
Optimising Convolutional Neural Networks
Inference on Low-Powered GPUs

Simon Rovder1, José Cano2, Michael O’Boyle1

1 School of Informatics, University of Edinburgh, UK
2 School of Computing Science, University of Glasgow, UK

Abstract. In this paper we present effective optimisation techniques
for accelerating convolutional neural networks inference on low-powered
heterogeneous devices with OpenCL. Using LeNet and VGG-16 as test
networks, we implement a custom neural network system in OpenCL and
optimise it to minimise their inference times. Our baseline system shows
a speedup of 17x for LeNet. We also outline two methods for fast con-
volution: an iterative vectorised approach and a Morton GEMM based
approach. The two approaches demonstrate VGG-16 inference speeds up
to 3x faster than current state-of-the-art systems and outperform other
custom neural network systems by speedup factors of up to 1.82x.

1 Introduction

Neural networks are currently at the forefront of the field of machine learn-
ing. They have shown incredible versatility across a large spectrum of problems
ranging from image and sound recognition all the way to natural language pro-
cessing [4,23,22]. This makes them a desirable tool for all platforms and devices.
The primary driving force behind recent neural network research is the progress
in development of Graphics Processing Units (GPUs). Until recently, neural net-
works were too computationally complex to be trained or executed in reasonable
amounts of time. GPUs have enabled fast training on affordable hardware and
thus brought neural networks into the research spotlight.

At the same time, the rapidly growing popularity of smartphones has at-
tracted GPUs to the world of battery powered devices, opening the doors to
utilising neural networks on these devices as well. The main issue faced when at-
tempting to execute neural networks on these low-powered GPUs is a noticeable
lack of software support. Considerable amounts of research and development
have been dedicated to training complex neural network models on desktop
GPUs and CPUs, resulting in numerous neural network frameworks like Tensor-
Flow [1], Caffe [13], Torch [8] or Theano [27]. These frameworks, however, are
either not supported on the low-powered devices or are not optimised for the
architectural differences between desktop GPUs and low-powered GPUs.

In this paper, we address these issues by investigating recent research into
neural network execution on low-powered GPUs, and by benchmarking state-of-
the art solutions on the Mali T-628 GPU. We take our research a step further by



implementing custom OpenCL kernels for neural network execution to show how
exploiting detailed knowledge of the device architecture (e.g. number of GPU
cores, cache line size) can be used to outperform state-of-the-art systems.

The main goal of this work is to evaluate CLBlast [21] (an automatically-
tuned deep-learning-enabled library) on the Mali T-628 GPU, investigate its
shortcomings and limitations, and attempt to improve upon its performance by
hand-crafting kernels for the task. Our hypothesis is that the CLBlast automatic
tuning process does not find optimal configurations for the device because it
cannot exploit detailed knowledge about the hardware architecture.

To compare CLBlast with our custom-made system, we benchmark the two
systems on executing LeNet [18] (one of the very first convolutional models
ever published) and VGG-16 [25] (one of the state-of-the-art models for image
classification). These two models were chosen to allow us to benchmark the
systems against two scenarios: propagating a batch of 100 inputs over a small
network (LeNet), and propagating a single input over a large network (VGG-16).
The two scenarios are similarly challenging from a computational perspective,
yet architecturally differ enough to potentially require different optimisations.

The contributions of this work to neural network execution on low-powered
GPUs include:

– Designing a custom system for executing neural networks. We implement
the system by hand crafting OpenCL kernels and optimising them for the
Mali T-628 GPU. The source code is available online3.

– Proposing optimisations to outperform other state-of-the-art systems. We
demonstrate a 17x speed increase over LeNet with CLBlast, a 3x speed
increase over VGG-16 with CLBlast, and a 1.82x speed increase over [19].

