X , we require that x is either reset infinitely
often, or, from some point on, x is unbounded. Because of the presence of
reachable states, we define R-divergence in the usual way.

Definition 37 (Divergent zone graph paths) Let π = 〈s0, ζ0〉
p̂0−→ 〈s1, ζ1〉

p̂1−→ · · · be an infinite path of the zone graph.

Divergent The path π is divergent if and only if, for each clock x ∈ X ,
either:
(1) for every i ∈ N, there exists j ≥ i and edge e = (sj, sj+1, X, type(p̂j)) ∈

out(sj) such that x ∈ X and 〈sj+1, ζj+1〉 = post[e, c]〈sj, ζj〉, or
(2) there exists i ∈ N such that, for all j ≥ i:

• if type(p̂j) =⊥ then the predicate unbounded(x, ζj) is true;
• if type(p̂j) 6=⊥, then the predicates unbounded(x, τsj

(type(p̂j))) and
unbounded(x, ζj) are true.

R-divergent The path π is R-divergent if and only if either:
(1) there exists i ∈ N such that si ∈ R, or
(2) π is divergent.

We now define divergent adversaries on the zone graph in the obvious manner.

Definition 38 An adversary B of the zone graph NR
G is R-divergent if and

51

only if

Prob ′{π |π ∈ PathB
ful and π is R-divergent} = 1 .

Proposition 39 For any R-divergent adversary A of MG, the adversary B
of NR

G that is constructed from A is R-divergent.

PROOF. We proceed by showing that, if the path ω of A is R-divergent,
then all paths π ∈ Πω are also R-divergent (where Πω is the set of paths
introduced in the construction procedure for B). Firstly, we consider the case
in which there exists i ∈ N such that discrete(ω(i)) ∈ R; that is, the path ω
reaches a target node. Then, by the construction procedure for B, for all paths
π ∈ Πω, discrete(π(i)) = discrete(ω(i)). Therefore, discrete(π(i)) ∈ R, and π is
R-divergent.

Secondly, we consider the case in which ω does not reach the target set R.
Consider the zone graph path π ∈ Πω. Say that there exists a clock x ∈ X
such that x is not reset from the ith transition in π onwards, for some i ∈
N; that is, for the clock x, π does not satisfy part (1) of the definition of
divergent zone graph paths. Then, as the path ω is divergent, and therefore
corresponds to time passing above any bound, it must be the case that the
value of x is not constrained by either an invariant condition or an enabling
condition which is associated with a probability distribution of G taken at
some point along ω from the ith transition onwards. Therefore, condition (2)
of the definition of divergent zone graph paths must be satisfied by π, and π
is then R-divergent. 2

We conclude that, for the target set of nodes R, and for any R-divergent
adversary A of the probabilistic timed structure of G, we can construct an R-
divergent adversary of the zone graphNR

G such that the probability of reaching
a node in R are the same for both A and B.

Therefore, for the adversary of MG with the maximal probability of reaching
a node in R, there exists an adversary of NR

G with the same probability of
reaching R. Hence, the maximal reachability probability computed on NR

G

must be an upper bound on the maximal probability of reaching a node in R
for MG.

8 Conclusions

We conclude with a brief analysis of the complexity of our methods. First,
consider the PTCTL model checking method based on the region graph. The

52

time complexity of PBTL model checking is polynomial in the size of the sys-
tem (measured by the number of states and transitions) and linear in the size
of the formula [6] (see also the recent improvement [4]). Since the translation
from PTCTL to the extended PBTL has no effect on the size of the formula,
it follows that the model checking for PTCTL against probabilistic timed sys-
tems will be polynomial in the size of the region graph and linear in the size
of the PTCTL formula. Note that the addition of probability distributions to
timed automata does not significantly increase the size of the region graph
over the size of the non-probabilistic region graph, and that the reset quan-
tifier formulae we have added to PBTL can be handled in a straightforward
manner.

Future work could address the potential inefficiencies of this method. Model
checking of real-time systems is expensive, with its complexity being exponen-
tial in the number of clocks and the magnitude of their upper bounds (denoted
by cmax(G) and cmax(φ) in our presentation). However, this complexity relates
to the region construction, which we established in Section 7 would only be
constructed by the forward reachability algorithm in the worst case; in prac-
tice, the zone graph may be significantly smaller than the region graph. Note
that forward reachability is not the only technique in the field of timed au-
tomaton model checking which exhibits the characteristic of being typically
more efficient than the region construction approach. For instance, the back-
wards reachability algorithm of [21] has this property, and has already been
extended to the verification of probabilistic timed automata against proper-
ties of a fragment of PTCTL involving only existential quantification over
adversaries [23]. Another approach concerns the computation of the coarsest
bisimulation quotient of a probabilistic timed automaton. In our setting, this
notion of bisimulation borrows concepts from both the time-abstract bisimu-
lation of [29] and the probabilistic bisimulation of [25]. It is anticipated that
judicious combination of the algorithms of [29] and [5], which compute the
coarsest bisimilarity quotient for timed automata and Markov decision pro-
cesses respectively, will provide the basis of a similar algorithm for probabilistic
timed automata. It follows from the arguments of [27,26] that such probabilis-
tic time-abstract bisimilarity preserves PTCTL, implying that model checking
for the full class of PTCTL properties will be possible on the bisimilarity quo-
tient structure, which, as with structures obtained via forwards or backwards
reachability, may be significantly smaller than the region graph.

As noted in [27,28], the existence of behaviours of a timed automaton which
are not time divergent corresponds to modelling errors, as no real-life sys-
tem can block the progress of time. Therefore, [27,28] present algorithms for
the detection of such errors using forward reachability algorithms. Subsequent
work could address the adaptation of these techniques to probabilistic timed
automata, using our notion of probabilistic time divergence of Definition 8.
Another potential avenue of research is to aid the modelling of complex proba-

53

bilistic real-time systems by developing an adequate notion of parallel compo-
sition for probabilistic timed automata. This would permit the description of
a system as a network of probabilistic timed automaton components executing
in parallel.

