Accelerating Deep Convolutional Neural Networks on Low Power Embedded Devices

José Cano^{1,2}, Jack Turner², Valentin Radu², and Michael O'Boyle²

¹School of Computing Science, University of Glasgow, UK - ²School of Informatics, University of Edinburgh, UK

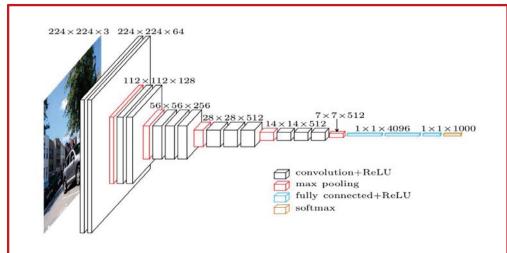
Deep Neural Networks

- Complex architecture
 - Transformations
 - Learnable parameters
- Phases
 - Training: dataset
 - Inference: prediction
- · Widely adopted
 - Development of GPUs
 - Evolution of smartphones

- Feed forward: numerical and linguistic data analysis
- Recurrent: machine translation, natural language processing
- Convolutional: image classification, speech recognition

Accelerating VGG-16

- Objective: reduce inference time
 - Pre-trained model (ImageNet dataset)
 - We focus on the convolutional layers
- Initial code: serial version in C
- Contribution: parallel versions


- **Optimisations**
 - Threads, work-groups, vectorisation (SIMD), CLBlast Library

90%

Convolutional Layers

Fully Connected Layers

VGG-16 Convolutional Neural Network

- Developed for ILSVRC 2014, top-1 accuracy of 70.5%
- 13 convolutional layers, 3 fully connected layers
- 3x3 kernels, 2x2 MAX pooling

Hardware platforms

Odroid-XU4

Mali T628 MP6 GPU: 6 cores @ 600 MHz

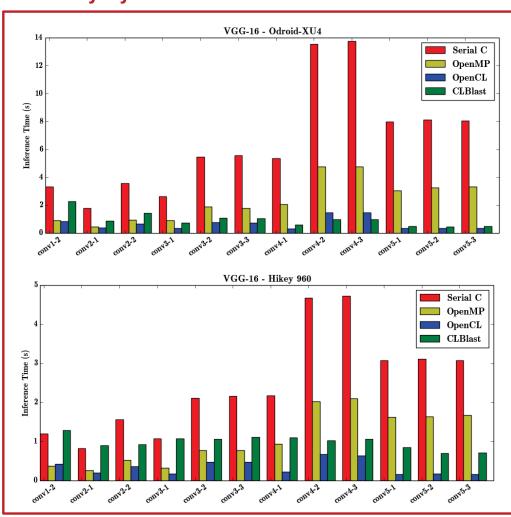
- 4 Cortex A15 @ 2.0 GHz

- 4 Cortex A7 @ 1.4 GHz

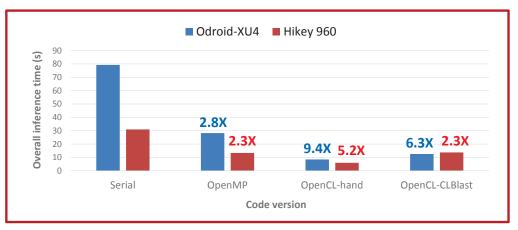
arm

arm

- 2GB shared LPDDR3 RAM @ 750 MHz
- Hikey 960



big.LITTLE CPU


• big.LITTLE CPU

- 4 Cortex A73 @ 2.3 GHz
- 4 Cortex A53 @ 1.8 GHz
- Mali G71 MP8 GPU: 8 cores @ 900 MHz
- 3GB shared LPDDR4 SDRAM @ 1866MHz

Results by layer

Overall results

Conclusions

- Important to understand the architecture of the target platform
 - E.g. number/type of cores, memory type/size, number of SIMD lines
- · Transformations of the input matrices are important
 - Flatten by row vs by depth
- Naive parameter selection can lead to poor results
 - E.g. work-group size
- Auto-tuning is not always the best solution
 - CLBlast provides less improvement than hand-tuned for OpenCL