2 Background

2.1 OpenCL

OpenCL [26] is a framework for writing and executing code in parallel across
one or more heterogeneous platforms, and in this work we use it to offload the
computationally expensive neural network operations onto the Mali T-628 GPU.
The OpenCL paradigm is designed around splitting a program into:

– Host-code: The part of the program intended to run on the CPU. This
part can be written in a complex high-level object oriented language (several
OpenCL bindings are available4) and it runs under the same conditions as
any other program we run in every-day computer use.

– Device-code: The part of the program intended to run in parallel on the
GPU. OpenCL defines its own programming language for device-code (based
on C-99) and is compiled by OpenCL at runtime for individual devices. The
device-code is designed to perform one particular task very quickly.

3 https://bitbucket.org/SimonRovder/t628nn
4 E.g. Java [12], C++ [11], Python [16] and Haskell [10]. We use Python and C++.



The OpenCL paradigm is based on taking loop-based algorithms and par-
allelising their execution across a subset of the loops. It is safe parallelise any
subset of the loops as long as no dependency criteria are violated, which could
lead to memory race conditions. The basic OpenCL terminology is as follows:

– OpenCL Device: A device capable of executing OpenCL code.
– Compute Unit (or Core): A hardware component within an OpenCL

device capable of executing a kernel on a workgroup. An OpenCL device
will usually contain one or more compute units.

– Kernel: A single function within the device-code.
– NDRange: The term for the range of ids a kernel is mapped onto.
– Workgroup: A subset of the NDRange small enough to execute its corre-

sponding work items on a single compute unit.
– Work Item: A particular instantiation of a kernel.
– Buffer: A host-code object that references device memory.

2.2 Neural Networks

Neural networks are a machine learning model inspired by the operation of
biological neural networks. The model comprises of mathematical operations
chained together to transform input vectors into output vectors. Most common
operations include affine transformations, pooling, convolution, normalisation
and nonlinearities, the internal parameters of which are learned via Stochastic
Gradient Descent (SGD). In this work we focus on two specific networks, LeNet
and VGG-16, whose functional requirements are outlined in Table 1.

Table 1. Layer requirements of LeNet and VGG-16.

Layer LeNet VGG-16

Fully-connected 3 3

ReLU 3

Sigmoid 3

Convolutional 3 3

Max-pooling 3

Subsampling 3

LeNet This network Composed of two convolutional layers (C1 and C3) inter-
leaved with subsampling layers (S2 and S4) much like modern networks have
max-pooling. These layers are then followed by two fully-connected layers (F5
and F6). A diagram of the architecture can be seen in Figure 1.

VGG-16 There are several different network layouts published in [25], the most
commonly used one being Model C (Table 1 of their paper). This is the model
we focus on. Its architecture is visualised in Figure 2, which includes thirteen
convolutional layers and three fully-connected layers.



Fig. 1. LeNet architecture from [18].

Fig. 2. VGG-16 architecture from [25].

2.3 Mali-T628 GPU

In this work we use the Odroid XU3 board that includes the low power ARM
Mali-T628 GPU and 2Gbyte of LPDDR3 RAM. The compute units of the GPU
are accessible via two separate devices (i.e. 4+2 compute units), and a relevant
metric to it is the GFLOPS (amount of billions of floating point operations
performed per second) limit, which is 17 GFLOPS per Compute Unit [15].

3 Related Work

3.1 Deep Learning Frameworks

TensorFlow [1] is one of the most popular neural network and machine learning
frameworks used today. It provides an interface for expressing machine learning
algorithms in terms of Tensor operations and maps these operations onto opti-
mised GPU kernels. TensorFlow often makes use of existing highly optimised ker-
nels which are parts of other libraries, including cuBLAS [9], cuda-convnet [17]



and cuDNN [7]. These libraries are optimised for the NVIDIA CUDA architec-
ture and optimisations that improve performance on NVIDIA GPUs often have
a negative impact on the Mali architecture. The Mali developer guide recom-
mends removing some of the optimisations tailored to other architectures [3].
Other widely used frameworks are Caffe [13], Torch [8] and Theano [27].

