
1

Efficient Routing in Heterogeneous SoC
Designs with Small Implementation Overhead

José Cano, José Flich, Antoni Roca, José Duato, Marcello Coppola and Riccardo Locatelli

Abstract—In application-specific SoCs, the irregularity of the topology ends up in a complex and customized implementation
of the routing algorithm, usually relying on routing tables implemented with memory structures at source end nodes. As system
size increases, the routing tables also increase in size with non-negligible impact on power, area and latency overheads. In this
paper we present a routing implementation for application-specific SoCs able to implement in an efficient manner (with no routing
tables and using a small logic block in every switch) a deadlock-free routing algorithm in these irregular networks. The mechanism
relies on a tool that maps the initial irregular topology of the SoC system into a logical regular structure where the mechanism
can be applied. We provide details for both the mapping tool and the proposed routing mechanism. Evaluation results show the
effectiveness of the mapping tool as well as the low area and timing requirements of the mechanism. With the mapping tool and
the routing mechanism complex irregular SoC topologies can now be supported without the need of routing tables.

Index Terms—Systems-on-Chip, Networks-on-Chip, Routing, Evaluation.

F

1 INTRODUCTION

AS technology advances, systems-on-chip (SoC) de-
signs become more complex with the inclusion

of many IP components. Tens (and in the near future
several hundreds) of elements need to be connected
within the same chip, thus requiring an efficient on-
chip interconnect. Usually, the system is designed
taking into account the future application that will
be running on the system, thus, the design is cus-
tomized and adapted to the application needs. Traffic
patterns are known in advance, and the interconnect
is customized. The net result of such design approach
is a network within the chip [1], [2] with no regular
shape and with varying switch complexities and link
bandwidths. Figure 1 shows a possible example where
IP blocks are connected by using an on-chip network
with 28 switches. The target utility of this example
(and similar ones) could be a high-end home mul-
timedia entertainment subsystem or an application
processor. As can be observed, the network topology
is totally irregular and heterogeneous.

Two key pillars of an interconnect are the topol-
ogy and the routing algorithm. The topology sets
the physical connection pattern between end nodes
and, as indicated previously, in application-specific
SoC systems is usually irregular and customized to
the application. However, there are other topologies
with regular patterns like 2D meshes, tori and fat

• J. Cano, J. Flich, A. Roca and J. Duato are with the Department of
Computer Engineering (DISCA), Universitat Politècnica de València,
Camı́ de Vera s/n, 46022 Valencia, Spain. E-mail: jocare@gap.upv.es;
jflich@disca.upv.es; anrope2@gap.upv.es; jduato@disca.upv.es.

• M. Coppola and R. Locatelli are with STMicroelectronics, 12 Rue Jules
Horowitz, 38000 Grenoble, France. E-mail: marcello.coppola@st.com;
riccardo.locatelli@st.com.

Fig. 1. Example of a complex irregular topology for an
application-specific SoC system. P means producers
and C means consumers.

trees, mostly used in other environments like Chip
MultiProcessor (CMP) systems.

The routing algorithm, on the other hand, sets the
paths that messages need to take within the network.
One important issue in the routing algorithm is the
prevention of deadlock. A deadlock situation occurs
when messages in the network block cyclically forever
as they request resources already occupied by other
messages. Since message dropping (and later retrans-
mission) is not efficient in such systems, the routing
algorithm needs to be designed carefully in order to
prevent any potential deadlock situation.

Once the topology is set, then, the routing algo-
rithm needs to be applied and messages need to
be instructed about the paths to follow. In order to
implement the routing algorithm two trends can be
followed: source routing [3] and distributed routing
[3]. In source routing, the entire path of the message is



2

encoded in the message header, and switches simply
read the header and take the corresponding output
port to forward the message. In this case, the sender
node has memory blocks (tables) to encode all the
possible paths for every destination node. Also, as
the system size increases, paths tend to increase and
the packet header increases, thus sometimes requiring
more network bandwidth. In distributed routing, the
message header includes the destination identifier and
switches are in charge of computing the appropriate
output port for the message. In this situation, the
length of the header is independent of the system size.
However, switches need to implement the routing
algorithm.

Today, few MPSoC systems are using regular
topologies (like picoArray technology [4], Tilera prod-
ucts [5] and AsAP [6]). In these cases, a simple,
yet powerful, routing algorithm (e.g. dimension-order
routing (DOR) [3]) can be implemented with mini-
mum cost (few gates) on every switch (distributed
routing). Simply, the coordinates of the destination
switch in the message are compared with the coor-
dinates of the current switch.

Contrary to this, the majority of application-specific
SoC systems in current products are using irregu-
lar topologies based on well-known on-chip tech-
nologies (examples are Spidergon STNoC [7], Arteris
NoC [8], Sonics MicroNetwork [9] and AMBA [10]).
Those irregular solutions are mainly based on source
routing and address decoding, and normally need
a complex implementation of the routing algorithm
(with routing tables using memory structures). In-
deed, the lack of regularity in the topology prevents
simplifications in the routing algorithm design. As
system size increases, the routing table increases in
size with non-negligible impact on power, area and
latency overheads (for a comparison between logic-
based routing and tables, refer to [11]). In addition,
in source-based routing as the system size increases
the header overhead is larger and in some cases the
limited amount of header information that can be
included prevents reaching all the nodes.1

In this paper we address the implementation of the
routing algorithm in application-specific SoC systems
where the topology is set by the application, thus be-
ing totally irregular. The aim is to design a mechanism
and an algorithm that enables the use of table-less
distributed routing on every switch with a constant
and reduced logic cost, regardless of system size.

The proposal builds from the LBDR (Logic-Based
Distributed Routing) mechanism [11], a previous pro-
posal suited for CMPs and high-end MPSoC systems
where initial regular 2D mesh topologies are used but
manufacturing defects end up inducing some irregu-
larities in the topology. LBDR is able to implement in

1. In the evaluation section we provide an analysis of reachability
of source-based routing.

an efficient manner (with no need of routing tables)
a routing algorithm in most of these topologies. In
this paper we extend the LBDR approach to cover
complex topologies derived from SoC designs, thus
enabling the use of the LBDR approach in application-
specific SoC systems. We also provide a tool able
to map the initial irregular topology into a logical
regular structure where the enhanced LBDR approach
can be used. By doing this, the routing algorithm can
be efficiently implemented in the SoC design with no
need of routing tables and with no topology change.

The rest of the paper is organized as follows. Section
2 shows the related work with some routing solu-
tions for irregular topologies. In Section 3 we first
describe the concrete contribution of the paper in a
preliminary subsection, in order to clarify and focus
the description of the mechanism and the mapping
tool. Then, we describe the LBDRx mechanism to
cover practical topologies from SoC designs. Section
4 describes the mapping tool. Finally, in Section 5 we
provide evaluation results and conclude the paper in
Section 6.

2 RELATED WORK
There are considerable previous works addressing
routing algorithms for irregular NoCs, which can be
separated into table-based and logic-based.

In [12], a deadlock-free and highly adaptive rout-
ing solution for irregular 2D mesh-based NoCs is
proposed. This solution is table-based and uses well-
known principles from parallel computer architecture.
However, it does not achieve 100% coverage for fully
irregular topologies.

