Dynamic process migration in heterogeneous
ROS-based environments

Eduardo Molinos
Department of Electronics
University of Alcald
eduardo.molinos @edu.uah.es

José Cano
School of Informatics
University of Edinburgh
jcanore@inf.ed.ac.uk

Abstract—In distributed (mobile) robotics environments, the
different computing substrates offer flexible resource allocation
options to perform computations that implement an overall
system goal. The AnyScale concept that we introduce and describe
in this paper exploits this redundancy by dynamically allocating
tasks to appropriate substrates (or scales) to optimize some level
of system performance while migrating others depending on
current resource and performance parameters. In this paper, we
demonstrate this concept with a general ROS-based infrastruc-
ture that solves the task allocation problem by optimising the
system performance while correctly reacting to unpredictable
events at the same time. Assignment decisions are based on a
characterisation of the static/dynamic parameters that represent
the system and its interaction with the environment. We instan-
tiate our infrastructure on a case study application, in which a
mobile robot navigates along the floor of a building trying to reach
a predefined goal. Experimental validation demonstrates more
robust performance (around a third improvement in metrics)
under the Anyscale implementation framework.

I. INTRODUCTION AND MOTIVATION

Mobile robotics systems are typically distributed and het-
erogeneous, composed of multiple devices with different com-
putation capabilities. Indeed mobile robots have on-board com-
puters, but typically are also connected to other more powerful
stand-alone computers, or even clusters. In such situations,
it would be desirable to utilise each of the computational
devices (or scales) available in the most optimal way possible.
However, the problem of deciding what task to run at what
scale is a challenging one. This is because, in mobile robotics
systems, there is a need to react to events (some of which might
be unexpected). Under these situations, the system should be
able to adapt its behaviour without jeopardising the security of
objects, people and the system itself. Therefore, the tasks that
need to be performed tend to be decided at runtime, and in
addition the environment is not fixed, but changing. In other
words, the required task-to-scale mapping is not a static one,
but can vary dynamically.

For example, let us consider a mobile robot performing
object recognition. Further, let us assume the following: i) the
current task for image processing runs on the robot’s on-board
computer; ii) however, the robot’s on-board computer is not
able to process the image stream at the optimal resolution for
the required accuracy; iii) the robot is wirelessly connected
to another computer that is able to process the stream with
the optimal resolution. In such an environment, it would be
interesting to migrate the image processing task to the second
computer in order to achieve the required recognition accuracy.

Vijay Nagarajan
School of Informatics
University of Edinburgh
vijay.nagarajan @ed.ac.uk

Sethu Vijayakumar
School of Informatics
University of Edinburgh
sethu.vijayakumar@ed.ac.uk

However, if the connection with the remote computer is lost,
it is better to migrate back the image processing task again to
the robot despite the lower recognition accuracy.

In scenarios like the previous one, the AnyScale concept
proposes to take advantage (when possible) of the computing
resources offered by the different devices/scales available in
the system in order to optimise the application behaviour based
on some specific requirement(s). The key question therefore
is to automatically decide where and when the computation
should take place. Hence, there must be a runtime mechanism
for deciding how to assign the on-going tasks to the available
scales based on the resource availability and the cost-benefit
trade-off related to each decision.

In this paper, we demonstrate the AnyScale concept with a
general and automatic infrastructure that solves the derived
task allocation problem. Our infrastructure consists of two
components. First, an offline component that models the ap-
plication, the scales, and the network, producing initial allow-
able mappings (and pruning out mappings that need not be
considered). Second, an online component which dynamically
produces the final mapping based on the current environment.
The selected framework to develop our infrastructure is ROS
(Robot Operating System) [1], as it provides hardware abstrac-
tion and transparent distributed communication — thus, an ideal
candidate for realising the the proposed multi-scale concept.

Finally, as a proof of concept, we instantiate our infras-
tructure in a real test-bed scenario consisting of a simple ROS
application, in which a mobile robot has to navigate around
the floor of an office building from a predefined initial position
until it reaches another predefined final position. There are
two scales available: the robot’s on-board computer and an
external laptop connected to the robot via wireless. The specific
runtime mechanism of this case study takes decisions based
on the static/dynamic parameters that represent the system
and its interaction with the environment, with the objective
of optimising the total time required to complete the path but
always guaranteeing the system correctness.

