
Abstraction Refinement for
Probabilistic Software

Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, and David Parker

Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD

Abstract. We present a methodology and implementation for verifying
ANSI-C programs that exhibit probabilistic behaviour, such as failures or
randomisation. We use abstraction-refinement techniques that represent
probabilistic programs as Markov decision processes and their abstrac-
tions as stochastic two-player games. Our techniques target quantitative
properties of software such as “the maximum probability of file-transfer
failure” or “the minimum expected number of loop iterations” and the
abstractions we construct yield lower and upper bounds on these prop-
erties, which then guide the refinement process. We build upon state-
of-the-art techniques and tools, using SAT-based predicate abstraction,
symbolic implementations of probabilistic model checking and compo-
nents from GOTO-CC, SATABS and PRISM. Experimental results show
that our approach performs very well in practice, successfully verifying
actual networking software whose complexity is significantly beyond the
scope of existing probabilistic verification tools.

1 Introduction

Software model checking techniques have become increasingly sophisticated in
recent years. Witness for example the success of the SLAM project, used to
identify bugs in Windows device drivers. This technology is based on predicate
abstraction [1] and counterexample-guided abstraction-refinement (CEGAR) [2],
which are used to construct increasingly precise finite-state abstractions of pro-
grams to either demonstrate the violation of a safety property (e.g. a buffer
overflow) or guarantee the absence of such faults.

In this paper, we present novel techniques for verification of software that
exhibits probabilistic behaviour, for example due to interaction with components
prone to failures or due to the use of randomisation. We target ANSI-C programs,
extending the language with two probabilistic functions: coin(p), which returns
1 with probability p and 0 with probability 1−p; and prob(n), which returns
an integer between 0 and n−1 uniformly at random. These provide a natural
way of modelling both failures (e.g. a function call to open a network connection
which fails with probability p) and randomisation (e.g. selecting a random pivot
to sort a list of n items). We also provide functions to model nondeterministic
behaviour, such as calls to underspecified procedures or program input.

Our approach is based on probabilistic model checking , a generalisation of
model checking for systems that exhibit stochastic behaviour. It is applied to

2 Mark Kattenbelt et al.

Fig. 1. Abstraction-refinement loop for probabilistic programs.

state transition systems augmented with probabilistic information, such as Markov
decision processes (MDPs). The properties to be verified are quantitative in na-
ture and, since MDPs model both probability and nondeterminism, relate to
best- or worst-case bounds on behaviour, e.g. “the maximum probability of file-
transfer failure” or “the minimum expected number of loop iterations”. Various
tools are available for probabilistic model checking, such as PRISM, MRMC and
LiQuor, and the techniques have been successfully applied to a wide range of
applications from security to biological modelling. They have yet, however, to
be used in the context of real programming languages.

We present a quantitative analogue of the well-known CEGAR loop (see
Figure 1), which successively refines an abstraction of a concrete model until
it is sufficiently precise. The combination of probabilistic and nondeterministic
behaviour is naturally modelled with MDPs. The underlying theory is based on
representing abstractions of MDPs as two-player stochastic games [3], which use
the two players to distinguish the nondeterminism of the concrete system and
that introduced during abstraction. We use SAT-based predicate abstraction
[4] to construct, from a concrete probabilistic program, an abstraction in the
form of a Boolean probabilistic program, whose semantics is the stochastic game
abstraction. Model checking the game [3] yields lower and upper bounds on a
quantitative property of the original MDP (such as “the minimum probability
that the program terminates successfully” or “the maximum expected number
of function calls during program execution”) and strategies (for the two players)
that achieve the bounds. Although the analysis does not yield counterexamples
(in the sense of a trace to an error state), the bounds and strategies provide both
a quantitative measure of the precision of the abstraction and, when necessary,
provide a means of refining the abstraction.

Related work. The closest work is [5], which proposes a CEGAR framework
for predicate abstraction of MDPs described in a simple guarded-command lan-
guage. This verifies or refutes properties of the form “the maximum probability
of error is at most p” for a probability threshold p. In [5], abstractions are also
MDPs (as proposed in [6]), and only upper bounds on maximum probabilities
are computed. So, to refute a property, probabilistic counterexamples [7] (com-
prising multiple paths whose combined probability exceeds p) are generated. If
these paths are spurious, they are used to generate further predicates using inter-
polation. Perhaps the most important distinguishing feature of our work is the
use of two-player games as abstractions. These provide lower and upper bounds,
which avoids enumerating a set of paths, which can be large or even infinite

Abstraction Refinement for Probabilistic Software 3

(resulting in non-termination). The bounds also enable a quantitative approach:
we target properties without thresholds such as “what is the maximum proba-
bility of error?”. A second important difference is that we use real programming
languages, rather than guarded-commands. Lastly, we also consider rewards.

Other abstraction-refinement techniques for probabilistic systems have been
proposed. In [6], abstractions of MDPs are refined by state-space partitioning
but, like [5], this yields only one-sided bounds. Magnifying lens abstraction [8]
partitions an MDP and analyses each one separately but, since it relies on build-
ing the full concrete model, even a symbolic implementation [9] is unlikely to
scale to real software. In [10], a counterexample-based abstraction-refinement
technique for planning problems is proposed; however, there is no implementa-
tion to test this on practical examples.

In [11], a framework is described for analysing probabilistic programs based
on expectation transformers, but this is not applied to real software and does
not include an automated step for refining abstractions. Another approach to
abstracting probabilistic models is to label transitions with intervals, e.g. [12],
but this has only been applied to models without nondeterminism. In earlier
work [13], we applied the game-based abstraction of [3] to predicate abstraction,
but not for source code and without refinement.