A technique based on applying a fixed routing
function combined with minimal deviation tables, is
described in [13]. The objective is to reduce the size
of routing tables either at end-nodes or at routers.
Using this methodology, three hardware efficient rout-
ing methods for irregular mesh topology NoCs are
compared. For each method, path selection algorithms
minimize the overall cost. However, deadlock free-
dom is not assured unless virtual channels are used.

In [14], authors propose a synthesis approach that,
depending on the degree of routing flexibility, can
significantly reduce the area cost of fully repro-
grammable routing tables by adopting partially repro-
grammable routing logic. This solution implements
configurable routing, which allows bypassing faulty
nodes or links without impacting the consistency of
traffic flows.

An adaptive and stochastic routing algorithm is
proposed in [15]. The algorithm supports function
oriented routing and provides strong fault-tolerance
to permanent errors. Each router learns the network
status from acknowledgement flits and stores the
outcomes in a routing table, thus, suffering the same
scalability problems and routing costs related to rout-
ing tables.



3

FDOR [16] is a flexible routing algorithm based on
dimension ordered routing, which supports a large
variety of irregular mesh topologies and is based on
the idea of dividing an irregular mesh topology into
regular sub-meshes, a core mesh and one or more
flask meshes. FDOR provides a cheap and efficient
routing solution but it does not offer full coverage.

More recently, the application-specific cycle elim-
ination and splitting (ACES) method [17] has been
proposed as a scalable technique to provide deadlock-
free routing in irregular NoCs. ACES uses virtual
channels and has been implemented using routing ta-
bles, trying to find an optimal trade-off point between
power and performance.

The uLBDR approach [18] is proposed as an effi-
cient logic-based mechanism which offers 100% cov-
erage to faulty 2D-meshes, being an alternative to the
use of routing tables. To sum up, it achieves a good
trade-off between coverage of irregular 2D mesh-
derived topologies and performance of applications.

Finally, in [19], authors introduce a hybrid scheme
multiphase routing algorithm for irregular 2D meshes
which integrate oversized rectangle cells. The idea of
this work is borrowed from fault tolerant networks,
where the network topology can be rendered irregular
due to faulty regions.

As a summary, none of the previous solutions allow
distributed routing implementation in fully irregular
NoCs topologies with no routing tables and minimum
logic. In general, in application-specific designs, the
topology is set without accounting for the routing
algorithm. Once set, routing paths are searched and
their implementation is assumed to be with routing
tables, due to the excessive irregularity required by
the application. The LBDRx approach, removes tables
in such environment by minimizing and condensing
all the routing information in a small and bounded
set of bits that are finally hardwired.

3 LBDRX DESCRIPTION

The description of the proposed LBDRx mechanism
will be presented as an evolution from the basic LBDR
mechanism previously proposed (with low coverage
for complex irregular topologies) to the most en-
hanced version (with full coverage to all the complex
topologies analyzed).

3.1 Preliminary: Basic Idea
Prior to describing the mechanism and the mapping
tool, we need, however, to briefly describe the un-
derlying basic idea. In regular networks, e.g. a 2D
mesh network, the regular connectivity pattern is
useful when designing the routing algorithm. Indeed,
with the Dimension-Order routing (DOR), the imple-
mentation is quite straightforward as messages are
forwarded with minimal paths first in the X direction
and then in the Y direction. Thus, there is no need

for a routing table, only a set of gates is enough.
This renders to an efficient implementation in terms
of area, power, and delay.

If we consider small irregularities on 2D mesh net-
works, for instance due to manufacturing defects, then
the inherent irregularity complicates the routing im-
plementation. For instance, DOR is no longer valid as
some paths are not possible now. However, other rout-
ing algorithms are still suitable for such topologies,
for instance, topology-agnostic routing algorithms like
up*/down* [20]. Their implementation is usually per-
formed with routing tables. Efforts to provide efficient
implementations of such algorithms in those irregular
topologies have been performed in the recent years.
One important method is LBDR, which condenses
all the routing information required on every switch
on a small set of bits, thus reducing significantly
implementation costs. LBDR still relies on the fact
that the topology is a 2D mesh network but with
some missing links. Adding some bits enables LBDR
to successfully deal with the irregularity induced by
missing links. However, LBDR still relies on the fact
that every switch has at most four links connecting
neighboring switches (at North, East, West, or South
directions).

LBDR uses, as DOR does, the coordinates of the
destination switch in the message and the coordinates
of the current switch, to compute the appropriate set
of output ports. Thus, LBDR still benefits from the
original 2D mesh layout.

In this paper, what we propose is the extension and
applicability of the LBDR concept to truly application-
specific and irregular networks (as an example see
Figure 1). The approach we follow is, first, to map the
irregular topology into a 2D grid (notice, however, we
do not change the initial topology) providing coordi-
nates to every switch in the grid. Once the topology is
mapped, and based on the coordinates of the destina-
tion switch and the current switch, the derived LBDR
logic will decide the output port that needs to be
used to forward the packet towards its destination. In
order to correctly map the topology into a 2D grid we
have developed a mapping algorithm that will search
the space of combinations and will deliver the most
suitable ones, always guaranteeing deadlock freedom
and connectivity.

Due to the mapping performed, and because of
the high irregularity we will find, some switches will
require a varying number of ports to connect to other
switches, and in that situation some links will connect
switches not placed closely in the 2D grid. This kind
of connectivity has not been provided by the original
LBDR mechanism, and thus, requires modifications.
In this paper, we further extend LBDR for supporting
this kind of mappings.



4

Fig. 2. Mapping example for the initial topology.

3.2 LBDR Extension: LBDRx
We start the description with the mechanism required
at every switch to deal with the irregular topologies.
In order to be concise, we take as a reference the
mapping of the initial topology (shown in Figure 1)
that appears on Figure 2. This mapping is obtained
with the mapping tool that will be described in the
next section. The mapping is representative of all the
connectivity patterns between switches that we need
to address in this section.

As we can see in the figure, there are switches with
varying connectivity patterns with other switches. For
instance, switch 1, mapped at row 2 and column 2,
is connected to switches 4, 2, and 21 with different
link mapped lengths. 2 In particular, mapped length
of links are 2 hops for links connecting to switches 2
and 4, and 3 hops for the link connecting to switch 21.
In addition, links with the same number of mapped
hops have different orientations/directions, thus, be-
ing different. This is the case for link connecting to
switch 4 which is located one hop north and one hop
west from switch 1, and link connecting to switch 2
that is two hops north.

As previously described, LBDR relies on switches
with up to four ports, and each one connecting
switches in one direction in the 2D mesh plane (N,
E, W and S). Also, the maximum distance covered
with a link is 1 hop in the 2D grid. Thus, links with
higher mapping lengths are not supported, and thus,
the mapped topology is not supported by LBDR.

In order to overcome this limitation, the new mech-
anism, LBDRx, allows switches with up to 20 ports for
connecting to other switches (ports used to connect
end nodes are excluded). Also, any of these ports can
be configured as a 1-hop port, a 2-hop port, or a 3-
hop port. A X-hop port connects two switches that are

2. Notice that the link length is set in the original unmapped
topology (Figure 1) and the showed length in the mapped topology
(Figure 2) is the same, although in the grid is set by the number of
hops in each direction. We will refer to physical length for original
unmapped topologies, and to mapped lengths for link lengths in the
mapping layout.