3.2 CLBlast

On of the most recent general-purpose machine-learning-enabled library op-
timised for the Mali T-628 GPU was released in May 2017 under the name
CLBlast [21]. Inspired by the clBLAS library [2], CLBlast is an automatically
tuned BLAS (Basic Linear Algebra Subroutines) library, which implements all
BLAS operations as well as batched versions of some of them. Apart from BLAS
operations, CLBlast also provides us with an im2col subroutine, which can be
used to perform convolution. With this functionality, CLBlast can be used for
implementing a deep neural network execution system.

There are several reasons why CLBlast is very relevant to our research.
Firstly, it tunes itself to the device it runs on and the Mali T-628 is one of the
40 devices used to test the library during its creation [21]. Secondly, it is capable
of running matrix multiplication on the Mali T-628 GPU at 8 GFLOPS [21],
which is extremely fast compared to other research [14] if it is accomplished
without rearranging matrices in memory. These facts make CLBlast as close to
state-of-the-art as we can get with our device. A disadvantage of using CLBlast
is its lack of pooling layer support and activation function support, which are
important and popular neural network features.

3.3 Optimising GPU kernels

Memory access patterns are the main deciding factor of how fast a GPU kernel
will be, and as such, have been a target of many studies [5] [20] [24]. It is so
crucial to optimise memory patterns, that APIs were designed to assist program-
mers in designing kernels with optimal memory access patterns [6]. However,
most of this research focuses on CUDA architectures and is not applicable to
OpenCL low-powered GPUs like the Mali T-628. It is worth noting, however,
that improvements in kernel performance in these studies have been gained by
remapping elements in memory, in order to have a memory access pattern better
suited for the particular hardware optimisations. In our work we shall make use
of the same general optimisation techniques, yet we shall target them directly
at the hardware optimisations of the Mali T-628 GPU.

Similar research to ours was recently done in [19], where the primary issue
is its focus on convolutional layers only. Research by Nocentino and Rhodes
[20] into using Z-Morton memory layouts to provide faster access to individual
regions of 2-dimensional data has provided the inspiration for using variants of
these layouts for optimising matrix multiplication in Section 5.2 of this work.
Finally, in [29] it is performed an across-stack investigation of different techniques
to determine their impact on inference and runtime performance.



4 Executing LeNet with Custom System

The first step is to create a very simple baseline system that can execute LeNet,
which we can then build on top of. According to Table 1, we implement the
required four layers in the following three single kernels:

– Fully-Connected Layers: A baseline matrix multiplication kernel amended
with bias addition and sigmoid activation.

– Convolutional Layers: A loop-based variant of convolution that avoids
any memory blowup introduced by alternative methods such as im2col.

– Subsampling Layers: A separate kernel that avoids having to simulate
subsampling e.g. using convolution, which adds redundant computation.

Combining the three custom kernel implementations we can fully execute
LeNet on the Mali T-628 GPU. To compare the performance against CLBlast,
we forward propagate a batch of 100 input images and measure the run time. We
timed both kernel time and total wall time5. Timing both is important because
CLBlast does not give us access to the underlying OpenCL Event objects of
the executed kernels, meaning the measurements for CLBlast are wall time.
Comparing CLBlast’s wall time to our kernel time would not be a representative
comparison. The reason for timing kernel time as well is to give us insight into
the kernel initialisation overhead. The resulting times can be seen in Figure 3
and Table 2. There are a number of observations we may take from these results.

First of all, we now have concrete measurements of kernel initialisation times.
We can find this value by subtracting the kernel time from the wall time, which
gives us the infrastructural overhead of executing the GPU kernel in the first
place. This overhead varies with the kernel itself yet remains between 16 and 31
milliseconds for all of them, which is substantially less than the 76 millisecond
overhead observed for CLBlast (note that we benchmarked the individual li-
brary subroutines relevant to neural networks, i.e. xCOPY, xIM2COL, xGEMM,
xGEMMBATCHED). The results from Table 2 indicate that kernel initialisation
is the primary component of our baseline’s inference time, meaning we cannot
meaningfully improve upon these results. Optimising the layer kernels would re-
sult in a reduction of kernel time, which would have insignificant impact on the
overall runtime of many of the layers. Take F6 as an example: the overall run
time of F6 is 30.15 milliseconds, 0.77 of which is kernel time.