Another important direction for the verification of probabilistic software is
the extension of abstract interpretation to the probabilistic setting [14–16], al-
though these approaches have yet to be combined with refinement. Other ap-
proaches to the probabilistic verification of imperative languages include APEX
[17], which performs equivalence checking for a simple procedural language, and
the tool LiQuor [18], whose modelling language Probmela includes imperative
language style constructs. Neither approach uses abstraction.

Contributions. The precise contributions of this paper are the following:
– we present the first abstraction-refinement techniques for probabilistic sys-

tems that are specifically targeted at real programming languages;
– we describe a complete implementation of these techniques, built using state-

of-the-art tools and techniques, and demonstrate its applicability on several
real software case studies that cannot be verified with existing tools;

– we improve upon existing approaches by using game-based abstraction to
obtain both lower and upper bounds on quantitative properties.

2 Background

A probability distribution over a set S is a function λ : S → [0, 1] satisfying∑
s∈S λ(s)=1. Let dist(S) denote the set of all distributions over S. We use the

notation p1 : s1+· · ·+pn : sn for the distribution λ ∈ dist(S) such that λ(si) = pi.
For a set X, x ∈ X, λ ∈ dist(S) and Λ ∈ P(dist(S)), let x�λ ∈ dist(X×S) denote
the distribution where (x�λ)(x, s)=λ(s) and x�Λ denote the set {x�λ |λ ∈ Λ}.

Definition 1 (Markov decision process). A Markov decision process (MDP)
is a tuple M = 〈S, Si, δ〉, where S is a set of states, Si ⊆ S are initial states and

4 Mark Kattenbelt et al.

δ : S → P(dist(S)) is a probabilistic transition function, which maps each state
to a finite, non-empty set of probability distributions over states.

An MDP’s behaviour is both probabilistic and nondeterministic. A transition
s−λ→s′ from state s is made by first nondeterministically selecting a distribution
λ ∈ δ(s), and then selecting a successor state s′ with probability λ(s′). A path is a
sequence of transitions. A state is reachable if there is a path to it from an initial
state. Under an adversary, which resolves all nondeterminism, we can define a
probability measure over paths [19]. For a target set F ⊆ S, we then define the
minimum and maximum probability, under any adversary, of reaching F from
state s, denoted p−s (F) and p+

s (F) respectively. By also associating rewards
(non-negative real values) with transitions, we can also define the minimum and
maximum expected reward of reaching F .

Definition 2 (Abstract MDP). An abstract MDP is a tuple M̂ = 〈Ŝ, Ŝi, δ̂〉,
where Ŝ is a set of abstract states, Ŝi ⊆ Ŝ are initial abstract states and δ̂ :
Ŝ → P(P(dist(Ŝ))) is an abstract probabilistic transition function, which maps
each state to a set of sets of distributions over states.

The underlying semantics of an abstract MDP is a two-player stochastic game
[20]. A transition ŝ−〈Λ, λ〉→ ŝ′ includes two successive nondeterministic choices:
first, a set of distributions Λ ∈ δ̂(ŝ) is chosen by player 1; then, an element λ ∈ Λ
is selected by player 2. The successor ŝ′ is chosen with probability λ(ŝ′). Similarly
to MDPs, under strategies for players 1 and 2, which resolve all nondeterminism,
we can define a probability measure over paths. For target F̂ ⊆ Ŝ, we define
both the probability and expected reward of reaching F̂ from a state ŝ or choice
Λ when both players minimise, player 1 minimises and 2 maximises, player 1
maximises and 2 minimises and both maximise. For reachability probabilities,
we denote these p−−ŝ (F̂), p−+

ŝ (F̂), p+−
ŝ (F̂) and p++

ŝ (F̂) respectively.
As proposed in [3], abstract MDPs are used to represent abstractions of

MDPs. The key idea is to separate the two forms of nondeterminism: the first
choice in a transition (player 1) represents nondeterminism caused by abstrac-
tion; the second choice (player 2) corresponds to the nondeterminism of the
original MDP. For an MDP M, the construction of its abstraction is based on
an abstraction function α : S → Ŝ from concrete to abstract states. We lift α to
distributions and sets and in the obvious way, e.g. α(λ)(ŝ) =

∑
α(s)=ŝ λ(s).

Definition 3 (Abstraction of MDPs [3]). Given an MDP M = 〈S, Si, δ〉 and
abstraction function α : S → Ŝ, the abstraction of M under α is the abstract
MDP α(M) = 〈Ŝ, α(Si), δ̂〉 where for any ŝ ∈ Ŝ we have that Λ ∈ δ̂(ŝ) if and
only if there exists s ∈ S such that α(s)=ŝ and Λ=α(δ(s)).

The abstraction α(M) of M yields lower and upper bounds on probabilities and
expected rewards of M [3]. For example, for any s ∈ S and F ⊆ S:

p−−α(s)(α(F)) 6 p−s (F) 6 p+−
α(s)(α(F))

p−+
α(s)(α(F)) 6 p+

s (F) 6 p++
α(s)(α(F))

Algorithms for computing these measures for MDPs and abstract MDPs can be
found in e.g. [21] and [22], respectively.

Abstraction Refinement for Probabilistic Software 5

3 Probabilistic programs

In this section, we define probabilistic programs. Since these are both probabilistic
and nondeterministic in nature, their semantics are given in terms of MDPs.