Fig. 3. Possible port directions in LBDRx.

at mapping distance X. In order to uniformly refer
to X-hop ports, we define additional directions. In
particular, 20 different directions are supported for
the ports, and each of the 20 possible ports of the
switch can be configured to any of the 20 directions.
The supported directions are: the initial 1-hop four
directions (supported by LBDR): N, E, W, S; four 2-
hop straight directions NN (two hops along the north
direction), SS, EE, WW; four 2-hop diagonal directions
NE (one hop north and one hop east), NW, SE, SW;
and eight 3-hop directions: NNE, EEN, EES, SSE, SSW,
WWS, WWN, NNW. Figure 3 shows all the possible
port directions supported by LBDRx.

Notice that simplified versions of the mechanism
can be conceived by restricting the type of ports that
can be supported. For instance, the LDBR mechanism
is embedded in the proposed mechanism when only
1-hop ports are allowed. Another implementation is
allowing 1-hop and 2-hop ports only, thus obtaining
a LBDR2 mechanism. Therefore, the LBDRx proposal
can be seen as a method to further extend the connec-
tivity of switches when mapped on a 2D grid. As we
will see in the evaluation section, LBDR3 is enough
to map all the tested topologies, thus not requiring
a more complex implementation. Anyway, we will
show also results for the LBDR2 approach. It is worth
mentioning that although 20 ports are allowed on
every switch, not all of them need to be implemented.
Indeed, only a subset of ports will be implemented,
e.g. switch 1 at Figure 2 will be implemented with
only 3 output ports.

The logic required for LBDRx is shown in Figure
4. The mechanism relies on some configuration bits
grouped in two sets: routing bits and connectivity bits.
Routing bits indicate which routing options can be
taken, whereas connectivity bits indicate whether a
switch is connected with its neighbors. As an alterna-
tive view, the connectivity bits set the mapped topol-
ogy and the routing bits set the routing algorithm.
As we support 20-port switches, at maximum we will
have 20 connectivity bits per switch. We represent the
connectivity bit for a port X as Cx, where X can be
a possible direction of any mapped port (N, E, W,
S, NN, NE, ..., NNE, ...). Notice these bits will be



5

Fig. 4. Logic of LBDRx

hardwired depending on the final topology and the
radix of each switch, thus not being implemented with
flip-flop registers.

The routing bits Rxy (where x and y can be n, e, w,
and s) indicate whether messages routed through the
x output port may take at the next switch the y port.
In other words, these bits indicate whether messages
are allowed to change direction at the next switch.
The value of these bits is computed in accordance to
the applied routing algorithm and to prevent dead-
lock while still guaranteeing connectivity. In order
to simplify the routing logic, however, not all the
possible routing bits are implemented. Indeed, no new
routing bits are used except those already defined
in LBDR: Rne, Rnw, Ren, Res, Rwn, Rws, Rse, Rsw.
Notice that routing bits are used only between 1-
hop links. By default, the LBDRx mechanism will
assume messages can take 2-hop and 3-hop links
without restriction along their path without risk of
inducing deadlock. The mapping strategy described
in Section 4 will guarantee in those cases the absence
of deadlocks. Although allowing more routing bits
would lead to greater flexibility, we noticed that they
are not needed in order to reach our objective (shown
in the evaluation section). This will also help to keep
a low implementation cost of the mechanism. Indeed,
the routing bits can be hardwired in the final imple-
mentation of the chip as well.

The routing logic of LBDRx (Figure 4) computes,
in first place, the relative position of the message’s
destination (left part of the figure). For this, the
coordinates of the current switch (Xcurr and Ycurr)
are compared with the coordinates of the message’s
destination (Xdst and Ydst) located in the message
header. At the output of this logic, one or more
signals associated with the X and Y coordinates may
be active simultaneously. For instance, if the packet’s
destination is in the NW quadrant then N’ and W’
signals are active at the same time. Signals NN, SS,
EE and WW indicate whether the destination is at

least 2 hops away in the given direction. Similarly,
the signals of 1 hop are computed.

Notice that in some situations, signals in the same
direction will be active at the same time, for instance
signals NN’ and N’. These cases are filtered in the
second part of the logic. Higher priority will be given
to larger hop ports. We refer to the signals produced
by the comparators as intended direction signals. Note
also that packets forwarded to the local port are
excluded from the routing logic.

Once the direction signals are computed, the logic
is divided into three parts in order to address the
different type of output ports (1-hop, 2-hop, and 3-hop
ports). Figure 4 shows the details, where the right part
shows the details of each of the three blocks. Notice
that 3-hop ports have the highest priority followed by
2-hop ports. This means that if a 3-hop output port is
eligible for routing a message then, ports with lower
mapping length will not be considered. To implement
this priority scheme, two control signals (2hop and
3hop signals) are used. Besides this, the logic to com-
pute 2-hop and 3-hop ports is quite straightforward.
Indeed, a port X is eligible if the port exists in the
switch (Cx bit is set), and the message’s destination
is in the same direction of the output port (direction
signals). As an example, output port NNE is eligible
for routing if the message’s destination is in the NNE
direction (both direction signals NN’ and E’ are set).

The logic for 1-hop ports is, however, slightly more
complex. It also deals with the routing bits. In this
case, the logic is implemented with four inverters,
four AND gates and one OR gate (right part of
the figure). The logic filters out the routing options
that could lead to deadlock situations (by using the
routing bits). Figure 4 shows the logic for the North 1-
hop output port. Notice that excepting for the priority
signals, the logic for the 1-hop output ports is the
same used in LBDR.



6

Fig. 5. (a) Logic for non-minimal path support (deroutes) in LBDRx. (b) LBDRx configuration bits (with deroutes)
for the mapping shown in Figure 2. Routing bits are set to 1 when no restriction is applied; connectivity bits are
set to 1 when the switch is connected to another. Deroute bits are represented with the input port (in column)
and the deroute option for that input port (out column). ”A” means the input port is the local one.

3.3 Support for Non-minimal Mapped Paths

The previous logic guarantees minimal path routing
in the mapped topology. As each output port is used
when the destination is located in the same direc-
tion of the output port, then every hop performed
guarantees the message will get closer to its desti-
nation. Indeed, this fact renders with a very simple
implementation of the routing algorithm (as seen in
Figure 4). However, there are mapping cases that can
not be solved with only minimal path support. As an
example, in the mapped topology shown in Figure 2
a message going from switch 11 (mapped in row 4
and column 3) requires a mapped non-minimal path
to reach switch 21, as it needs to be forwarded N
and then WWS.3 This fact simply renders the mapped
topology as unsupported by LBDRx (Figure 4) as it is
now.

One possible solution is to discard the mapped
topology and obtain one that guarantees all the paths
will follow minimal paths. Indeed, this is one of the
targets of the mapping tool shown later in the paper.
However, in some complex topologies, this kind of
mappings will simply not exist. To solve this problem
in a smooth way, and allowing much more flexibility
to the mechanism, we introduce a small additional
logic on every input port to allow such non-minimal
path support. Going back to the non-minimal path
example in Figure 2, if at switch 11 we force the
message to go north, then the message will be able
to reach its final destination and the mapping will be
valid.

Figure 5 (a) shows the logic for the non-minimal
path support we propose. The logic is derived from
[18]. In particular, the logic forces messages to take
a non-minimal port whenever the LBDRx logic fails
in routing the message. For the example provided, at
switch 11 none of the output ports will be eligible

3. Notice, however, the path in the original unmapped topology
is minimal and the same.

by LBDRx. Thus, in this case, the logic will take
the configured non-minimal port (port N). The logic
requires a 5-bit configuration register per input port
(to select an output port out of maximum 20 ports).
The logic uses a demultiplexer to decode the output
port. Notice that deroutes are taken only if the LBDRx
logic does not provide a valid output port.