Second, the results also indicate that for small models like LeNet even an
unoptimised basic OpenCL implementation can outperform CLBlast by a sig-
nificant margin. We discovered that the xGEMM subroutine decides whether to
perform direct or indirect multiplication based on the size of the matrices. When
multiplying an m× k matrix with a k× n matrix, if the product mnk exceeds a
certain threshold (which is called XGEMM MIN INDIRECT SIZE and is auto-
matically found during the tuning stage), the indirect approach is selected and
the matrix is re-shaped in memory, changing layouts to perform multiplication

5 Wall time being the actual amount of time the operation appeared to take.



CLBlast Our Baseline
0

200

400

600

800
Ru

n 
Ti

m
e 

[m
illi

se
co

nd
s]

C1
S2
C3
S4
F5
F6

Fig. 3. Comparison of CLBlast runtime to our baseline custom implementation runtime
at forward propagating 100 inputs through LeNet.

Table 2. Comparison of CLBlast runtime to our initial baseline implementation run-
time at forward propagating 100 inputs through LeNet (times in milliseconds).

Layer CLBlast
Our custom system

Wall Speedup
Wall time Kernel time Overhead

C1 721.14 34.81 14.49 20.32 20.72
S2 579.78 17.30 1.02 16.28 33.52
C3 681.30 60.04 40.27 19.77 11.35
S4 550.48 17.35 0.63 16.72 31.72
F5 416.53 33.90 4.20 29.70 12.29
F6 405.32 30.92 0.77 30.15 13.11

Total 3354.55 194.31 61.37 132.94 17.26

faster. We also discovered that the xGEMMBATCHED subroutine doesn’t apply
this memory optimisation at all.

We conclude that our baseline outperforms CLBlast’s inference speed by a
factor of 17, which is a significant improvement over state-of-the-art for small
models like LeNet, and we shall now move on to a larger model: VGG-16.

5 Executing VGG-16 with Custom System

Before we execute VGG-16 with our custom system we must adapt it to sup-
port the additional requirements of this more complex network (Table 1). The
first major requirement of VGG-16 is feature map size preserving convolution
(using zero padding) and ReLU activation instead of the sigmoid used with
LeNet. The second requirement is a max-pooling layer implementation. While
max-pooling layers are very straightforward to implement, we must ensure that
padding produced by the preceding convolutional layer or required by the sub-
sequent convolutional layer is properly handled.



co
nv

1-
1

co
nv

1-
2

m
p1

co
nv

2-
1

co
nv

2-
2

m
p2

co
nv

3-
1

co
nv

3-
2

co
nv

3-
3

m
p3

co
nv

4-
1

co
nv

4-
2

co
nv

4-
3

m
p4

co
nv

5-
1

co
nv

5-
2

co
nv

5-
3

m
p5 fc
1

fc
2

fc
3

0

2000

4000

6000

8000

Ru
n 

Ti
m

e 
[m

illi
se

co
nd

s] CLBlast
Our Baseline

Fig. 4. Comparison of CLBlast runtime to our baseline layer implementation run time
of forward propagating a single input through VGG-16

Using this adapted baseline to forward propagate one image over VGG-16
yields the results shown in Figure 4. As expected, our baseline does not perform
very well at executing large convolutional layers, taking a total of 44.24 seconds
to forward propagate the image (note that CLBlast needs 17.40 seconds). As
opposed to the LeNet results in Table 2, however, the VGG-16 run times are
mostly convolutional kernel time, so we may now proceed with optimising this
kernel to drive the total inference time down by meaningful amounts.

