

Hazard Analysis and FMECA

Prof. Chris Johnson, School of Computing Science, University of Glasgow. johnson@dcs.gla.ac.uk http://www.dcs.gla.ac.uk/~johnson

Introduction

• Hazards:

- Create risk of accident or incident;
- Risk of fire from hazard of matches, lightning etc.
- Hazard analysis:
 - Component of risk assessment.
- FMECA/FMEA:
 - Failure Modes, Effects and Criticality Analysis;
 - Primarily qualitative approaches;
 - Methodological support reduces subjectivity?

Hazard Analysis

Safety case

- Argument why proposed system is safe;
- Key argument is that hazards are identified;
- Significant risks are then mitigated.
- Lots of Hazard Analysis techniques:
 - fault tress (see later);
 - cause consequence analysis;
 - HAZOPS;
 - FMECA/FHA/FMEA...

- Technique has its origins in the Cold War:
 - MIL STD 1629A (1977!);
 - Amazing that it is still a core technique.
- Relatively simple idea:
 - Analyse each potential failure;
 - Determine impact of system(s);
 - Assess its criticality;
 - Fix the major concerns.
- Compare this with IEC61508?
 - Hazard analysis to identify SIL,
 - Software tools etc appropriate to integrity level.

- 1. Construct functional block diagram.
- 2. Use diagram to identify any associated failure modes.
- 3. Identify effects of failure and assess criticality.
- 4. Repeat 2 and 3 for potential consequences.
- 5. Identify causes and occurrence rates.
- 6. Determine detection factors.
- 7. Calculate Risk Priority Numbers.
- 8. Finalise hazard assessment.

- Step 1: Functional Block Diagram
- Establish scope of the analysis.
- Break system into subcomponents.
- Different levels of detail?
- Some unknowns early in design?

Minuteman Example

• Ack: J.D. Andrews and T.R. Moss, Reliability and Risk Assessment, Longman, Harlow, 1993 (ISBN-0-582-09615-4).

- Step 2: Identify Failure Modes
- Many different failure modes:
 - complete failure;
 - partial failure;
 - intermittant failure;
 - gradual failure;
 - etc.
- Not all will apply?
- Compare with HAZOPS guidewords

FMECA - Step 3: Assess Criticality

10. Hazardous without warning: Very high severity ranking when a potential failure mode affects safe operation or involves non-compliance with a government regulation without warning.

9. Hazardous with warning: Failure affects safe product operation or involves noncompliance with government regulation with warning.

8. Very High: Product is inoperable with loss of primary Function.

7. High: Product is operable, but at reduced level of performance.

6. Moderate: Product is operable, but comfort or convenience item(s) are inoperable.

5. Low: Product is operable, but comfort or convenience item(s) operate at a reduced level of performance.

4. Very Low: Fit & finish or squeak & rattle item does not conform. Most customers notice defect.

3. Minor: Fit & finish or squeak & rattle item does not conform. Average customers notice defect.

2. Very Minor: Fit \& finish or squeak \& rattle item does not conform. Discriminating customers notice defect.

1. None No effect

- Step 4: Repeat for potential consequences
- Can have knock-on effects.
- Additional failure modes.
- Or additional contexts of failure.
- Iterate on the analysis.

- Step 5: Identify Cause and Occurence Rates
- Modes with most severe effects first.
- What causes the failure mode?
- How likely is that cause?
- risk = frequency x cost

FMECA - Step 5: Identify Occurrence Rates

- Very High: Failure almost inevitable
 - Rank 10: 1 in 2
 - Rank 9: 1 in 3
- High: Repeated failures
 - Rank 8: 1 in 8
 - Rank 7: 1 in 20
- Moderate: Occasional failures
 - Rank 6: 1 in 80
 - Rank 5: 1 in 400
 - Rank 4: 1 in 2000

- Low: Relatively few failures
 - Rank 3: 1 in 15,000
 - Rank 2: 1 in 150,000
- Remote: Failure is unlikely
 - Rank 1: 1 in 1,500,000

- Step 6: Determine detection factors.
 - Type (1):These controls prevent the Cause or Failure Mode from occurring, or reduce their rate of occurrence.
 - Type (2): These controls detect the Cause of the Failure Mode and lead to corrective action.
 - Type (3): These Controls detect the Failure Mode before the product operation, subsequent operations, or the end user.
- Can we detect/control failure mode?