As an overall example, in Figure 2 we can observe
how a message being forwarded from switch 3 to
switch 27 is using the configuration bits shown in
Figure 5 (b). At switch 3, the message could take port
SSW, or port SS. However, the 3-hop port (SSW) filters
out the 2-hop port (SS). The message, then, moves
to switch 1 and from that switch takes output port
SSW again. Finally, at switch 21 the port W is selected.
This example is straightforward, and as can be easily
deduced the way the topology is mapped onto a 2D
grid will influence on the applicability of the LBDRx
mechanism.

Furthermore, in Figure 2 two different deroute op-
tions are required for two different input ports at
router 11 (see Figure 5 (b)). If going W, and the
message comes from input port S, then a deroute is
set to E. On the other hand, if the message is coming
from SW, and the intention is to go SSW, then a
deroute is set to S. It is worth mentioning that deroute
options need to be computed in accordance to the
routing algorithm, as they must not introduce cycles
that could lead to deadlocks.

As a final remark for the LBDRx routing mecha-
nism, its success depends strongly on the mapping
performed for the topology. Indeed, there are map-
pings that allow all the links to conform to the LB-
DRx link structure (1-hop, 2-hop, 3-hop links) and
there are mappings that have larger links. Also, there
are mappings that introduce deadlocks in the rout-
ing algorithms or even prevent the connectivity be-
tween particular source-destination flows. Therefore,
the mapping tool, described in the next section, is a
key element to guarantee applicability of LBDRx.



7

Fig. 6. Mapping tool.

4 MAPPING TOOL

In this section we describe the mapping tool required
by the LBDRx mechanism. The mapping tool can be
adapted to different versions of LBDRx routing, e.g.
with 3-hop links, 2-hop links, and with/without non-
minimal path support. It takes as an input the physical
topology and the type of LBDRx support and outputs
several possible solutions, each of them able to be
used with the target LBDRx version. Indeed, the tool
provides for any possible solution the set of config-
uration bits together with the mapping coordinates
of every switch into a 2D grid (Figure 6). It is worth
highlighting that the mapping tool does not physically
change the topology, indeed it only logically maps
the topology onto a 2D grid. Figure 6 also shows the
different stages of the mapping tool. For the sake of
understanding, in the next subsections we describe
the details of each stage along with an example.

4.1 Compute Mapping of Switches

The first stage provides an initial mapping of the
switches into a 2D grid. Some basic assumptions are
considered:

1) Only switches and links between switches are
considered for the mapping, thus not consider-
ing end nodes.

2) The mapping grid (the diameter of the 2D mesh)
will be minimized and made as square as pos-
sible (differences between diameters of each di-
mension will be minimized).

3) Every possible mapping onto the 2D mesh is
explored, and the best solutions are extracted
and further analyzed (in the following stages).

The last assumption may lead to a large number
of mapping combinations, and most of them will
result in mappings not supported by LBDRx. As
an example, Figure 7 shows two possible mappings
corresponding to the example topology provided in
Figure 6. At first sight, we cannot deduce which

Fig. 7. Example of two initial mappings.

Fig. 8. Example of (a) connectivity pattern applied to
two different mappings, and (b) mapped topology with
the routing algorithm applied.

ones can be supported. For this, we need to compute
directions and link connectivity (connection pattern).

4.2 Compute the Connection Pattern
For each mapping in the previous step, the connection
pattern needs to be performed. The connection pattern
considers only links connecting switches (switch-to-
switch links) and the direction of each link (unidi-
rectional links are considered). Several restrictions are
enforced in this step (considering LBDR2 support):

1) Any switch has at maximum 12 outgoing ports
and 12 incoming ports, possibly having less
number of ports, and not necessarily the same
number of input and output ports.

2) In every switch one possible direction out of 12
can be taken, in the 2D mesh mapping, through
a single output port. The directions are the ones
supported by LBDR2 (1-hop and 2-hop links
depicted in Figure 3).

Taking into account the previous restrictions, some
mappings will become not valid, e.g. those with link
lengths longer than the targeted LBDRx version or
those that lead to unconnected networks. In any case,
those mappings are excluded.

Figure 8(a) shows the connectivity pattern for the
previous two mapping cases. As can be seen, the
second mapping case is not compatible with LBDR2
since it contains a 3-hop link. Furthermore, we can
observe how this mapping ends up in an unconnected
network (once the routing algorithm is applied). The
issue comes from the fact that switch 1 cannot be
reached from switch 3 with the LBDR2 logic. From
the point of view of switch 3, switch 1 is at the
North-East quadrant but there is no North-East link
nor any combination of 1-hop links (with North and
East directions) leading to the destination, instead,
the North-East-East exists. The first mapping case
does not suffer from that problem, and thus, that
case is compatible with LBDR2. Mappings leading to
unconnected networks are filtered out at this stage.
Notice however, that if we use LBDR3 or deroutes
are allowed, both mappings are, then, supported.



8

4.3 Compute a Proper Routing Algorithm
Once we have obtained a correct mapping we need to
check whether the mapped topology contains cycles
or not. In that case, in order to avoid cycles, it will
be necessary to apply a routing algorithm. In the first
mapping in Figure 8(a), a cycle can be formed between
switches 0, 3, and 2 in the counter clockwise direction.
Applying a routing algorithm on top of the topology
will remove such cycle.

In our case, the routing algorithm used is the
Segment-based Routing (SR) [21], a technique that
divides the network into segments and puts a rout-
ing restriction in each segment. A routing restriction
is placed between two consecutive links and pre-
vents any message from using both links sequentially.
Drawing routing restrictions is a way of representing
a routing algorithm since restrictions establish the
allowed paths, those not crossing routing restrictions.
In order to compute the routing restrictions, only
1-hop links in the mapped topology are assumed.
As commented above, this assumption simplifies the
LBDRx logic and still allows to reach our objective of
avoiding cycles. Figure 8(b) shows the valid mapped
topology in Figure 8(a) with the unidirectional routing
restriction applied only at switch 2. Notice that no
cycles exist without crossing the routing restriction.
LBDR2 computes the routing bits from the routing
restrictions defined by the routing algorithm.

4.4 Check Deadlock-Freedom and Connectivity
The last step of the mapping tool is to verify that the
mapping is deadlock-free and guarantees the connec-
tivity of the initial topology. The routing algorithm ap-
plied in the previous step ensured deadlock-freedom.
However, when applying the routing algorithm and
when not using deroutes, some pair of end nodes may
be unconnected. Since LBDRx without deroutes relies
exclusively on minimal paths (those always getting
closer to its destination), a routing restriction may lead
to a path being routed non-minimally, which needs
the use of deroutes to be supported. At this stage,
the tool iterates on all the communicating flows of
the application (a flow is defined as the path from
a producer to a consumer). For each flow, the tool
searches a valid LBDRx path using the connectivity
and routing bits set by the mapped topology. If for
a flow, there is no connectivity, then the mapping is
not valid and we will need either to search a new
mapping or use deroutes.