The contributions of the paper are as follows: i) We pro-
pose the AnyScale concept for heterogeneous mobile robotics
systems, ii) We demonstrate the concept with our ROS-based
infrastructure that solves the task allocation problem, iii) We
evaluate our infrastructure with a real case study. We also
validate our task allocation solution through simulation.

II. RELATED WORK

Since our approach is based on dynamic task alloca-
tion/scheduling, in this section we review previous works
addressing this problem for both multi-robot and general
distributed systems, highlighting the differences found.

Beginning with multi-robot task allocation (MRTA), in [2]
a taxonomy that categorises types of problems based on robot
type, task type, and allocation type is presented. [3] is an
extension of the previous taxonomy that adds the degree of
interdependence of agent-task utilities. [4] also extends the
first taxonomy assessing the problems under three criteria: task
model, solution model, and magnitudes used in the algorithm’s
cost function. The three classifications are generic enough to be
applied to systems including robotics and non-robotics agents.
Combining them, our system will fit: multi-task robots (MT),
single-robot tasks (SR), instantaneous assignment (IA), Cross-
schedule Dependencies (XD), and heterogeneous. However,
even combining the three taxonomies there are aspects not
covered or not clearly discussed, although addressed in our
system. For example, it is unclear how the system behaviour in
dynamic environments is modelled. Moreover, there are types
of constraints not considered, such as connection deadlines,
mobility interferences, network coverage, etc.

Lerman et al. [5] propose a dynamic task assignment mech-
anism based on using local observations of the environment.
The proposal is well modelled mathematically but it does not
account for system heterogeneity. In [6], a methodology for
task allocation in heterogeneous systems is presented. The
allocation algorithm is based on the turnaround time task-
robot. However, it does not take into account the resource
availability in the robots. Luo et al. [7] [8] address task assign-
ment subject to restrictions such as task deadlines and robots’
resource budget. In the first case, tasks are independent and
have identical duration, which solves a subset of our problem.
In the second case, the budget is related only to energy, which
does not represent all the robot’s capacities. In addition, both
solutions assume perfect connections between robots. Finally,
[9] proposes two distributed market-based algorithms where N
tasks must be assigned to N identical robots, and where each
robot can perform only one task. Again, this solution partially
covers our approach.

Regarding distributed systems, Macarthur et al. [10] in-
troduce a distributed algorithm for multi-agent task allocation
problems. The dynamic environment only assumes a variable
set of tasks and agents over time, but does not consider
the variable resource availability given a fixed number of
task/agents or that restrictions between tasks can also change
over time. Page et al. [11] developed a task scheduler for
dynamic heterogeneous systems based on a multi-heuristic
genetic algorithm. The weak points are that tasks are inde-
pendent and the scheduler does not take advantage of the
capacities of the target system. [12] also proposes a heuristic-
based genetic algorithm for task scheduling where there is
a processor in charge of assigning the tasks. However, the
solution assumes a homogeneous multiprocessor system and
negligible communication costs among tasks. Finally, in [13]
a hybrid heuristic-genetic scheduling algorithm for heteroge-
neous multi-core systems is proposed. The solution assumes
a fully-connected system, which is less restrictive than our
proposal. Moreover, task allocation is static.

d ~
4 ~
< ~
. s [} ~
i h “a
Scale 1 Scale 2 Scale K
h
pL,p3 p2 |... /
system Decision cost/benefit
constraints system tradeoffs
b
W ple pza ey PN
App
(N processes)

Fig. 1. AnyScale computing concept. Dynamic scenario where each scale
represents a unique machine/device with different capabilities.

III. OUR APPROACH

In this section, we first present the AnyScale computing
concept, and the task allocation problem that it leads to.
We then describe the static (offline) analysis required for
characterising the ROS system on which the concept can be
applied. Finally, we propose a dynamic (online) algorithm as
a general solution to the task allocation problem.

A. AnyScale computing concept

The general system we want to analyse is composed of
N processes and K scales, where the N processes together
define the application of interest, and each scale corresponds
to a unique machine/device that is able to run processes. We
assume the following: i) each scale has different capabilities
(e.g. CPU clock rate, memory); ii) a changing environment.