10. Absolute Uncertainty: Control does not detect a potential Cause of failure or subsequent Failure Mode; or there is no Design Control

9. Very Remote: Very remote chance the Design Control will detect a potential Cause of failure or subsequent Failure Mode

8. Remote: Remote chance the Design Control will detect a potential Cause of failure or subsequent Failure Mode

7. Very Low: Very low chance the Design Control will detect a potential Cause of failure or subsequent Failure Mode

6. Low: Low chance the Design Control will detect a potential Cause of failure or subsequent Failure Mode

5. Moderate: Moderate chance the Design Control will detect a potential Cause of failure or subsequent Failure Mode

4. Moderately High: Moderately high chance the Design Control will detect a potential Cause of failure or subsequent Failure Mode

3. High: High chance the Design Control will detect a potential Cause of failure or subsequent Failure Mode

2. Very High: Very high chance the Design Control will detect a potential Cause of failure or subsequent Failure Mode

1. Almost Certain: Design Control will almost certainly detect a potential Cause of failure or subsequent Failure Mode

- Step 7: Calculate Risk Priority Numbers
- Risk Priority Numbers (RPN)
- $RPN = S \times O \times D$, where:
 - S severity index;
 - O occurrence index;
 - D detection index.
- A partial number line 0..1,000.

- Step 8 Finalise Hazard Analysis
- Must document the analysis...
- ...and response to analysis.
- Use FMECA forms.
- Several formats and tools.

Documentation

FMECA Worksheet

System:	Date:		Author:		Approv		
Function	Failure Mode	Failure Effect		Coucriter	Occurrence	Detection	NT-+
		System	Local	Seventy	rate	Method	INOLES

FMECA Tool Support

FMECA, Part PENTIUM PRO

	Item/Description	Name/Function	Failure Mode		Local Effect	
1	Pentium Pro Processor. Microprocessor which provides a central processing unit and an internal cache.	Controls the primary operation of the personal computer.	Processor Section Failure	•	The Pentium Pro Chip Fails.	
2			Address Section Failure	•	The Pentium Pro Chip Fails.	
3			Memory Section Failure	•	Failure of the internal memory of the Pentium Pro causes erroneous information to be generated.	
4				•		
5				•		
6				▼		
7				▼		
8				•		₽ ₹
٩Ê				_		١Ť

FMECA Tool Support

geReliability Workberch - Project : C:NTE	(NRwb)	FNECA.wkb - Library	: Not S	pecified			_ 8 ×
Ele Add Edt Tjansher View Look Agelys	n Mar	tow Help					
	2 5	<u>*9:00000</u>	2.2	1 📒 🔋 🖢	н 💼		
FMECA MIL-217 Belicore Mechanica	a]						
😂 FMECA Tree Diagram	() End	l effects (system fail	lare m	odes)			
FMECA:120/Z Computer System: FP	50	Description	Up	Down Cast	85	Contributors	Effects [Int
	1	Informittent Operation	NIA	•.		10.1 Enoneous Input (Increased) 10.3 Loss of Output	
11.11.C., DIOITAL:FR-0	2	Negligible Effect for small changes	N/A	≁ √		10.2 Incorrect Meter Reading 10.4 Neoligible	
11.3:CAPACITOR, FREI	3	No effect	NØA	≁ √		10.5 No effect 11.7 No effect 11.9 Unknown	
11.5 RESISTOR, FRED	4	Catastrophic	NGA	≁ √		11.3 Fails to Switch 11.4 Faise	
H-B-122 ROM BOARD(FR-D	5	No operation	N/A	* √		12.5 No operation	
	Ctrl+ Esca	P sevenis phrases wi pe key aborts the ed	ien a g it open	id cell is sel dion for the i	ected surrently selects	ed grid cell	
1	•						<u>.</u>
Ready						8:401	4:198

Conclusions

- Hazard analysis.
- FMECA/FMEA.
 - qualitative approach;
 - but is it subjective?
- Next more quantitative approaches.

Any Questions...