Figure 9 represents the algorithm that checks
deadlock-freedom property, which searches for cycles
within the network. To do this, at the beginning all
the input ports of switches are set with the visited
flag reset. Then, for each possible input port cycles are
searched by calling the function fnCheckDeadlockFree,
which returns whether a cycle is found or not. If a
cycle is found then the algorithm returns False. On

Fig. 9. Deadlock freedom flowchart.

the other hand, if no cycles are found for all the input
ports of switches the algorithm returns True.

The function fnCheckDeadlockFree searches all the
possible paths allowed by the computed routing and
connectivity bits. The allowed paths are encoded in a
matrix that sets whether at a given switch and input
port, the output port can be used. If so, the function
recursively advances through that port. Then, all the
possible output ports at the current switch are ex-
plored. If the output port can be used, then the next
switch is computed, the associated input port at the
next switch is computed, and the recursive function
is called again. After the checking of the output ports,
the input port is labeled as not visited (since the
recursive function is backtracking).

Now we describe how deroutes are computed by
the mapping tool. Initially, the set of routing and
connectivity bits are computed. This is done by taking
into account the mapped topology and the routing
algorithm. Once LBDRx bits are computed, the der-
oute options are searched. To do this, an algorithm
looks for a valid path for every producer-consumer
pair (Figure 10 represents this algorithm). Note that
the algorithm is computed offline before any normal
operation of the chip, thus computation complexity
is not a major issue. In Figure 10, we first check
connectivity for each producer-consumer pair. For
this, a function receives as a parameter the source
switch, the final switch, and the input port at the
source switch (the local port in this case). If for a
particular flow there is no connectivity, then FALSE
is returned and the mapping is not valid.

For each flow, all the possible paths granted by
LBDRx are searched. The function for checking con-
nectivity is recursive and finishes once the final switch
is reached, or when no valid deroute option can be
used. In this function, all the ports delivered by the
LBDRx mechanism (including the possible deroutes
already set) are retrieved. If valid output ports are
provided, then the function is recursively called for
every possible output port (notice LBDRx may grant



9

Fig. 10. Deroutes computation flowchart.

several output ports of the same mapped length).
Notice that the destination should be reached through
all the possible output ports provided by LBDRx. If,
on the other hand, LBDRx fails to provide a valid
output port, then all the possible deroute options are
searched. For each possible deroute set, connectivity
is checked. On success the deroute is left. On fail, the
deroute is removed and another deroute is tested. If
all the deroutes fail then the mapping can not provide
connectivity and the function fails.

On success of a mapping topology, the final output
is the mapping of each switch into the 2D grid and
the configuration (connectivity, routing, and deroute)
bits. Notice that many mapping solutions exists and
the mapping tool succeeds if at least one mapping
solution is obtained. Also, if no mapping solution
exists for a grid size, the mapping tool extends the
grid by one row and/or column thus having much
larger flexibility. However, this will incur in larger
register files at switches to store the relative position
of the switch in the grid. As an example, Figure 2
shows a successful deadlock-free mapping for the ini-
tial topology depicted in Figure 1 where connectivity
between switches is assured (due to its complexity,
the version used in order to obtain that mapping was
LBDR3 with deroutes).

5 PERFORMANCE EVALUATION

In this section, we provide a comprehensive evalua-
tion of the LBDRx mechanism organized into three
parts. In the first one, we analyze the mapping tool,
showing the results of applying it to different sets of
topologies with increasing complexity. Moreover, dif-
ferent mappings of the same topology are evaluated
in terms of performance to check possible deviations
between them (note however, the tool is focused in
providing connectivity and routing implementation,
instead of high performance). In the second part, our
attention is focused on the switch implementation,
describing its design and analyzing the implications
of the LBDRx mechanism. An analysis of how the
switch design evolves in latency and area for different
switch radices is also provided. Finally, the third part

analyzes the reachability of the source-based routing
approach in comparison with the LBDRx mechanism.

5.1 Mapping Tool
5.1.1 Topologies Analysis
In order to thoroughly test the ability of the mapping
tool, we have performed several groups of experi-
ments using different sets of sample topologies with
increasing complexity in each group. These sets of
topologies have been generated randomly, deriving
their complexity according to three input parameters:
i) the number of switches, ii) the number of links, and
iii) the number of Producers and Consumers. Table 1
shows the results.

Grid size Correct Deroutes Time
Type 1 3x3 >10.000 not needed <1 min
Type 2 4x4 >10.000 not needed 3-5 min
Type 3 5x5 >100.000 not needed 10-15 min
Type 4 5x6 >100.000 not needed 30-45 min
Type 5 5x7 >100.000 10-15 1-2 hours
Type 6 6x6 >1.000.000 15-18 2-3 hours
Type 7 7x7 >1.000.000 18-23 3-5 hours

Figure 1 5x7 578.952 10-15 2 hours

TABLE 1
Topology mappings.

The main purpose was to compute the number of
correct mappings generated for every analyzed topol-
ogy and the time required to complete the procedure.
In each case, the table shows: i) the minimum grid
size needed to map the topology (3x3, 4x4, 5x5, ...,
7x7), ii) the number of correct mappings obtained
and, iii) the average number of deroutes used (per
mapping), if necessary. Note that correct mappings
will be those which met the restrictions imposed by
the LBDRx version applied in each case. In the last
column, the computation time to complete the entire
process is shown. This time depends mainly on the
complexity of each topology, and for these examples
ranges from some minutes to several hours. The last
row represents the topology shown in Figure 1.

Note that with the proposed mechanism, using 20
port directions and deroutes, we were able to map
all the tested topologies (with a maximum grid size
up to 7x7), thus not requiring a more complex im-
plementation. Analyzing larger grid sizes remains, if
any, for future work. Notice that the mapping capa-
bility strongly depends on the topology complexity
(referred previously) and the LBDRx used. As an
example, if we consider a set of topologies with the
same number of nodes and LBDRx, each of them may
require different grid sizes to be mapped depending
on its complexity. Furthermore, topologies containing
few links will generate less number of valid mappings
than topologies containing a great number of links
(because the number of valid combinations of nodes
and links is smaller).



10

Fig. 11. Simulation of different mappings for the initial topology.

5.1.2 Mappings Analysis
The objective now is to analyze whether different
mappings of the same topology can derive in differ-
ent performance numbers, that is, to study if there
can exist variability. The graphs shown in Figure
11 compare different mappings for the topology of
Figure 1 (for the sake of clarity and understanding,
only five different mappings are represented in each
graph). The mappings have been evaluated into the
gNoCSim simulator (an in-house cycle-accurate flit-
level simulator). The left graph compares the traffic
generated (in flits per cycle per nic) against the traffic
actually received, while the right graph compares
the traffic generated (again in flits per cycle per nic)
against the average network flit latency.

As we observe, there exist differences for the differ-
ent mappings in both graphs. It is important to note
that although performance is limited by the irregular-
ity of the network (topology) and not by the mapping,
however, different mappings for the same irregular
topology (different locations of the nodes in the 2D
grid) can in fact use different LBDRx-based paths for
the same Producer-Consumer pairs, thus producing
different performance values. In addition, differences
can increase with larger topologies because the num-
ber and length of the possible LBDRx paths between
Producers and Consumers also increase.

Finally, note that having different mappings of the
same topology can be useful for selecting different
paths between a set of alternatives. That is, depending
on the nodes location in the 2D grid and the version of
LBDRx used, some routes could have preference over
others. Therefore, selecting different mappings could
be possible to give preference to some routes without
using any additional logic or mechanism.