Given this system, it is quite apparent that depending on
the specific mapping of processes to scales considered, the
behaviour of the system may vary. Our overarching goal is to
leverage the available scales in order to optimise some specific
system behaviour. This will imply to dynamically discover the
set of mappings that is able to meet that expected behaviour.
Figure 1 shows a high-level diagram representing the AnyScale
concept, where the two key points to understand are:

e Any application could be programmed in a scale-
agnostic manner; in other words, the programmer
need not take into consideration neither the number
of scales available, nor their capabilities.

e During runtime, however, a decision system dynam-
ically provides scale-specific assignments for every
process with the objective of optimising the system
behaviour in a specific way.

Therefore, the AnyScale computing concept applied to
ROS basically consists of defining and implementing a deci-
sion system that is able to dynamically allocate ROS nodes to
the available scales, with the objective of customising/adapting
the behaviour of applications. This customisation/adaptation
must satisfy the system constraints and will be based on a
cost function that may be optimised for (a combination of)
different goals such as performance, accuracy, etc.

B. System characterisation

The purpose of performing an offline characterisation of the
ROS system we want to work with is twofold. First, to define
the parameters representing the system and its interaction with
the environment. Since we are considering a changing envi-
ronment, we must characterise static and dynamic parameters.
Second, based on these parameters, to concretely define the
decision problem, specifying the cost function and the system
constraints. Note that this offline analysis will allow to prune
mappings that always violate some constraint(s), that is, those
that are not able to meet the expected system behaviour.

1) Static parameters:

Hardware: The two hardware components in our system
are the K scales and the communication network. We consider
one of the scales as the master scale, as it is the scale in which
the decision system will run. The main parameters defining
each scale are the maximum CPU clock rate and the total
memory. The network is defined by its technology, which
determines the maximum bandwidth available.

Application: The processes (nodes) that compose a ROS
application and their underlying communication flows define
the computation graph (Figure 2 shows an example). While this
graph gives an overview of the system, we also need to know
what the requirements for both nodes and connection between
nodes are, in order to make the system work as expected.

Subscribe
Node2

Publish

Publish

Fig. 2. Example of ROS computation graph (publisher/subscriber model).

Node requirements: Using common Linux monitoring util-
ities such as top, we can characterise the average percentage
of CPU required for each node at each scale (CPU _usage,,;,)
throughout the application execution. Note that the memory
required for each node will be the same for all scales.

Connection requirements: In ROS, messages are published
to topics at specific frequencies. It is worth noting that these
frequencies impose restrictions, because indirectly they set a
deadline that connections using the associated topics must
satisfy in order to have a system working as expected. If for
some reason, an established frequency cannot be guaranteed,
the system might behave wrongly or even become faulty.

Nevertheless, some connections are more tolerant to occa-
sional brief periods of network outage, without significantly
impacting the overall system behaviour. We model the con-
nection tolerance A as the period of time during which the
associated frequency could be lower than the initially estab-
lished threshold value (note that during this grace period, the
frequency can even degrade to 0, in which case the subscriber
does not receive any data). Thus, every connection between
two nodes is characterised by its associated topic (defines the
message type), the threshold frequency, and its tolerance.

Finally, note that establishing a reasonable threshold fre-
quency to every connection requires offline analysis. Basically,
we initialise the frequency values for every connection to zero;
then, we iteratively increment each value and check if the
system behaves correctly or not. When the system starts to
behave correctly, the corresponding threshold is apparent.

Critical nodes: Based on the previous definition for con-
nections, if a node participates in at least one connection whose
associated A = 0, we define it as a critical node. Examples
are nodes that provide as output the data read from sensors
as input, or nodes that need to permanently be connected
to robot actuators. We establish that critical nodes have to
be pinned to the master scale (cannot be migrated) because
is quite likely that the network connection cannot guarantee
a constant threshold frequency. Therefore, the critical and
migratable nodes can be easily derived from the previous static
analysis for connections. Moreover, as the list of critical nodes
is fixed, we may prune many mappings permanently.