5.1 Convolution with Workgroup Optimisation and Vectorisation

We first focus on an iterative approach by configuring workgroup sizes and vec-
torising the kernels. Our goal is to avoid the im2col memory blowup and ensure
maximum overlap across the data used by all work items across all work groups
executing together at any given point in time. This can be done by optimising
memory layouts and specifying workgroup sizes. By specifying workgroup sizes,
OpenCL can be forced to execute chunks of the NDRange in a particular order.
The memory layouts of data can then be modified to achieve the desired data
overlap under the forced chunk ordering. We found that the NHWC memory lay-
out (Number of inputs, Height, Width, Channels) and a workgroup size of (1, 4,
4) provides the best performance results, reducing the time for the convolutional
layers from 41.81 to 20.83 seconds. Note that computing a tightly packed cube
of values in the convolution output will yield maximum data overlap across the
work items required to compute that cube of output values. Since there are four
workgroups executing in parallel on the GPU, they must compute the tightly
packed cube of outputs together, generating a cube of 4x4x4 values.

However, the Mali T-628 GPUs primary strength lies in its SIMD instruc-
tions, specifically with the OpenCL dot function which executes on dedicated
hardware. This means that we can perform the dot products concurrently with
any other regular floating point multiplication, thus fully utilising the GPU
hardware. Due to the NHWC memory layout, adding vectorisation to our code
is trivial and further reduces the time of the convolutional layers to 6.16 seconds.



Fig. 5. Memory layouts used by the Morton GEMM kernel for the left and right ma-
trices of the operation respectively (referred as R 2 4 R and C 4 2 C).

5.2 Convolution with Morton GEMM kernel

Our iterative convolution kernels do not fully utilise the computational power
of the GPU, which we know to be 17 GFLOPS. To push performance up even
further, we investigate the im2col-GEMM convolution method proposed in [30]
and attempt to make it perform better than the CLBlast implementation.

The performance of matrix multiplication is highly dependent on whether
data elements are accessed in the same order in which they are stored in mem-
ory. Accessing the elements in optimal order yields significant increases in per-
formance and, contrary to that, accessing them with large strides has significant
negative effects [28]. However, we have (in a sense) a combined access pattern,
where data is accessed sequentially in strides (due to vectorisation).

Morton Order layouts are a middle-ground approach that minimise the cost
of using a combination of row-wise and column-wise access patterns. They do
this by reducing the cache miss bulk (i.e. the number of cache misses that occur
simultaneously) at the cost of increasing the cache miss latency (prefetching
is a common technique used to mitigate cache miss latencies by pre-emptively
fetching data likely to be requested in the near future into the cache). The main
idea behind Morton Order layouts is to cache lines cover a region of the matrix,
instead of having cache lines linearly stretch out over either the rows or columns
of a matrix. One of the most popular variants of the Morton order layouts is
the Z-Morton, which is useful for situations in which it is unclear what order
memory accesses will happen in. In our case, we have certain control over this
using workgroup size specification.

In this work we use Hybrid variants of the Z-Morton layout and we pro-
pose a Hybrid Morton Order based general matrix multiplication kernel (Morton
GEMM kernel for short) with varying cache miss bulk sizes and cache miss pe-
riods. The memory layouts of this kernel are visualised in Figure 5. The spots



Fig. 6. Visualisation of the work done within a single work item of the Morton GEMM
kernel. Values are loaded from matrices in quadruplets into the float4 OpenCL type
in a sliding window fashion. Pairwise float4 dot products are computed using the dot

function and added to the cumulative result.

in this Figure represent the elements in the matrix, while the lines connecting
them represent the layout of the elements in memory. This kernel is inspired by
the memory blocking GEMM kernel presented in the ARM reference literature
specifically for the Mali T-628 GPU [14], which makes use of the OpenCL dot

function and computes a 2-by-2 patch of the resulting matrix in a single work
item (Figure 6). We improve the performance of the ARM kernel by 12% using
optimal memory layouts, which enables better prefetching on the device. We
optimise the Z-Morton layout for single threaded access along both rows and
columns of a matrix by exploiting the control over OpenCL workgroup sizes and
the order in which workgroups are executed to predict exactly which rows and
columns of which matrix will be traversed at what time.