Let U denote a data universe, that is, the set of all possible data valuations.
Given an expression E over U and a valuation u ∈ U , E(u) denotes the evaluation
of E on u. For an l-value x and an expression E, u[x7→E] denotes the valuation
derived from u by setting x to E(u) and Type(x) the set of all values of the same
type as x. The set of commands CU over U consists of: conditional statements
[B], deterministic assignments x=E, probabilistic assignments i=coin(p) and
i=prob(n), nondeterministic assignments i=ndet(n) and i=ndet(), where B is
a Boolean expression over U , E is an expression over U , x is an l-value, i is
an integer l-value, p ∈ (0, 1) and n ∈ N. We use GOTO-CC [23] to transform
programs such that all expressions are side-effect free and all assignments are
type-consistent. The l-values in deterministic assignments can be of any valid
type, including pointers, structures and arrays.

Definition 4 (Probabilistic program). A probabilistic program P is a tuple
〈U , 〈V,E〉, vi,L〉 where U is a data universe, 〈V,E〉 is a finite directed (control-
flow) graph with initial vertex vi and L : E → CU labels edges with commands.

We assume that if an outgoing edge from a vertex v is labelled with a conditional,
then so are all other outgoing edges from v and, for each u ∈ U , precisely one
of these conditions holds. Any other vertex has only a single outgoing edge.
Therefore, each vertex is associated with a single type of command.

During program extraction function calls are inlined; thus we do not support
unbounded recursion. We also do not consider dynamic memory allocation or
floating point arithmetic. We assume a conventional model checker guarantees
the absence of any undefined behaviour, e.g. a null-pointer dereference, during
the evaluation of expressions and l-values. We deal with pointers through static
points-to analysis augmented with (dynamic) information using predicates [4].
The semantics of non-probabilistic commands are captured with transitions that
occur with probability 1.

Definition 5 (Probabilistic program semantics). Let P=〈U , 〈V,E〉, vi,L〉
be a probabilistic program. The semantics of P is the MDP [[P]]=〈V×U , {vi}×U , δ〉
where for any 〈v, u〉 ∈ V×U :

δ(v, u) =
{
v′�λ

∣∣ 〈v, v′〉 ∈ E, λ ∈ [[L〈v, v′〉]](u)
}

and [[cmd]] : U→P(dist(U)) is the semantics of command cmd such that for u ∈ U :

[[[B]]](u) = {1 : u} if B(u) and ∅ otherwise
[[x=E]](u) = {1 : u[x7→E(u)]}

[[i=coin(p)]](u) = {(1−p) : u[i 7→0] + p : u[i7→1]}
[[i=prob(n)]](u) = { 1

n : u[i7→0] + · · ·+ 1
n : u[i7→n−1]}

[[i=ndet(n)]](u) = {1 : u[i 7→0], . . . , 1 : u[i7→n−1]}
[[i=ndet()]](u) = {1 : u[x 7→val] | val ∈ Type(x)} .

6 Mark Kattenbelt et al.

bool fail = false;
int c = 0;

int main() {
1: c = num_to_send();
2: while (!fail && c>0) {
3: fail = send_msg();
4: c--;

}
5: assert(!fail);

}
int num_to_send() {

return ndet(3);
}
bool send_msg() {

return (coin(0.1)==1);
}

(a) (b) (c)

Fig. 2. Simple example: (a) C code; (b) probabilistic program; (c) MDP semantics.

Example 1. Figure 2 shows a fragment of C code, corresponding probabilistic
program and MDP semantics. The code comprises a loop which tries to send
c messages, c being obtained by calling num to send(), which nondeterministi-
cally returns 0, 1 or 2. A message is sent by calling send msg(), which fails with
probability 0.1. Once a transmission fails, the loop terminates. The maximum
probability of any transmission failing (i.e. of reaching control-flow location 5
with fail equal to true) is 0.19 and occurs when c is set to 2.

4 Abstraction of probabilistic programs

In practice, constructing the concrete semantics of all but the simplest programs
is intractable. Hence, in order to verify real programs, it becomes essential to
consider abstraction. We adopt the approach of [24] and use Boolean probabilistic
programs, which retain the same control-flow structure as their concrete coun-
terpart but abstract the concrete data universe U to a finite Boolean abstraction
induced by set of predicates (Boolean expressions) over U [1].

Definition 6 (Boolean probabilistic program). A Boolean probabilistic
program B is a tuple 〈Φ, 〈V,E〉, vi, T 〉 where Φ is a set of n (quantifier-free)
predicates, 〈V,E〉 is a directed (control-flow) graph with initial vertex vi and
T : E→(Bn→P(P(dist(Bn)))) is an abstract probabilistic transition function.

The semantics of a concrete probabilistic program is an MDP; the semantics
of its abstraction, a Boolean probabilistic program, is an abstract MDP. Con-
ventional (non-probabilistic) Boolean programs are typically used to represent
existential abstractions [25] where both concrete and abstract semantic models
are labelled transition systems. In this case, a Boolean program can be seen as a
special instance of a (concrete) program. In our setting this does not hold since
the semantic models of concrete and abstract programs differ. Hence, we define

Abstraction Refinement for Probabilistic Software 7

Boolean probabilistic programs directly in terms of a mapping T rather than
through commands (as we did with L for probabilistic programs).

Definition 7 (Boolean probabilistic program semantics). The seman-
tics of a Boolean probabilistic program B=〈Φ, 〈V,E〉, vi, T 〉 is the abstract MDP
[[B]]=〈V×Bn, {vi}×Bn, δ̂〉 where n = |Φ| and for any 〈v, a〉 ∈ V×Bn :

δ̂(v, a) =
{
v′�Λ

∣∣ 〈v, v′〉 ∈ E, Λ ∈ T (v, v′)(a)
}
.