2) Dynamic parameters: These represent the value of some
(a subset) static parameters at a given moment in time —
more specifically: the current percentage of CPU usage for
each scale, the current network state and available bandwidth,
and the currently observed frequency values for each of the
network connections and their observed tolerances. Again, we
can leverage Linux monitoring utilities to know their values.

3) Cost function: It provides the cost/benefit derived from
each static mapping. As an example, we instantiate the cost
function to maximise the system performance — note that it
can be application specific, e.g. the total time to complete one
full cycle of a sensory-motion update routine. In our general
case, the performance for a static mapping is determined by
the CPU usage of each node at its allocated scale and the gain
factor o, of each scale (note that a more powerful scale will
imply a greater ay, and values may differ for every system):

N K

Perf ., = Z Z CPU _usage,,;, * o, (1)

n=1 k=1

Therefore, the overall (dynamic) performance is just the
sum of the values for every mapping selected by the decision
system multiplied by the time each mapping was set (the total
time should be fixed), and our objective is to maximise it:

M
max Z Tinap * Perf ., (2)

map=1

4) System constraints: The system is said to be correct if
it satisfies the following three types of constraints: i) the fre-
quency/tolerance restrictions imposed by the node connections;
ii) the capacity restriction imposed by the current percentage of
CPU usage of each scale; iii) the capacity restriction imposed
by the current network bandwidth available. Every time any
of these constraints is not satisfied, actions must be taken to
revert to a correct system again — e.g. migrating back to the
master scale nodes currently running in remote scales.

C. Dynamic allocation algorithm

Now we describe how to use the previous characterisa-
tion parameters in order to take dynamic decisions trying to

Algorithm 1: Dynamic node allocation

Input: scalei, ..., scalex, nodey, ..., noden
while App_running do
if requiredpw > networkpw || fregq, A !satisfied then
do
select_right (node;, scale;) from migrated_list
migrate_back node;
update cost_function
while requiredpw > networkpw;
else
migrated = false
node_list = sort migratable_nodes by CPU_usage
scale_list = sort remote_scales by CPU_freq
select_first node; from node_list
select_first scale; from scale_list

while node; # 0 && migrated = false do
if node; !migrated_back in T &&
requiredpw < networkpw then
if scale; can_allocate node; then
migrated_list < (node;, scale;)
migrated = true
update cost_function
else
select_next scale; from scales_list
if scale; = () then
select_first scale; from scale_list
select_next node; from nodes_list

else

| _select_next node; from nodes_list
sleep (time)

maximise the system performance while always satisfying the
system constraints. Note that we need to set an initial system
configuration. In our case, this corresponds to running all N
nodes in the master scale, which satisfies the system constraints
trivially but is the worst-case scenario for performance.

Our decision system uses a simple heuristic that attempts
to allocate the most CPU intensive nodes to the most powerful
scales. It is worth noting that this heuristic provides optimal
performance values when the number of possible mappings
is small (e.g. the case study). However, for the general case,
where the number of possible mappings can be huge, it
provides values close to the optimal (we estimated by sim-
ulation an average deviation of 10-15%). We leave improving
the general case for future work. Algorithm 1 shows the
dynamic allocation process. Basically, the iterative procedure
sorts the candidate nodes and the remote scales based on CPU
parameters. Then, it migrates the selected node to the selected
scale if the corresponding constraints are satisfied. In case of
violating some system constraint(s), the corresponding node(s)
running remotely must be migrated back to the master scale.

IV. TEST-BED SCENARIO

We evaluate the AnyScale concept on a test-bed running
a real robotics application. The test-bed and application are
characterised as follows. The test-bed is composed of two
scales and eleven ROS nodes. The master scale corresponds to
the KUKA YouBot [14] mobile robot, which includes an on-
board computer (Intel Atom, 2 cores 1.6 GHz, 2GB RAM), and
the remote scale corresponds to a laptop computer (Intel Core
i7, 4 cores 2.8 GHz, 4GB RAM). Both scales communicate
through a dedicated WiFi-based network (802.11g, 54 Mbps).

p Laser User Odometer Camera
data . data . data data
Initial pose Initial pose
AMCL
estimation | AMCL pose Odom pose
\ Filter pose
Floor map
Floor map Goal pose AR
recognition
Velocity commands
Fig. 3. System flow diagram: ROS nodes (providing data [grey], critical

[red], and migratable [green]) and connections.