5.2 Switch Implementation
In this section we describe a switch design incorpo-
rating the LBDRx mechanism. We also analyze the
area and latency of the switch under different port
configurations and LBDRx versions. The goal is to
evaluate the efficiency of the implementation and the
comparison with table-based approaches.

N - 1 N - 1 N - 1

DATA_IN_N-1

S&G_OUT_N-1

DATA_OUT_N-1

S&G_IN_N-1

DATA_OUT_0

S&G_IN_0

DATA_IN_0

DATA_0

S&G_OUT_0

DATA_N-1

S&G_N-1

S&G_0

Fig. 12. Switch Design.

5.2.1 Switch Design

Figure 12 shows the main components of the used
switch. The switch is a pipelined wormhole switch
with four stages: input buffer (IB), routing computa-
tion (RT), switch allocator (SA), and switch traversal
or crossbar (XB). Link width and flit size are set to
four bytes. The input buffers can store four flits. A
Stop&Go flow control protocol has been deployed in
order to control the advance of flits between adjacent
switches. Additionally, the routing (RT) stage has been
implemented to support the LBDRx mechanism. In
addition, there is an RT module for each input port
and an SA module for each output port. The SA
module determines when and which input port is
connected to its requested output port. Finally, each
SA module has been designed using a round-robin
arbiter according to [22].

The switch has been implemented using the 45nm
technology open source Nangate [23] with Synopsys
DC. We have used M1-M3 metallization layers to
perform the Place&Route with Cadence Encounter.



11

Fig. 13. Area-Delay results for the RT module with dif-
ferent routing mechanisms. 5-port switch design used.

5.2.2 Router Overhead
The goodness of the LBDRx algorithm must be per-
formed in terms of performance but in terms of
resources used. In this section we compute the area
and delay of the different versions of LBDRx that
have been implemented in the switch and synthesized
with the 45nm Nangate opensource library. Also, the
LBDRx mechanism is compared with a distributed
routing approach using tables (which presents iden-
tical results as a source-based routing algorithm). In
this case, each routing module has been designed with
tables of 32, and 64 entries of size 24 bits4. Two kind of
tables have been implemented. First, tables built with
registers using the same design methodology than
before. Secondly, an ideal ROM memory has been
built by using Virtuoso Analog Design Environment
by Cadence. Note that, a ROM is the simplest cell-
based memory that does not admit reconfiguration,
and hence, it is less flexible than LBDR. On the other
hand, a ROM defines the minimum boundary in terms
of area and delay when compared to other kind of
cell-based memory designs.

Figure 13 shows the area and delay of the RT mod-
ule of the switch. LBDR, LBDR2, and LBDR3 represent
the mechanism with support for 1-hop, 2-hop, and 3-
hop mapped links, respectively. Also, the plots with dr
label represent the cases where also deroutes are used.
A 5-port switch is assumed. In terms of delay (a power
comparison is available in [24]) we can see LBDR3
with deroutes shows similar delay as ROM memories
and register with 32 entries. However, ROMs have
no flexibility at all and registers do not scale in area
and delay. It can be seen that area is much larger for
registers with 32 entries, doubling for registers with
64 entries. Thus, scalability is compromised.

Notice that the configuration bits of LBDRx (rout-
ing, connectivity, and deroute) can be hardwired once
the mapping is fixed. This means an extra saving in
area and even in latency. Figure 14 shows the area

4. 24 bits allows to code 8 hops in switches of 5 input ports.

Fig. 14. Area-Delay results for the different switch
stages. 5-port switch design and LBDR3dr used.

Fig. 15. Area-Delay results for the RT module with
different number of I/O port switches. LBDR3dr used.

and delay for each switch stage in a 5-port switch and
using the LBDR3dr solution. Results are shown for a
single instance of each component. As can be seen, in
both cases the values of the RT stage are smaller than
the other stages. This means, the RT stage has room
for the LBDR3dr solution without compromising the
router frequency (set by the slowest stage). Also,
we can see (by comparing with the previous figure)
hardwiring the bits leads to a large saving in area
(from around 700 µm2 down to 80 µm2).

In the previous analysis, we assumed a 5-port
switch design. However, in a SoC design different
switch radices are used. There is a need, then, to
explore the scalability of the mechanism with the
number of switch ports. In order to reduce the latency
impact of higher-radix switches, the slower switch
stages (SA and XB) can be decoupled (as in [25], [26]).
Basically, in a switch with Ni×No input/output ports,
the XB and SA stages are designed as the sum of No

independent modules of size Ni × 1 instead of the
conventional design where each task is centralized in
a single module of size Ni ×No.

Assuming this optimization, Figure 15 shows the
area and delay for the RT module in different switch
configurations by varying the number of ports. As can
seen, both area and delay grow with the increasing
number of switch ports. This is due to the added



12

logic for each output port (the set of logic gates and
the priority mechanisms between ports of different
number of mapped hops). However, the increment
of area is always much lower than the solution with
routing tables. Indeed, for a 20-port switch, the RT
module is implemented in less than 300 µm2. Latency
is also bounded to 8-port switches below 400 ps, and
increases up to 550 ps for a 20-port switch.

5.3 Source Routing vs LBDRx

Finally, we provide a theoretical study that compares
source-based routing with LBDRx. This analysis is
made taking into account the number of routing bits
used at the message header, which in some SoC
systems can be bounded. The aim is to check which
is the maximum number of hops that messages can
make into the network by varying the number of
routing bits allowed at the message header for such
purposes. Based on the information provided by the
ST Spidergon network [7], in all the examples ana-
lyzed we have set the maximum number of routing
bits at the message header to 12.

In source-based routing, message headers are orga-
nized into groups of bits, and each group is used in
a different switch. The number of groups represents
the number of hops a message can make within the
network. Therefore, the maximum number of hops a
message can reach depends on: a) the number of total
routing bits allowed in the message header and b) the
number of bits needed at every visited switch. The
latter depends on the number of output ports of the
switch. These bits will be used to select one port in
every switch. As an example, if the number of total
routing bits is 6 and we have 8-ports switches, the
message header is organized in 2 groups of 3 bits (we
need 3 bits to address 8 ports).

In LBDRx, message headers are organized into 2
groups of bits. The first group represents the des-
tination switch in the mapping used. The second
group represents the selected consumer in the desti-
nation switch (each switch may be connected to other
switches, to producers or to consumers). The number
of bits needed to select the final port at the destination
switch (connecting the destination consumer) is set by
the switch having the largest number of consumers.
As an example, if the number of total routing bits is 6
and we have up to 8-consumers per switch, the packet
header will be organized with 3 bits to select the
consumer and 3 bits to select the destination switch. If
we have 3 bits to select the destination switch, the size
of the 2D mesh is 2X4 (8 switches), and the maximum
number of hops will be 5.

To analyze reachability of source-based routing (SR)
and LBDRx when using a limited number of bits at
the header, we have evaluated the following cases:
• SR 8bp: 8 bidirectional port switches (8in/8out)
• SR 4bp: 4 bidirectional port switches (4in/4out)

Fig. 16. Reachability comparison between source
routing and LBDRx.