Given a probabilistic program P=〈U , 〈V,E〉, vi,L〉 and predicates Φ={φ1, . . . , φn}
over the data universe U , we now show how to construct the corresponding ab-
stract Boolean probabilistic program. The abstraction function α : U → Bn
is given by α(u)=〈φ1(u), . . . , φn(u)〉; we lift α to distributions and sets and to
V×U by letting α〈v, u〉=〈v, α(u)〉. For any a = 〈b1, . . . , bn〉 ∈ Bn, let a[i] = bi.

Definition 8 (Abstraction of probabilistic programs). Given a probabilis-
tic program P=〈U , 〈V,E〉, vi,L〉 and set of predicates Φ with abstraction function
α, the abstraction of P under Φ is given by the Boolean probabilistic program
α(P)=〈Φ, 〈V,E〉, vi, T 〉 where for any e ∈ E and a ∈ Bn: Λ ∈ T (e)(a) if and
only if there exists u ∈ U such that α(u)=a and Λ=α([[L(e)]](u)) 6=∅.

Applying MDP abstraction (Definition 3) to the semantics of a concrete program
(Definition 5) yields the same abstraction as the Boolean program (Definitions 8
and 7). This is because, although Definition 8 applies the abstraction per control-
flow edge, there is no nondeterminism between edges in the concrete program.

Example 2. Figure 3(a) shows a representation of the Boolean probabilistic
program obtained by abstracting the program from Example 1 using predicates
fail and (c==0). We use φ=∗1 and φ=∗2 to describe the abstract probabilis-
tic transition function in which the value of the predicate φ is determined by
player 1 or player 2, respectively. For example, if a=〈b1, b2〉 ∈ B2 and λf , λt be
the distributions 1:(b1, f) and 1:(b1, t), then (c==0)=∗1 on edge e indicates that
T (e)(a) = {{λf}, {λt}}, whereas (c==0)=∗2 means that T (e)(a) = {{λf , λt}}.
Figure 3(b) shows the abstract MDP semantics of the Boolean probabilistic pro-
gram. Each abstract state is labelled with lower/upper bounds on the maximum
probability of reaching control-flow location 5 with variable fail equal to true.

SAT-based abstraction. In order to construct the abstraction of a probabilis-
tic program, we adopt the SAT-based techniques of [4], in which the basic idea is
to construct the abstract transition relation for each edge of a program’s control-
flow graph by formulating it as a Boolean satisfiability problem. Each satisfiable
instance corresponds to an element of the transition relation; all such instances
can be enumerated efficiently by a SAT-solver. An important advantage of this
approach is that it allows a detailed bit-level semantics of the source code.

Our setting is slightly different: our abstractions are Boolean probabilistic
programs and so we construct abstract probabilistic transition functions, rather
than abstract transition relations. Despite this, fundamental similarities remain:
the use of Boolean programs means that the abstraction for each command can

8 Mark Kattenbelt et al.

(a) (b) (c)

Fig. 3. Abstractions for Example 1: (a) & (b) Boolean probabilistic program and ab-
stract MDP for initial abstraction; (c) abstract MDP for refined abstraction.

be built in isolation; and the definition of abstraction can be phrased as an
existential satisfiability problem.

Consider a probabilistic program P=〈U , 〈V,E〉, vi,L〉 and set of n predicates
Φ. To construct the abstraction we need only construct the abstract probabilistic
transition function T (e) for each edge e ∈ E. Recall from Definition 8 that,
for each a ∈ Bn, T (e)(a) returns a set of probability distributions over Bn
where Λ ∈ T (e)(a) if and only if there exists u ∈ U such that α(u)=a and
Λ=α([[L(e)]](u)) 6=∅. We now formulate T (e) as a satisfiability problem whose
structure is dependent on the command labelling e.

Conditionals. If e is labelled [B], then [[L(e)]](u) equals {1:u} if B(u) and ∅ oth-
erwise, and hence Λ ∈ T (e)(a) if and only if Λ={1 : a} and:

∃u ∈ U .
(
α(u)=a ∧ B(u)

)
Deterministic Assignments. If e is labelled x=E, then [[L(e)]](u)={1:u[x7→E(u)]},
and hence Λ ∈ T (e)(a) if and only if Λ={1 : a′} for some a′ ∈ Bn such that:

∃u ∈ U .
(
α(u)=a ∧ α(u[x7→E(u)])=a′

)
Probabilistic assignments. If e is labelled i=coin(p), then [[L(e)]](u)={(1−p) :
u[i 7→0] + p : u[i7→1]}, and Λ ∈ T (e)(a) if and only if Λ={(1−p):a0 + p:a1} for
some a0, a1 ∈ Bn such that:

∃u ∈ U .
(
α(u)=a ∧ α(u[i 7→0])=a0 ∧ α(u[i7→1])=a1

)
The case when e is labelled i=prob(n) follows similarly.

Nondeterministic assignments. If e is labelled i=ndet(n), then [[L(e)]](u) =
{1:u[i7→0], . . . , 1:u[i7→n−1]}, and therefore Λ ∈ T (e)(a) if and only if Λ={1 :
a0, . . . , 1 : an−1} for some a0, . . . , an−1 ∈ Bn such that:

∃u ∈ U .
(
α(u)=a ∧ α(u[i 7→0])=a0 ∧ . . . ∧ α(u[i 7→n−1])=an−1

)

Abstraction Refinement for Probabilistic Software 9

Computing T (e) in this way for i=ndet(n) with large n can result in intractable
SAT formulas. The same is true if we adopt a similar approach for assignments
x=ndet(). So, for such commands, we make the assumption that T (e)(a) con-
tains a single set, Λ say. Since [[L(e)]](u) = {1 : u[x7→val] | val ∈ Type(x)}, we
have λ ∈ Λ if and only if λ=1 : a′ for some a′ ∈ Bn such that:

∃u ∈ U .∃ val ∈ Type(x) .
(
α(u)=a ∧ α(u[x 7→val])=a′

)
The above assumption holds if Φ can be partitioned into {Φx, Φ\Φx}, where
predicates in Φx refer only to x, and those in Φ\Φx are not influenced by x.
Fortunately, this case turns out to be sufficient in practice. Assignments of the
form x=ndet() typically model operating system calls that nondeterministically
succeed or fail and the actual values being assigned are irrelevant to the property
under consideration. The same assumption is used for i=ndet(n) with large n.