Figure 3 shows the flow diagram of the system (the
ROS computation graph is derived from it), where we can
see the nodes and their connections. Data inputs come from
three sensors (laser from Hokuyo URG-04LX, odometry from
wheels encoders, and images from Asus Xtion Pro camera)
and also from a human user (initial robot pose). For the sake
of clarity, connections to/from the decision subsystem are not
shown because it is connected to all the other nodes.

The ROS application consists of navigating from point A
to point B in a floor of an office building. Performance is
modelled as the inverse of total time required to complete that
path. The robot has to recognise some intermediate goals with
the camera. Moreover, it uses a floor map to get localised and
safely navigate along the path. Next we describe the three key
nodes in the system: localisation, navigation, and decision.

A. Localisation and Navigation

The localisation node is based on the Extended Kalman
Filter (EKF) [15], which performs sensory fusion in order
to generate more accurate poses. Input data to the EKF
come from the odometry node (which uses dead reckoning
to estimate the pose) and from the Adaptive Monte Carlo
Localisation (AMCL) [16] node (which uses a laser-based
particle filter to estimate the pose). Both systems perform robot
tracking given a previously known position. The odometry
node provides poses at a higher ratio than AMCL, but it
accumulates a drift error over time. Thus, the sensory fusion
consists of correcting the accumulated drift generated by the
odometry node every time an AMCL pose is generated.

The navigation node receives as inputs the floor map, the
current pose from the EKF node, and the goal pose from the
AR recognition node. Navigation is internally divided into a
global and a local planner. The global planner is based on the
Dijkstra algorithm [17], which computes the shortest path to
the goal. The local planner is based on the Dynamic Window
Approach (DWA) [18], which generates velocity commands
to the robot motors given a global plan and a costmap (a grid
map where each cell has an associated cost). It also uses data
from laser to avoid obstacles not present in the map.

B. Decision system

In order to take decisions, we need the information gathered
in the static analysis. Table I shows the threshold frequencies
and tolerances obtained. Note that both User and Map_server
nodes are not considered because only provide data once. As
we see, there are minimum and optimal values for frequencies.
The robot is able to satisfy only the minimum values. Hence, as
the laptop can satisfy the optimal frequencies, the performance
derived from running nodes on it should improve. As an
example, the AMCL frequency is suboptimal in the robot
(2Hz), and most probably will affect the navigation behaviour.
Working at its optimal value (5Hz), the robot can navigate
faster, thus improving performance significantly.

TABLE 1. CONNECTIONS REQUIREMENTS
Connection Freq_min (Hz) Freq_opt (Hz) A (s)
Laser-AMCL 5 10 2

Laser-Navigation 2 10 0
Odometer-Odometry 10 40 0
Camera-AR 1 30 1
AMCL-EKF 2 5 2
Odometry-EKF 5 10 0
EKF-Navigation 2 5 0
AR-Navigation 1 30 1

Derived from Table I and Figure 3 we conclude that only
the AMCL and AR nodes are candidates for migration, the rest
are critical. Table II characterises the migratable nodes (note
that the decision system will select AMCL first).

TABLE II. MIGRATABLE NODES CHARACTERISTICS
Node Executed CPU usage | Network BW | Perf. improv.
AMCL Always 50% 200 Kb/s Significant
AR Sometimes 33% 6 Mb/s Small

V. EVALUATION

In this section we present the results of applying our
decision system to the test-bed scenario!. In order to validate
the allocation algorithm, we also provide simulation results.

Prior to evaluate the system performance, we analysed the
robot speed. We checked that the robot can navigate at 0.4
m/s only when the AMCL node runs in the laptop, and at 0.2
m/s in any other case. At 0.4 m/s, the AMCL node needs to
receive data at the optimal value to ensure correctness (Table
I), otherwise it becomes potentially dangerous. Figure 4 shows
the difference in the path shape after completing the first corner
when we set the robot speed to 0.4 m/s and the AMCL node
runs on the robot (right), and on the laptop (left).