The optimal workgroup size for the Morton GEMM kernel is 4 rows by 16
columns of the NDRange. As such, a single workgroup computes an 8 row by
32 column patch of the resulting matrix (because each work item computes a
2-by-2 patch). This means the output matrix has to be padded such that its di-
mensions are multiples of these constants, leading to some memory redundancy.
This redundancy is, however, relatively small and is a price worth paying for the
substantial speed increase gained from using the Morton GEMM kernel. Note
that the Morton GEMM kernel performs matrix multiplication at 13.5 GFLOPS
at the least and exhibits no performance diminishing as matrix sizes increase.

Note that in order to execute convolution using the Morton GEMM kernel,
we must also implement the following operations as OpenCL kernels: i) Padding,
we need an operation that is capable of adding or removing padding from feature
maps in the NCHW layout; ii) Zeroing, to avoid the memory blowup im2col in-
troduces, we will reuse a single pair of OpenCL buffers across the entire network;
iii) Im2col, we need an implementation of im2col, much like CLBlast has.



co
nv

1-
1

co
nv

1-
2

co
nv

2-
1

co
nv

2-
2

co
nv

3-
1

co
nv

3-
2

co
nv

3-
3

co
nv

4-
1

co
nv

4-
2

co
nv

4-
3

co
nv

5-
1

co
nv

5-
2

co
nv

5-
3

0

100

200

300

400

500
Ru

n 
tim

e 
[m

illi
se

co
nd

s] Other Kernels
Morton GEMM

Fig. 7. A breakdown of how computation time was distributed between Morton GEMM
and other infrastructure kernels for our Morton GEMM based convolution.

The robust performance of Morton GEMM results in almost identical run
times of the kernel across all convolutional layers, as seen in Figure 7. The Figure
also shows how much time was spent performing the surrounding operations
facilitating Morton GEMM (Padding, Zeroing, Im2col), which is for some layers
more than the run time of Morton GEMM itself, 55% on average.

5.3 Results and Discussion

Figure 8 shows the inference time breakdown across layers of our two fully-
optimised systems (i.e. vectorised and Morton GEMM), comparing their per-
formance to that of CLBlast and the custom OpenCL kernels published by
Loukadakis et al. [19]. These results clearly show the superiority of our custom
implementations over the other current state-of-the-art systems across all layers
of VGG-16. Overall, our best approach (Morton GEMM) outperforms them with
speedups of 3x and 1.82x respectively. Again, we have successfully demonstrated
that exploiting detailed knowledge of the device architecture outperforms an au-
tomatically tuned system. The results, however, do not conclusively place one
of our systems over the other. Each system has specific benefits.

There is one important downside to the Morton GEMM approach, we cannot
fit the entirety of VGG-16 into memory at one time if we also want to allocate
memory for the im2col buffers. This is a peculiar downside because the Morton
GEMM approach does not use much more memory than the iterative vectorised
approach, and it would seem that the iterative approach was ever so slightly
below the device memory cap all along. This means the network had to be
timed in two parts, once to propagate over the convolutional layers and once
to propagate over the fully-connected layers. It is worth noting that the largest
chunk of the network is the weight matrix used in the fc1 layer, which contains
74% of the trainable parameters of VGG-16. The convolutional layers are hence
only a small part of the network, and varying the parameter counts there will
not help us reduce the memory demands to a consequential degree.



co
nv

1-
1

co
nv

1-
2

m
p1

co
nv

2-
1

co
nv

2-
2

m
p2

co
nv

3-
1

co
nv

3-
2

co
nv

3-
3

m
p3

co
nv

4-
1

co
nv

4-
2

co
nv

4-
3

m
p4

co
nv

5-
1

co
nv

5-
2

co
nv

5-
3

m
p5 fc
1

fc
2

fc
3

0

500

1000

1500

2000

2500

Ru
n 

Ti
m

e 
[m

illi
se

co
nd

s]

CLBlast
Loukadakis et. al.
Our Vectorised Iterative
Our Morton GEMM Based

Fig. 8. Comparison of VGG-16 inference times by layer of our two proposed systems
and two other state-of-the-art systems (missing or unsupported metrics omitted).