5 Abstraction refinement

In order to make our abstraction techniques practically applicable, it is essential
to develop refinement techniques that can automatically construct an abstrac-
tion which is sufficiently precise for verification but also small enough for efficient
analysis. In conventional CEGAR approaches, this is based on the generation of
counterexamples (paths to an error state), which are either feasible (i.e. a con-
cretisation exists and the safety property is refuted) or spurious (in which case,
the counterexample is used to generate additional predicates for refinement).

The crucial difference in our setting is that model checking is quantitative:
our aim is not just to establish the absence/existence of a path to a target,
but rather to compute quantitative properties, e.g. the minimum probability
or maximum reward of reaching a target. The abstraction-refinement loop we
propose (as illustrated earlier in Figure 1) is based on iterative refinement of
an abstraction (an abstract MDP) until the lower and upper bounds for the
property of interest differ by less than some threshold ε. In this section, we
describe how the abstract MDP yields predicates that can be used to refine the
abstraction.

Predicate discovery. We describe the case for maximum probabilities (the
process for minimum probabilities and expected rewards is identical). Therefore
suppose we have a probabilistic program P = 〈U , 〈V,E〉, vi,L〉, target F ⊆ V×U
and predicates Φ with abstraction function α such that α(P) is not sufficiently
precise for some initial state, i.e. there exists a ∈ Bn such that:

p++
〈vi,a〉(α(F))− p−+

〈vi,a〉(α(F)) > ε . (1)

Recall that model checking the abstraction α(P) also yields strategies that
achieve the lower and upper bounds. A strategy tells us how nondeterminism
is resolved, i.e. it gives for each abstract state 〈v, a〉 an element Λ of δ̂〈v, a〉 in
the abstract MDP. Each such choice Λ encodes a subset of the concrete states
represented by 〈v, a〉, namely the set {〈v, u〉 ∈ V×U |α(u)=a, α(δ〈v, u〉)=Λ}.

10 Mark Kattenbelt et al.

Based on results from [3, 26], the inequality in (1) guarantees that there exists
an abstract state 〈s?, a?〉 and distinct choices Λ− and Λ+ made by lower and
upper bound strategies in 〈s?, a?〉 such that either p−+

Λ− (α(F)) < p−+
Λ+ (α(F))

or p++
Λ− (α(F)) < p++

Λ+ (α(F)). We call 〈s?, a?〉 a refinable state. Our aim is to
eliminate the choice between Λ− and Λ+, through a predicate that separates the
concrete states corresponding to these two choices. For example, if p−+

Λ− (α(F)) <
p−+
Λ+ (α(F)), then choosing Λ+ makes the lower bound higher. Hence we can

improve the lower bound of the states encoded by Λ+ by eliminating the choice.
Below, we describe how to generate a new predicate, based on the command

associated with the control location of the refinable state 〈v?, a?〉. By construc-
tion, v? either has one or more outgoing edges labelled with conditionals or a
single outgoing edge 〈v?, v〉 labelled with an assignment.

Conditionals. If the outgoing edges of v? are conditionals, then Λ−={1:〈v−, a?〉}
and Λ+={1:〈v+, a?〉} for some distinct v− and v+ such that 〈v?, v−〉 and 〈v?, v+〉
are labelled with conditionals ([B−] and [B+] say). We add B− to Φ. By assump-
tion on probabilistic programs, at most one of B− and B+ is satisfiable in the
concretisations of an abstract state, eliminating the choice between Λ− and Λ+.

Deterministic Assignments. If 〈v?, v〉 is labelled x=E, then Λ−={1:〈v, a−〉} and
Λ+={1:〈v, a+〉} for some a−, a+ ∈ Bn. Since Λ− and Λ+ are distinct there exists
a predicate φi ∈ Φ such that a−[i] 6=a+[i]. We add the predicate WP(φi, x=E).
By definition, this predicate is satisfied if, after executing the assignment x=E,
φi holds, i.e. WP(φi, x=E)(u) if and only if φi(u[x7→E]). If 〈v?, u−〉 is encoded
by Λ−, then α(u−[x7→E])=Λ−, and hence φi(u−[x7→E]) if and only if a−[i].
A similar argument holds for states encoded by Λ+. As a−[i]6=a+[i], the new
predicate is either satisfied by all states encoded by Λ− and none by Λ+ or vice
versa, and therefore WP(φi, x=E) eliminates the choice between Λ− and Λ+.

Probabilistic assignments. If 〈v?, v〉 is labelled i=coin(p), then, Λ− and Λ+ are
of the form {(1−p):〈v, a−0 〉 + p:〈v, a−1 〉} and {(1−p):〈v, a+

0 〉 + p:〈v, a+
1 〉}. Since

Λ− 6=Λ+, there exists φi ∈ Φ such that a−j [i] 6=a+
j [i] for some 06j61 and we add

WP(φi, x=j) to Φ which, by similar arguments to above, removes the choice be-
tween Λ− and Λ+. The case when 〈v?, v〉 is labelled i=prob(n) follows similarly.