In order to evaluate the performance, we run four inde-
pendent tests. The robot had to complete a square path of
115 meters between points A and B and also to detect 4 AR
markers located in the middle of each side. We placed the
laptop in the lab and we set the WiFi network from an access
point located on the robot tray. Assuming this configuration,
the laptop will not always receive a perfect WiFi signal while
the robot navigates along the path (due to partial/total coverage
loss, network interferences, objects, walls, and so on).

'A video related to the experiments can be found online at
https://youtu.be/HDPkAjagFzo

(@) (b)

Fig. 4. Path shape. AMCL running on Laptop (a), and on Robot (b).

Figure 5 shows the floor map and the resulting robot path
for Test 1. As can be seen, the path is composed of different
colors, where each one represents a different configuration.
Green means only AMCL node running on the laptop. Red,
AMCL and AR nodes running on the robot. Blue, AMCL and
AR nodes running on the laptop. And Yellow (it did not occur
in Test 1), only AR node running on the laptop. Notice that
navigation is counterclockwise.

=
i} ot -ﬂ___

"""""" CTE LT

Fig. 5. Test 1: Robot path configurations (AMCL on Laptop [green],
AMCL/AR on Robot [red], AMCL/AR on Laptop [blue]).

Figure 6 shows (left Y-axis) the performance results for the
four tests and the baseline configuration (no migration takes
place). As can be seen, the total execution time to complete the
path is reduced about 28% on average, which is a significant
improvement. The figure also shows (right Y-axis) the average
of the angular velocity for every test. This velocity is directly
affected by the value of the dynamic parameters, and gives an
idea of the quality of the path shape (Figure 4). We checked
that 4 degrees/s is the limit from which the system behaves
incorrectly. Differences across the four test are due to changes
in the dynamic environment (e.g. presence of people/objects,
doors open/closed, light, etc). Anyway, the average value for
the four tests is just 5% higher than the baseline configuration,
which demonstrates that when the AMCL runs on the laptop,
the robot can navigate at 0.4 m/s safely.

Finally, we validate our allocation algorithm through simu-
lation in MATLAB. We model a generalisation of our test-bed
(1 robot, K-1 remote scales, and N nodes) considering a larger
number of nodes and remote scales. The network availability
is modelled as a random value between 45-65% of the total
path length (derived from the results for the test-bed).

Figure 7 shows the results, where N is the total number
of nodes (without considering nodes providing input data),
M is the number of migratable nodes, and K is the number
of scales. We consider three system types (N = {6, 12, 18}

Performance -B-Path shape

120% 33

32

/\ *
\/. ”
29

2,8

100% +—

80% +— A
60% +— %

40%

Execution time

2,7

Angular velocity (deg/s)

0% — 0 =
26

0% T T T T T 25
Robot Testl Test2 Test3 Test4d Avg

Fig. 6. Test-bed: Performance (left axis) and path shape (right axis).

nodes) with a fixed number of migratable nodes (N = {2, 6,
9} respectively). For every system type, the next configuration
includes one scale more (e.g. 6Nx2Mx2K and 6Nx2Mx3K),
and this new scale is always powerful than the previous one.
The 6Nx2Mx2K configuration represents our test-bed. The
Y-axis shows the performance improvement with respect to
the corresponding baseline configuration (no migration takes
place), where each value is the average of three independent
runs. Moreover, for every system configuration we also rep-
resent the improvement achieved by the best case scenario
(network always available with maximum bandwidth).

From Figure 7, the first observation is that the improvement
for the 6Nx2Mx2K system matches with the value obtained
for the real test-bed (28%). Second, we see that the trend is
maintained for the three system types. Therefore, these results
validate our node allocation algorithm, which improves the
system performance by 39% on average (50% in the best case).

B Random bandwidth Best case

Performance improvement

Fig. 7. Simulation results (N=total nodes, M=migratable nodes, K=scales).

VI. CONCLUSION AND FUTURE WORK

In this paper we have addressed how to apply the AnyScale
computing concept to general ROS-based systems, solving the
associated node allocation problem. As a proof of concept, we
have implemented a test-bed scenario and a real application.
Comparing with a system where no migration is possible, the
proposed test-bed improves the global performance by 28%
on average. As future work, we plan: to propose improved
heuristics to solve the general case; to analyse more complex
systems (e.g. adding real time) and evaluate them in real test-
beds and with more complete/accurate simulation models.