• SR 8up: 8 unidirectional port switches (4in/4out)
• SR 4up: 4 unidirectional port switches (2in/2out)
• LBDRx 4c: 4 consumers per switch at maximum
• LBDRx 8c: 8 consumers per switch at maximum
Figure 16 shows the number of hops for the pre-

vious cases. For each case, we observe how the
maximum number of hops that can be reached in
the network depends on the number of routing bits
available. As an example, if we consider SR 8bp with
3 routing bits, the number of hops we can reach is
only 1, because we need the 3 bits to select one of
the 8 available ports on the switch. But if we consider
that the maximum number of routing bits is 12, we
can reach up to 4 hops, since it takes 3 bits for each
new switch reached.

The area between SR 8bp and SR 4bp represents
the range of hops we can reach considering a mix of
8- and 4-bidirectional port switches in the network.
Depending on the total number of available routing
bits, more or less hops can be achieved. The area
between SR 8up and SR 4up represents the same
but considering unidirectional ports. As we see, the
maximum number of hops that can be achieved with
12 routing bits considering source-based routing is 12.
In contrast, we see that with LBDRx (LBDRx 4c and
LBDRx 8c), the number of hops is much larger. For
example, with 12 routing bits we can reach 64 hops,
thus allowing for a larger system.

The conclusion in the comparison is clear. With LB-
DRx, the number of hops a packet may take is much
larger than when using source-based routing with a
bounded number of header bits. Although a relative
high number of hops can be reached with source-
based routing with 4-unidirectional port switches, this
corresponds to unrealistic switch designs (a switch
has only two output ports). More practical switches
(e.g. 8 bidirectional port switches) have a much lower
reachability when using source-based routing, less
than 10 hops in all the cases.



13

6 CONCLUSION

In this paper, we have presented two major contri-
butions. In first place, LBDRx, a series of routing
mechanisms (with support to non-minimal paths) for
application-specific SoC systems where the topology
is totally irregular. The main goal of LBDRx is to
enable the use of table-less distributed routing on
every switch with a constant and reduced logic cost,
regardless of system size. LBDRx builds from the
Logic-Based Distributed Routing (LBDR) mechanism,
a previous proposal suited for CMPs and high-end
MPSoC systems. In second place, we presented a
mapping tool able to obtain different mappings of the
same irregular topology onto a 2D mesh. The tool is
key for the application of the LBDRx mechanism, so
we have included a detailed description of its most
important algorithms.

Finally, the evaluation results demonstrate the ap-
plicability of the mapping tool onto a wide set of
topologies. In all cases, a valid mapping was achieved,
thus routing tables were replaced by the LBDRx
mechanism. Implementation costs also showed the
benefits of such replacement. As future work we plan
to further explore the mapping tool focusing on per-
formance issues. As we have seen, different mappings
can end up in different performance numbers. Thus,
we plan to optimize the tool to provide the best
mapping for the target application.

ACKNOWLEDGMENTS

This work was supported by the Spanish MEC and
MICINN, as well as European Comission FEDER
funds, under Grant CSD2006-00046. It was also partly
supported by the COMCAS project (CA501), a project
labelled within the framework of CATRENE, the EU-
REKA cluster for Application and Technology Re-
search in Europe on NanoElectronics.

REFERENCES

[1] L. Benini and G. De Micheli, Networks on Chips: Technology and
Tools. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[2] J. Flich and D. Bertozzi, Designing Network On-Chip Architec-
tures in the Nanoscale Era. Boca Raton, FL, USA: CRC Press,
Inc., 2010.

[3] J. Duato, S. Yalamanchili, and N. Lionel, Interconnection Net-
works: An Engineering Approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

[4] A. Duller, D. Towner, G. Panesar, A. Gray, and W. Robbins,
“Picoarray technology: The tool’s story,” in DATE ’05: Proceed-
ings of the conference on Design, Automation and Test in Europe.
IEEE Computer Society, 2005, pp. 106–111.

[5] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C. Miao, J. F. Brown III, and A. Agarwal,
“On-chip interconnection architecture of the tile processor,”
IEEE Micro, vol. 27, no. 5, pp. 15–31, September/October 2007.

[6] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb,
E. Work, T. Mohsenin, M. Singh, and B. M. Baas, “An asyn-
chronous array of simple processors for dsp applications,” in
IEEE International Solid-State Circuits Conference, (ISSCC ’06),
Feb. 2006, pp. 428–429.

[7] M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia,
and L. Pieralisi, Design of Cost-Efficient Interconnect Processing
Units: Spidergon STNoC. Boca Raton, FL, USA: CRC Press,
Inc., 2008.

[8] I. Arteris, “Arteris noc,” http://www.arteris.com/, 2010, [On-
line; accessed 31-August-2010].

[9] D. Wingard, “Micronetwork-based integration for socs,” in In
Proceedings of the 38th Design Automation Conference, 2001, pp.
673–677.

[10] A. Ltd., “The advanced microcontroller bus architecture
(amba),” http://www.arm.com/products/system-ip/amba/,
2010, [Online; accessed 01-September-2010].

[11] J. Flich, S. Rodrigo, J. Duato, S. Medardoni, and D. Bertozzi,
“Efficient implementation of distributed routing algorithms
for nocs,” in IET Computers and Digital Techniques. IET, 2009,
pp. 460–475.

[12] M. K. F. Schafer, T. Hollstein, H. Zimmer, and M. Glesner,
“Deadlock-free routing and component placement for irreg-
ular mesh-based networks-on-chip,” in Proceedings of the 2005
IEEE/ACM International conference on Computer-aided design (IC-
CAD ’05). IEEE Computer Society, 2005, pp. 238–245.

[13] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Routing
table minimization for irregular mesh nocs,” in Design, Au-
tomation Test in Europe Conference Exhibition, 2007. DATE ’07,
april 2007, pp. 1 –6.

[14] I. Loi, F. Angiolini, and L. Benini, “Synthesis of low-overhead
configurable source routing tables for network interfaces.” in
DATE. IEEE, 2009, pp. 262–267.

[15] W. Song, D. Edwards, J. L. Nunez-Yanez, and S. Dasgupta,
“Adaptive stochastic routing in fault-tolerant on-chip net-
works,” in Proceedings of the 2009 3rd ACM/IEEE International
Symposium on Networks-on-Chip, ser. NOCS ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 32–37.

[16] T. Skeie, F. Sem-Jacobsen, S. Rodrigo, J. Flich, D. Bertozzi,
and S. Medardoni, “Flexible dor routing for virtualization
of multicore chips,” in Proceedings of the 11th international
conference on System-on-chip, ser. SOC’09, 2009, pp. 73–76.

[17] J. Cong, C. Liu, and G. Reinman, “ACES: application-specific
cycle elimination and splitting for deadlock-free routing on
irregular network-on-chip,” in Proceedings of the 47th Design
Automation Conference, ser. DAC ’10, 2010, pp. 443–448.

[18] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi,
J. Camacho, F. Silla, and J. Duato, “Addressing manufacturing
challenges with cost-efficient fault tolerant routing,” in Pro-
ceedings of the 2010 Fourth ACM/IEEE International Symposium
on Networks-on-Chip, ser. NOCS ’10. IEEE Computer Society,
2010, pp. 25–32.

[19] X. Duan and Y. Li, “A multiphase routing scheme in irregular
mesh-based nocs,” in Proceedings of the 2011 Fourth International
Symposium on Parallel Architectures, Algorithms and Program-
ming, ser. PAAP ’11, 2011, pp. 277–280.