Nondeterministic assignments. By construction an assignment x=ndet() consists
of a single choice, hence 〈v?, v〉 cannot be labelled x=ndet(). If 〈v?, v〉 is labelled
i=ndet(n), then Λ− and Λ+ are of the form {1:〈v, a−0 〉, . . . , 1:〈v, a−n−1〉} and
{1:〈v, a+

0 〉, . . . , 1:〈v, a+
n−1〉} respectively. Since Λ− 6=Λ+, there exists φi ∈ Φ such

that a−j [i]6=a+
j [i] for some 06j6n−1 and we add the predicate WP(φi, x=j).

As in conventional CEGAR, our method is incomplete due to the use of WP-
based abstraction refinement [27]. However, as we will show later, our approach
successfully finds suitable abstractions in practice.

Example 3. Consider the program of Example 1 and the abstraction from Ex-
ample 2 (Figures 3(a) and 3(b)). The abstract state (4 f,f) is the only one with
both a player 1 choice and differing bounds (0 if branching right to (2 f,t)
and 0.1 if branching left to (2 f,f)), i.e. it is the only possible refinable state.

Abstraction Refinement for Probabilistic Software 11

The command for control-flow vertex 4 is the deterministic assignment c=c−1
and the predicate (c==0) differs between (2 f,t) and (2 f,f) so our new predi-
cate is WP((c==0), c=c−1), i.e. (c==1). The abstraction under the predicates
fail, (c==0), (c==1) is shown in Figure 3(c). We see that the bounds on the
maximum probability for the initial state have tightened from [0.1, 1] to [0.19, 1].
A further refinement (on the same control-flow vertex) would result in an ab-
straction equivalent to the original MDP, yielding exact bounds [0.19, 0.19].

Extensions. We investigate several extensions to the refinement loop.

Refinable state selection. Our refinement scheme can be applied to any refinable
state 〈v?, a?〉. Hence, we consider two heuristics for choosing a refinable state:
“maximum error” (pick a state with the greatest difference in lower and upper
bounds, aiming to refine the abstraction where it is least precise); “nearest”
(pick a state closest to the initial states). In addition, since model checking an
abstract MDP (which determines the refinable states) is relatively expensive, we
consider refining multiple states within a single iteration of the refinement loop.

Avoiding unreachable states. Although a refinable state 〈v?, a?〉 is always reach-
able in the abstract MDP, there is no guarantee that any concretisation of 〈v?, a?〉
is reachable in the concrete MDP. Hence, refining 〈v?, a?〉 could add unneces-
sary complexity to the abstraction. To avoiding this, we employ spurious path
removal : we find an abstract path to 〈v?, a?〉 and use SAT-based symbolic sim-
ulation to check if a concretisation of the path exists. If not, in addition we use
conventional weakest precondition-based refinement to eliminate the path.1

Predicate initialisation. Conventional (non-probabilistic) CEGAR can be used to
check the existence of a path to the target. The predicates generated during this
process are likely to form a subset of those found by our refinement approach and
can potentially be discovered more efficiently in this fashion. Hence, we consider
employing existing efficient CEGAR tools to generate an initial set of predicates.

Predicate localisation. It is well known that successful implementations of predi-
cate abstraction compute abstractions efficiently because they keep the number
of relevant predicates small, e.g. by exploiting locality [28]. We apply similar ideas
to our approach, only adding discovered predicates to locations where they are
required, based on a backwards control-flow traversal from the refinable state.
This also allows us to take an incremental approach to building the abstraction,
reusing the previous abstraction for locations with no new predicates.

6 Implementation and Results

We have built a complete implementation of the techniques described. Model
extraction from C code is done using an extension of GOTO-CC [23]. Predicate
abstraction was implemented using components from the SATABS tool [29] and

1 This approach cannot guarantee to detect if 〈v?, a?〉 is unreachable, since doing so
amounts to fully verifying a safety property with conventional CEGAR tools.

12 Mark Kattenbelt et al.

p
in

g A “max. probability of not receiving a reply to an echo request”
B “max. prob. of establishing connectivity with packet loss following two requests”
C “max. expected number of echo requests required to establish connectivity”

tf
tp

A “max. probability of establishing a write request”
B “max. probability of successfully transferring some file data”
C “max. expected amount of data that is sent before timeout”

h
er A “min. probability of terminating in a stable state”

B “max. expected number of rounds before termination”

zc
n

f A “min. probability of configuring with a fresh IP”
B “max. expected number of probes”

b
rp

A “max. probability of the receiving nothing while a chunk was sent”
B “max. probability of the sender reporting uncertainty”

Fig. 4. List of properties verified.

MiniSAT SAT solver. Model checking of stochastic games is done with extensions
of the symbolic engines of the probabilistic model checker PRISM [30].

We illustrate the practicality of our approach by studying its performance on
several case studies. We consider two networking utilities: an ICMP ping client
and a TFTP client.2 Both are approximately 1KLOC in size and feature complex
programming constructs such as arrays, pointers and function pointers. Low-
level kernel and networking functions are replaced with stubs whose behaviour is
either probabilistic (e.g. opening a socket) or nondeterministic (e.g. user input).
We also consider ANSI-C versions of several protocols used as probabilistic model
checking benchmarks: Herman’s self-stabilisation (from APEX [17]), Zeroconf
and the Bounded Retransmission Protocol. All programs are available3 and the
properties verified for each are listed in Figure 4.

