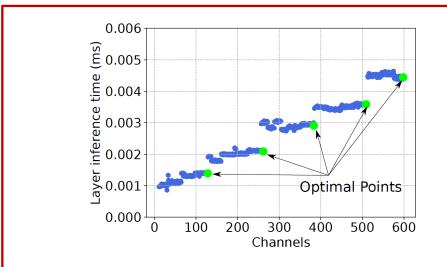
Staircase:

Distilling with Performance Enhanced Students for Hardware

Jack Turner¹, Elliot J. Crowley ¹, Valentin Radu¹, <u>José Cano</u>², Amos Storkey¹, Michael O'Boyle¹

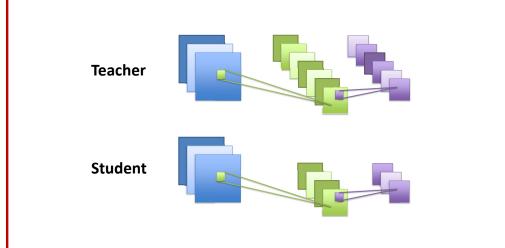
¹School of Informatics, University of Edinburgh, UK - ²School of Computing Science, University of Glasgow, UK

Motivation



- Inference time for a layer of ResNet-34 vs #channels on Intel Core i7
- Staircase pattern: For a given inference time, the green points maximise the network's capacity (i.e. we get extra channels for no increase in time)

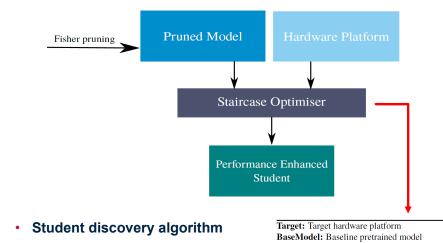
Model distillation



- Idea: propose a novel channel pruning approach that uses hardware behaviour to reshape networks
- A small student network is trained both on the data and outputs of a larger pre-trained teacher network

Discovery and optimisation pipeline (1)

• Step 1: Using channel saliency and empirical latency, design student



- Starting: base model, a Fisher-pruned reduction of the base model, and a target hardware platform
- We iterate over all prunable layers in the base model and construct a set of optimal points
- We then adapt the pruned layer widths to their nearest optimal point and return the resulting architecture

opt_points = get_outliers(times)

student.append(new_layer)

new_layer = Conv(base_layer.in_channels,

nearest_neighbour(fisher_width, opt_points))

Discovery and optimisation pipeline (2)

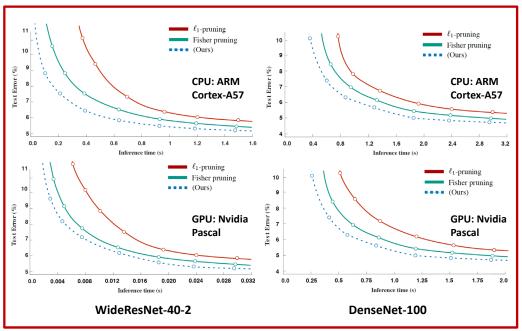
• Step 2: Train via attention transfer

Input batch
(Teacher)

Performance Enhanced
Student

• Example: block diagram of a WideResNet (attention maps:1, 2, 3)

Results: CIFAR-10



Results: ImageNet

group 1

GPU: Nvidia Pascal

Network	Params	MACs	Top-1 Err	Top-5 Err	Speed	MACs/s
Baseline ResNet-34	21.3M	4.12G	21.84	5.71	0.122s	33.77G
Fisher-pruned ResNet-34	5.3M	1.44G	43.43	18.87	0.038s	37.89G
Our ResNet-34	6.8M	1.58G	31.29	11.16	0.040s	39.50G

group 2

group 3

Conclusions

- We have described a simple method for discovering performance enhanced reductions of baseline, large neural networks
- We have compared our technique to common pruning approaches, and demonstrated its superiority on both the CIFAR-10 and ImageNet datasets for popular networks and hardware platforms