An advantage of the Morton GEMM approach is that it scales very well
to deeper layers as can be seen on conv4 layers in Figure 8. This means it is
more likely to work fast for larger networks in future research. Since the actual
matrix multiplication only contributes to 55% of the Morton GEMM convolution
(Figure 7), there also remains great amount of optimisation potential to this
implementation. Furthermore, since the approach reuses memory, the memory
overhead of im2col becomes negligible with the amount of convolutional layers,
as there will only ever be two buffers to store intermediate results in.

6 Conclusions

We have successfully shown that a hand-tuned OpenCL neural network imple-
mentation can outperform competing state-of-the-art automatically tuned sys-
tems on the Mali T-628 GPU. Our custom system showed a speedup of 17x for
LeNet and 3x for VGG-16 when benchmarked against the recently published
CLBlast library. Our best optimised system also showed a speedup of 1.82x over
the most recent research into hand-tuning OpenCL kernels for VGG-16 inference
on the same GPU [19]. Future research could attempt to minimise the overhead
of infrastructural kernels we used to support performing convolution using Mor-
ton GEMM. The overheads are significant (Figure 7), and removing the overhead
could lead to a further 1.6x speedup over our fastest implementation.

Acknowledgment

This project has received funding from the European Unions Horizon 2020 re-
search and innovation programme under grant agreement No 732204 (Bonseyes).
This work is supported by the Swiss State Secretariat for Education Research
and Innovation (SERI) under contract number 16.0159. The opinions expressed
and arguments employed herein do not necessarily reflect the official views of
these funding bodies.



References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
http://tensorflow.org/, software available from tensorflow.org

2. AMD: clblas, https://github.com/Yangqing/caffe/wiki/

Convolution-in-Caffe:-a-memo

3. ARM: Mali-T600 Series GPU OpenCL Version 1.1.0 Developer Guide (2012),
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_

mali_t600_opencl_dg.pdf

4. Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised feature learning and deep
learning: A review and new perspectives. CoRR abs/1206.5538 (2012), http:

//arxiv.org/abs/1206.5538

5. Bialas, P., Strzelecki, A.: Benchmarking the cost of thread divergence in cuda
(2015), https://arxiv.org/pdf/1504.01650.pdf

6. Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: Optimizing memory ac-
cess patterns for heterogeneous systems. In: Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis. pp. 13:1–13:11. SC ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/2063384.2063401

7. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catan-
zaro, B., Shelhamer, E.: cudnn: Efficient primitives for deep learning. CoRR
abs/1410.0759 (2014), http://arxiv.org/abs/1410.0759

8. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment
for machine learning. In: BigLearn, NIPS Workshop (2011)

9. Corporation, N.: Cublas library, https://developer.nvidia.com/cublas

10. Gaster, B.R., Morris, J.G.: Embedding opencl in ghc haskell. In: 6th International
Workshop on Programmability and Architectures for Heterogeneous Multicores
(MULTIPROG-2013) (2013)

11. Gaster, B.R.: The opencl c++ wrapper api, https://www.khronos.org/registry/
OpenCL/specs/opencl-cplusplus-1.1.pdf

12. Google: javacl, https://code.google.com/archive/p/javacl/

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

14. Johan Gronqvist, A.L.: Optimising opencl kernels for the arm mali-t600 gpus. In:
In GPU Pro 5: Advanced Rendering Techniques. A K Peters/CRC Press (2014)