Acknowledgements

We would like to thank Colin Stirling, the members of the British Coun-
cil/DAAD ARC project 1031 “Stochastic Modelling and Verification” and the
anonymous referees for many valuable comments and suggestions.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-
time systems. In Automata, Languages and Programming: Proceedings of the
18th ICALP, volume 510 of Lecture Notes in Computer Science, pages 115–126,
1991.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

[3] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[4] C. Baier. On algorithmic verification methods for probabilistic systems, 1998.
Habilitation thesis, University of Mannheim.

[5] C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimilarity and
similarity for probabilistic processes. Journal of Computer and System Sciences,
60(1):187–231, 2000.

[6] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11:125–155, 1998.

[7] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise.
New generation of UPPAAL. In Proceedings of the International Workshop
on Software Tools for Technology Transfer, Aalborg, Denmark, July 1998.

[8] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In Proceedings of Foundations of Software Technology
and Theoretical Computer Science (FST&TCS), volume 1026 of Lecture Notes
in Computer Science, pages 499–513, 1995.

[9] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking
for real-time systems. In 18th IEEE Real-Time Systems Symposium (RTSS’97),
1997.

54

[10] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.
Kronos: a model-checking tool for real-time systems. In A. Hu and M. Vardi,
editors, Proceedings of the 10th International Conference on Computer-Aided
Verification (CAV’98), volume 1427 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[11] C. Courcoubetis and M. Yannakakis. Markov decision processes and regular
events. IEEE transactions on automatic control, 43(10):1399–1418, 1998.

[12] P. D’Argenio, J.-P. Katoen, T. Ruys, and J. Tretmans. The bounded
retransmission protocol must be on time! In E. Brinksma, editor, Proceedings
of Tools and Algorithms for the Construction and Analysis of Systems,
(TACAS’97), volume 1217 of Lecture Notes in Computer Science, pages 416–
431. Springer-Verlag, 1997.

[13] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In R. Alur,
T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume 1066
of Lecture Notes in Computer Science, pages 208–219. Springer-Verlag, 1996.

[14] C. Daws and S. Tripakis. Model–checking of real–time reachability properties
using abstractions. In B. Steffen, editor, Proceedings of Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’98), volume 1384 of Lecture
Notes in Computer Science. Springer-Verlag, 1998.

[15] L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford
University, Department of Computer Science, 1997.

[16] L. de Alfaro. Computing minimum and maximum reachability times in
probabilistic systems. In J. Baeten and S. Mauw, editors, Proceedings of the
International Conference on Concurrency Theory (CONCUR’99), volume 1664
of Lecture Notes in Computer Science, pages 66–81. Springer Verlag, 1999.

[17] D. Dill. Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Automatic verification methods for finite state systems,
volume 407 of Lecture notes in computer science. Springer-Verlag, 1989.

[18] H. Gregersen and H. E. Jensen. Formal design of reliable real time systems.
Master’s thesis, Department of Mathematics and Computer Science, Aalborg
University, 1995.

[19] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[20] T. Henzinger and O. Kupferman. From quantity to quality. In O. Maler, editor,
Proceedings of the International Workshop on Hybrid and Real-time Systems
(HART’97), volume 1201 of Lecture Notes in Computer Science, pages 48–62.
Springer-Verlag, 1997.

[21] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193–244, 1994.

55

[22] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distributions. In J.-
P. Katoen, editor, Proceedings of the 5th International AMAST Workshop on
Real-Time and Probabilistic Systems (ARTS’99), volume 1601 of Lecture Notes
in Computer Science, pages 75–95. Springer Verlag, 1999.

[23] M. Kwiatkowska, G. Norman, and J. Sproston. Symbolic model checking of
probabilistic timed automata using backwards reachability. Technical Report
CSR-00-1, University of Birmingham, 2000.

[24] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools
for Technology Transfer, 1(1+2), 1997.

[25] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Information & Computation, 94:1–28, 1991.

[26] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

[27] S. Tripakis. L’Analyse Formelle des Systèmes Temporisés en Pratique. PhD
thesis, Université Joseph Fourier, 1998.

[28] S. Tripakis. Verifying progress in timed systems. In J.-P. Katoen, editor,
Proceedings of the 5th International AMAST Workshop on Real-Time and
Probabilistic Systems (ARTS’99), volume 1601 of Lecture Notes in Computer
Science, pages 299–314. Springer Verlag, 1999.

[29] S. Tripakis and S. Yovine. Analysis of timed systems based on time-abstracting
bisimulations. In R. Alur and T. A. Henzinger, editors, Proceedings of the Eighth
International Conference on Computer Aided Verification (CAV’96), volume
1102 of Lecture Notes in Computer Science, pages 232–243. Springer-Verlag,
1996.

56

	Introduction
	Preliminaries
	Probabilistic Timed Automata
	Example

	Probabilistic Timed Structures
	Obtaining a Probabilistic Timed Structure from a Probabilistic Timed Automaton

	Probabilistic Timed Computation Tree Logic
	Model Checking Probabilistic Timed Automata Against PTCTL Properties
	Equivalence of Clock Valuations
	The Region Graph
	Model Checking for PTCTL Using the Region Graph

	Model Checking Probabilistic Timed Automata Against Reachability Properties
	Introduction to probabilistic real-time reachability
	Probabilistic real-time reachability algorithm
	Example of probabilistic real-time reachability
	Proof of the partial correctness of the probabilistic real-time reachability algorithm

	Conclusions
	Acknowledgements
	References