[20] D. Gelernter, “A dag-based algorithm for prevention of store-
and-forward deadlock in packet networks,” IEEE Trans. Com-
put., vol. 30, pp. 709–715, October 1981.

[21] Flich, J., Mejia, A., López, P., and Duato, J., “Region-based
routing: an efficient routing mechanism to tackle unreliable
hardware in networks on chip,” in 1st ACM/IEEE Int. Symp.
Networks on Chip (ISNOC), 2007.

[22] E. Shin, I. Mooney, V.J., and G. Riley, “Round-robin arbiter
design and generation,” in System Synthesis, 2002. 15th Inter-
national Symposium on, October 2002, pp. 243 – 248.

[23] “The nangate open cell library, 45nm freepdk,” Available from
http://www.si2.org/openeda.si2.org/projects/nangatelib.

[24] S. Rodrigo, J. Flich, J. Duato, and M. Hummel, “Efficient
unicast and multicast support for cmps,” in Microarchitecture,
2008. MICRO-41. 2008 41st IEEE/ACM International Symposium
on, 2008, pp. 364 –375.

[25] A. Roca, J. Flich, F. Silla, and J. Duato, “A low-
latency modular switch for CMP systems,” Microprocessors
and Microsystems, Aug. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.micpro.2011.08.011

[26] F. G. Villamón, M. E. Gómez, S. Medardoni, and D. Bertozzi,
“Improved utilization of noc channel bandwidth by switch
replication for cost-effective multi-processor systems-on-chip,”
in NOCS, 2010, pp. 165–172.



14

José Cano received the MS and PhD de-
grees in computer science from the Univer-
sitat Politècnica de València, Spain, in 2004
and 2012, respectively. He was a member
with the Networking Research Group (2005-
2012) and also with the Parallel Architec-
tures Group (2009-2012) in the Department
of Computer Engineering at the Universi-
tat Politècnica de València. He joined the
ARCO Research Group in the Department
of Computer Architecture at the Universitat

Politècnica de Catalunya (Barcelona, Spain) in March 2012, where
he was a postdoctoral researcher until December 2013. Currently,
he is a research associate with the CArD group in the Institute for
Computing Systems Architecture, School of Informatics, at The Uni-
versity of Edinburgh, United Kingdom. His research interests include
computer architecture and computer systems, with special emphasis
on processor microarchitecture, hw/sw co-designed systems, and
compilers, plus multiprocessor systems-on-chip, networks-on-chip,
large-scale heterogeneous multi-cores, parallel programming mod-
els, and ubiquitous computing.

Antoni Roca received the M.S. degree
and the Advanced Studies Diploma, both
in telecommunications engineering from the
Universitat Politècnica de València, Valencia,
Spain, in 2006 and 2007, respectively. Cur-
rently, he is pursuing the Ph.D. degree from
the Parallel Architectures Group, Universitat
Politècnica de València. His current research
interests include network-on-chip architec-
tures, especially router implementation.

José Duato received the M.S. and Ph.D.
degrees in electrical engineering from the
Universitat Politècnica de València, Valen-
cia, Spain, in 1981 and 1985, respectively.
Currently, he is a Professor with the Parallel
Architectures Group, Department of Com-
puter Engineering, Universitat Politècnica de
València, and is a Researcher with the Sim-
ula Research Laboratory, Oslo, Norway. He
also developed RECN, a scalable congestion
management technique, and a very efficient

routing algorithm for fat trees that has been incorporated into the
Sun Microsystems 3456-Port InfiniBand Magnum Switch. Currently,
he leads the Advanced Technology Group in the HyperTransport
Consortium, whose main result until now has been the development
and standardization of an extension to HyperTransport (High Node
Count Hyper-Transport Specification 1.0). He is the first author
of the book Interconnection Networks: An Engineering Approach.
His current research interests include interconnection networks and
multiprocessor architectures. Dr. Duato served as a member of the
editorial boards of the IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Computers, and IEEE Computer
Architecture Letters. He has been the General Co-Chair for the
2001 International Conference on Parallel Processing, the Program
Committee Chair for the Tenth International Symposium on High
Performance Computer Architecture, and the Program Co-Chair for
the 2005 International Conference on Parallel Processing. Also, he
served as the Co-Chair, a member of the Steering Committee, Vice-
Chair, or a member of the program committees in more than 60
conferences, including the most prestigious conferences in his area
(HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS, Europar, HiPC).

José Flich received the M.S. and Ph.D. de-
grees in computer science from the Universi-
tat Politècnica de València, Valencia, Spain,
in 1994 and 2001, respectively. He joined
the Department of Computer Engineering,
Universitat Politècnica de València, in 1998,
where he is currently an Associate Professor
of computer architecture and technology with
the Parallel Architectures Group. He has pub-
lished over 100 papers in peer-reviewed con-
ferences and journals. His current research

interests include high-performance interconnection networks for mul-
tiprocessor systems, cluster of workstations, and networks-on-chip.
Dr. Flich has served as a program committee member in different
conferences, including NOCS, DATE, ICPP, IPDPS, HiPC, CAC, IC-
PADS, and ISCC. He is an Associate Editor of the IEEE Transactions
on Parallel and Distributed Systems. He is currently the co-chair of
the CAC and INA-OCMC workshops. He is the Coordinator of the
NaNoC FP7 EU-Funded Project (http://www.nanoc-project.eu).

Marcello Coppola received the Laurea de-
gree in computer science from the Pisa
University, in 1992. Previously, he was in
the architecture group at the INMOS Bristol
(UK). Currently, he is working for STMicro-
electronics within the a Research LAB. His
current research interests are discrete event
simulation, SoC modeling and architecture,
programming languages, RTOS, concurrent
programming and software/hardware engi-
neering tools . He is responsible for R&D

programs in real-time hardware, and software developement tech-
niques.He is contributing to SystemC standardization. He has pub-
lished several papers in the areas of system modeling. He has
chaired international conferences on SoC design and helped to
organize several others. He is a member of OSCI and is contributing
to MEDEA+ roadmap.

Riccardo Locatelli received the Laurea de-
gree (summa cum laude) in electronic en-
gineering, and the Ph.D. degree in informa-
tion engineering from the University of Pisa,
Pisa, Italy, in 2000 and 2004, respectively.
In 1999, he was a Research Intern with
the Microelectronics Section of the European
Space Agency, the Netherlands, and a Vis-
iting Researcher with the Advanced Search
Technology Grenoble Laboratory of STMicro-
electronics, Grenoble, France, in 2003. At

Pisa University, he worked on definition and prototyping of video
architectures with emphasis on low-power techniques and system
communication. He was a Digital Design Engineer with CPRTEAM, a
microelectronic design house in Pisa, where he worked on advanced
signal processing schemes for VDSL applications. Since 2004, he
has been a Technical Leader and an Architecture and Design
Team Leader with STMicroelectronics, Grenoble, France, and the
Spidergon ST Network-on-Chip (SSTNoC) Interconnect Processing
Unit (IPU), where he introduced novel concepts beyond networks-
on-chip (NoC). He has published about 30 papers in international
journals and conference proceedings and has filed nine international
patents on NoC. He is the co-author of a book on Spidergon STNoC
technology (Boca Raton, FL: CRC Press, 2008). Dr. Locatelli is a
member of the technical program committee the NoC Symposium
and the Design, Automation and Test in Europe, a Reviewer of the
IEEETransactions on Computer-Aided Design journal and of several
International Conferences.