15. Karthik Hariharakrishnan, Anthony Barbier, H.F.: Opencl on mali faqs
(2013), https://developer.arm.com/graphics/resources/tutorials/

opencl-tutorials

16. Klockner, A.: Pyopencl, https://mathema.tician.de/software/pyopencl/

17. Krizhevsky, A.: Cuda-convnet, 2014, code.google.com/p/cuda-convnet/

18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE. pp. 2278–2324 (1998)

http://tensorflow.org/
https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo
https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_t600_opencl_dg.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_t600_opencl_dg.pdf
http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/1206.5538
https://arxiv.org/pdf/1504.01650.pdf
https://doi.org/10.1145/2063384.2063401
http://arxiv.org/abs/1410.0759
https://developer.nvidia.com/cublas
https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.1.pdf
https://code.google.com/archive/p/javacl/
https://developer.arm.com/graphics/resources/tutorials/opencl-tutorials
https://developer.arm.com/graphics/resources/tutorials/opencl-tutorials
https://mathema.tician.de/software/pyopencl/
code.google.com/p/cuda-convnet/


19. Loukadakis, M., Cano, J., O’Boyle, M.: Accelerating deep neural networks on
low power heterogeneous architectures. In: 11th International Workshop on Pro-
grammability and Architectures for Heterogeneous Multicores (MULTIPROG-
2018) (January 2018)

20. Nocentino, A.E., Rhodes, P.J.: Optimizing memory access on gpus using mor-
ton order indexing. In: Proceedings of the 48th Annual Southeast Regional
Conference. pp. 18:1–18:4. ACM SE ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1900008.1900035

21. Nugteren, C.: Clblast: A tuned opencl blas library. In: Proceedings of the Inter-
national Workshop on OpenCL. pp. 5:1–5:10. IWOCL ’18, ACM, New York, NY,
USA (2018)

22. Ravanelli, M., Brakel, P., Omologo, M., Bengio, Y.: A network of deep neural
networks for distant speech recognition. 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) pp. 4880–4884 (2017)

23. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: Imagenet large scale
visual recognition challenge. CoRR abs/1409.0575 (2014), http://arxiv.org/
abs/1409.0575

24. Siegel, J., Ributzka, J., Li, X.: Cuda memory optimizations for large data-
structures in the gravit simulator. Journal of Algorithms & Computational Tech-
nology 5(2), 341–362 (2011)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014), http://arxiv.org/abs/1409.
1556

26. Stone, J.E., Gohara, D., Shi, G.: Opencl: A parallel programming standard for
heterogeneous computing systems. IEEE Des. Test 12(3), 66–73 (May 2010).
https://doi.org/10.1109/MCSE.2010.69

27. Theano Development Team: Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016), http:
//arxiv.org/abs/1605.02688

28. Thiyagalingam, J., Beckmann, O., Kelly, P.H.J.: Is morton layout competitive for
large two-dimensional arrays yet? Concurrency and Computation: Practice and
Experience 18, 1509–1539 (2006)

29. Turner, J., Cano, J., Radu, V., Crowley, E.J., OBoyle, M., Storkey, A.: Char-
acterising across-stack optimisations for deep convolutional neural networks. In:
2018 IEEE International Symposium on Workload Characterization (IISWC). pp.
101–110 (September 2018). https://doi.org/10.1109/IISWC.2018.8573503

30. Vasudevan, A., Anderson, A., Gregg, D.: Parallel multi channel convolution us-
ing general matrix multiplication. In: 2017 IEEE 28th International Conference
on Application-specific Systems, Architectures and Processors (ASAP). pp. 19–24
(July 2017). https://doi.org/10.1109/ASAP.2017.7995254

https://doi.org/10.1145/1900008.1900035
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/MCSE.2010.69
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://doi.org/10.1109/IISWC.2018.8573503
https://doi.org/10.1109/ASAP.2017.7995254

	Optimising Convolutional Neural Networks Inference on Low-Powered GPUs