ACKNOWLEDGMENT

This work is supported by the AnyScale Applications
project under the EPSRC grant EP/L000725/1, and also by
the ”Ayudas de Movilidad del Personal Investigador en For-
macién” program, funded by University of Alcala.

REFERENCES

[1] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source
robot operating system. In /CRA Workshop on Open Source Software,
20009.

[2] Brian P. Gerkey and Maja J. Matari¢. A formal analysis and taxonomy
of task allocation in multi-robot systems. The International Journal of
Robotics Research, 23(9):939-954, 2004.

[3] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. A com-
prehensive taxonomy for multi-robot task allocation. The International
Journal of Robotics Research, 32(12):1495-1512, 2013.

[4] Xiao Jia and M.Q.-H. Meng. A survey and analysis of task allocation
algorithms in multi-robot systems. In Robotics and Biomimetics
(ROBIO), IEEE Int. Conf. on, pages 2280-2285, Dec 2013.

[5] Kristina Lerman, Chris Jones, Aram Galstyan, and Maja J Mataric.
Analysis of dynamic task allocation in multi-robot systems. The
International Journal of Robotics Research, 25(3):225-241, 2006.

[6] Thareswari Nagarajan and Asokan Thondiyath. Heuristic based task al-
location algorithm for multiple robots using agents. 2013. International
Conference on Design and Manufacturing (IConDM).

[7] Lingzhi Luo, N. Chakraborty, and K. Sycara. Distributed algorithm
design for multi-robot task assignment with deadlines for tasks. In
Robotics and Automation (ICRA), 2013 IEEE International Conference
on, pages 3007-3013, May 2013.

[8] Lingzhi Luo, N. Chakraborty, and K. Sycara. Distributed algorithm de-
sign for multi-robot generalized task assignment problem. In Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pages 4765-4771, Nov 2013.

[9] Sahar Trigui, Anis Koubaa, Omar Cheikhrouhou, Habib Youssef, Ha-
chemi Bennaceur, Mohamed-Foued Sriti, and Yasir Javed. A dis-
tributed market-based algorithm for the multi-robot assignment prob-
lem. 32(0):1108 — 1114, 2014. The Sth Int. Conf. on Ambient Systems,
Networks and Technologies (ANT), the 4th Int. Conf. on Sustainable
Energy Information Technology (SEIT).

[10] Kathryn Macarthur, Ruben Stranders, Sarvapali Ramchurn, and Nick
Jennings. A distributed anytime algorithm for dynamic task allocation
in multi-agent systems. In Twenty-Fifth Conference on Artificial
Intelligence (AAAI), pages 701-706, August 2011.

[11] Andrew J. Page, Thomas M. Keane, and Thomas J. Naughton. Multi-
heuristic dynamic task allocation using genetic algorithms in a heteroge-
neous distributed system. J. Parallel Distrib. Comput., 70(7):758-766,
July 2010.

[12] Probir Roy, Md. Mejbah Ul Alam, and Nishita Das. Heuristic based
task scheduling in multiprocessor systems with genetic algorithm by
choosing the eligible processor. CoRR, abs/1208.1922, 2012.

[13] Chuan Wang, Jianhua Gu, Yunlan Wang, and Tianhai Zhao. A hybrid
heuristic-genetic algorithm for task scheduling in heterogeneous multi-
core system. In [2th Int. Conf. on Algorithms and Architectures for
Farallel Processing - Volume Part I, ICA3PP’12, pages 153-170, 2012.

[14] R. Bischoff, U. Huggenberger, and E. Prassler. Kuka youbot - a mobile
manipulator for research and education. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 1-4, May 2011.

[15] S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear
estimation. Proceedings of the IEEE, 92(3):401-422, Mar 2004.

[16] Patrick Pfaff, Wolfram Burgard, and Dieter Fox. Robust monte-carlo
localization using adaptive likelihood models. In EUROS, pages 181—
194, 2006.

[17] Edsger. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269-271, 1959.

[18] Marija Seder and Ivan Petrovic. Dynamic window based approach to

mobile robot motion control in the presence of moving obstacles. In
ICRA, pages 1986-1991. IEEE, 2007.