We ran experiments for several different configurations of the options de-
scribed in the previous section (“maximum error” and “nearest” refinable state
selection; with and without spurious path removal and predicate initialisation).
Table 1 presents detailed statistics for the fastest verification run on each ex-
ample; Table 2 compares the different configurations. All experiments were run
on an Intel Core Duo 2 (T7200) with 2GB RAM. The CEGAR loop terminated
when the (relative) error was below ε=10−4. All timings are in seconds.

Overall performance. The results demonstrate that our method verifies a wide
range of programs and quantitative properties in an efficient and fully auto-
matic manner. This is particularly impressive for the more complex ping and
TFTP utilities. The tables show that the number of refinement iterations and
predicates are relatively low. The difference between the total and average num-
bers of predicates indicates that the use of predicate localisation is essential.
With regards to timings (Table 1), we see that abstraction and refinement are
in most cases efficient, whereas the model checking phase is the most expensive.
One reason for this is that the numerical solution process is relatively expen-
sive (compared to the model checking required in conventional, non-probabilistic
CEGAR) and is performed twice (for the lower and upper bound). Also, due to
predicate localisation, abstractions can be constructed incrementally.

2 Based on based on GNU Inetutils 1.5 and TFTP-HPA 0.48, respectively.
3 All programs are available at www.prismmodelchecker.org/files/vmcai09/.

Abstraction Refinement for Probabilistic Software 13

refinement predicates timing breakdown total
iterations total (avg.) init. abstr. check refine time

p
in

g A 4 33 (7.82) 56% 15% 27% 2% 15.5
B 31 45 (9.27) - 48% 45% 7% 87.2
C 12 16 (2.73) - 17% 68% 15% 5.37

tf
tp

A 11 39 (10.7) 32% 15% 48% 5% 57.8
B 28 51 (12.0) - 46% 45% 9% 96.5
C 22 35 (9.22) - 17% 75% 8% 64.4

h
er A 18 24 (7.08) - 17% 82% 1% 33.5

B 2 40 (11.1) 7% 2% 91% <1% 259

zc
n
f A 9 11 (3.94) - 9% 85% 6% 1.97

B 9 10 (3.81) 4% 10% 77% 9% 1.43
b
rp

A 5 6 (6.00) - 50% 31% 19% 0.71
B 7 7 (7.00) - 44% 44% 12% 1.34

Table 1. Experimental results: detailed results for fastest verification run.

Extensions. Table 2 shows the performance of the configurable options of our
implementation. 4 For refinable state selection, although neither policy for choos-
ing a refinable state is consistently better, “nearest” seems the sensible default
as there are several cases where it is significantly faster. In particular, the “max-
imum error” policy for property B of the ping utility takes over an hour due
to repeatedly choosing refinable states with no reachable concretisations. This
problem is successfully resolved using spurious path removal. However we see
that, in several cases, this produces a significant slow-down. This is because, al-
though symbolic simulation itself is relatively fast, the predicates it adds result
in slower model checking times. The situation is worse for the “maximum error”
policy as the generated paths are longer and give more predicates. Employing
predicate initialisation (through SATABS), increases efficiency on several exam-
ples. Often in cases where it performs best (e.g. property A of the ping and
TFTP utilities), there are relatively few paths to the target state, so refining
based on a single path is productive. On examples with a large number of such
paths, using the game-based refinement alone performs better. In particular, for
property B of BRP, predicate initialisation is very slow because the target is
only reachable through very long paths but our method only needs to consider
a small number of loop iterations for sufficiently tight bounds.

Related tools. Finally, we briefly compare our implementation with some related
tools. Although a direct comparison with [5] is not possible (due to the difference
in input language), we note that property A of BRP (called p4 in [5]) takes under
a second here and about 5 seconds in [5] on a comparable machine. Also, we
obtain sufficiently tight bounds discovering 6 predicates, compared to 25 in [5]. In
[17], the Herman case study is tested on the APEX tool but the focus is different
(contextual equivalence) and no times are given. PRISM [30] can be applied to
the last three case studies and is faster, but only by using manually constructed
abstractions. The more complex programs, the ping and TFTP utilities, are
significantly beyond the scope of PRISM.

4 Since refining multiple refinable states did not yield significant improvements in
performance, we have omitted the results for this extension.

14 Mark Kattenbelt et al.

default spurious path removal predicate initialisation
max error nearest max error nearest max error nearest
pred. total pred. total pred. total pred. total pred. total pred. total
(avg.) time (avg.) time (avg.) time (avg.) time (avg.) time (avg.) time

p
in

g A 33 (6.9) 18.4 33 (6.3) 16.6 34 (6.4) 41.2 33 (6.3) 28.8 33 (7.8) 15.5 33 (7.8) 15.5
B - - 45 (9.3) 87.2 54 (12) 803 56 (12) 627 54 (13) 305 53 (13) 301
C 16 (2.7) 5.37 20 (3.2) 7.97 17 (3.1) 6.92 22 (3.6) 15.1 19 (3.3) 6.59 19 (3.3) 7.39

tf
tp

A 41 (11) 95.4 41 (11) 111 52 (11) 262 52 (12) 142 39 (11) 64.3 39 (11) 57.8
B 51 (12) 173 51 (12) 96.5 62 (13) 1,680 62 (13) 227 56 (15) 194 56 (15) 161
C 35 (8.4) 69.0 35 (9.2) 64.4 46 (8.9) 888 42 (8.8) 81.7 37 (9.2) 85.1 37 (10) 86.3

h
er A 25 (6.9) 49.9 24 (7.1) 33.5 32 (7.6) 215 26 (6.6) 66.1 40 (11) 36.6 40 (11) 36.3

B 34 (8.9) 520 27 (7.8) 751 39 (10) 974 32 (8.4) 619 40 (11) 259 40 (11) 263

zc
n

f A 11 (3.9) 1.97 11 (3.9) 1.98 11 (3.9) 2.07 11 (3.9) 2.12 11 (4.1) 2.10 11 (4.1) 2.17
B 10 (3.8) 1.44 10 (3.8) 1.45 10 (3.8) 1.51 10 (3.8) 1.54 10 (3.8) 1.43 10 (3.8) 1.54

b
rp

A 7 (7.0) 0.92 6 (6.0) 0.72 8 (8.0) 0.91 6 (6.0) 0.71 15 (15) 3.53 15 (15) 3.53
B 7 (7.0) 1.34 10 (10) 2.12 27 (27) 6.98 12 (12) 2.29 - - - -

Table 2. Experimental results: comparison of techniques. Timeout ‘-’ is 1 hour.

7 Conclusions

We have presented a novel abstraction-refinement method for verification of
software with probabilistic behaviour. Our approach uses two-player stochastic
games, SAT-based predicate abstraction and probabilistic model checking. The
use of game-based abstractions allows us to compute lower and upper bounds on
quantitative properties, which form the basis of our abstraction-refinement loop.
We have demonstrated the applicability of our approach by successfully verifying
a selection of case studies, including several complex programs well beyond the
reach of state-of-the-art probabilistic model checkers such as PRISM.

We plan to extend this work in several directions. These include investigating
the use of imprecise abstractions, an approach frequently take in conventional
software verification to improve efficiency, and developing techniques to handle
probabilistic choices over larger ranges. We also hope to improve the way in
which loops are dealt with. Currently, the abstractions we construct include an
explicit representation of the loop, which is required to compute, for example,
the probability of the loop terminating. We plan to investigate the use of existing
techniques such as ranking functions to improve efficiency in this area.

Acknowledgments. The authors are supported in part by EPSRC grants
EP/D07956X and EP/D076625. We would also like to thank Daniel Kroening
for his advice and support regarding SATABS.

References

1. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Proc.
CAV’97. LNCS 1254, Springer (1997)

2. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proc. CAV’00. Volume 1855., Springer (2000)

3. Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: Proc. QEST’06, IEEE (2006)

4. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-
C programs using SAT. FMSD 25(2-3) (2004) 105–127

Abstraction Refinement for Probabilistic Software 15

5. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Proc. CAV’08.
LNCS 5123, Springer (2008)

6. D’Argenio, P., Jeannet, B., Jensen, H., Larsen, K.: Reachability analysis of proba-
bilistic systems by successive refinements. In: Proc. PAPM/PROBMIV’01. LNCS
2165, Springer (2001)

7. Han, T., Katoen, J.P.: Counterexamples in probabilistic model checking. In: Proc.
TACAS’07. LNCS 4424, Springer (2007)

8. de Alfaro, L., Roy, P.: Magnifying-lens abstraction for Markov decision processes.
In: Proc. CAV’07. LNCS 4590, Springer (2007)

9. Roy, P., Parker, D., Norman, G., de Alfaro, L.: Symbolic magnifying lens abstrac-
tion in Markov decision processes. In: Proc. QEST’08, IEEE (2008)

10. Chatterjee, K., Henzinger, T., Jhala, R., Majumdar, R.: Counterexample-guided
planning. In: Proc. UAI’05. (2005)

11. McIver, A., Morgan, C.: Abstraction, refinement and proof for probabilistic sys-
tems. Springer (2004)

12. Huth, M.: On finite-state approximants for probabilistic computation tree logic.
Theoretical Computer Science 346(1) (2005) 113–134

13. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Game-based proba-
bilistic predicate abstraction in PRISM. In: Proc. QAPL’08. (2008)

14. Pierro, A.D., Wiklicky, H.: Concurrent constraint programming: Towards proba-
bilistic abstract interpretation. In: Proc. PPDP’00, ACM Press (2000)

15. Monniaux, D.: Abstract interpretation of programs as Markov decision processes.
Science of Computer Programming 58(1-2) (2005) 179–205

16. Smith, M.: Probabilistic abstract interpretation of imperative programs using
truncated normal distributions. In: Proc. QAPL’08. (2008)

17. Legay, A., Murawski, A., Ouaknine, J., Worrell, J.: On automated verification of
probabilistic programs. In: Proc. TACAS’08. LNCS 4963, Springer (2008)

18. Ciesinski, F., Baier, C.: Liquor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proc. QEST’06, IEEE (2006)

19. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer (1976)
20. Shapley, L.: Stochastic games. Proc. Nat. Acad. Science 39 (1953) 1095–1100
21. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis (1997)
22. Condon, A.: On algorithms for simple stochastic games. Advances in computational

complexity theory 13 (1993) 51–73
23. GOTO-CC. http://www.verify.ethz.ch/goto-cc/
24. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-

straction of C programs. In: Proc. PLDI’01. (2001)
25. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans.

Program. Lang. Syst. 16(5) (1994) 1512–1542
26. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based

abstraction-refinement framework for Markov decision processes. Technical Re-
port RR-08-06, Oxford University Computing Laboratory (2008)

27. Jhala, R., McMillan, K.: A practical and complete approach to predicate refine-
ment. In: Proc. TACAS’06. LNCS 3920, Springer (2006)

28. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs.
In: Proc. POPL’04, ACM Press (2004)

29. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Proc. TACAS’05. LNCS 3440, Springer (2005)

30. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for au-
tomatic verification of probabilistic systems. In: Proc. TACAS’06. LNCS 3920,
Springer (2006)

