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Abstract—Deep Neural Networks (DNNs) have emerged as an important class of machine learning algorithms, providing accurate
solutions to a broad range of applications. Sparsity in activation maps in DNN training presents an opportunity to reduce
computations. However, exploiting activation sparsity presents two major challenges: i) profiling activation sparsity during training
comes with significant overhead due to computing the degree of sparsity and the data movement; ii) the dynamic nature of activation
maps requires dynamic dense-to-sparse conversion during training, leading to significant overhead.
In this paper, we present Spartan, a lightweight hardware/software framework to accelerate DNN training on a GPU. Spartan provides
a cost-effective and programmer-transparent microarchitectural solution to exploit activation sparsity detected during training.
Spartan provides an efficient sparsity monitor, a tile-based sparse GEMM algorithm, and a novel compaction engine designed for GPU
workloads. Spartan can reduce sparsity profiling overhead by 52.5× on average. For the most compute-intensive layers, i.e.,
convolutional layers, we can speedup AlexNet by 3.4×, VGGNet-16 by 2.14×, and ResNet-18 by 2.02×, when training on the
ImageNet dataset.
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1 Introduction

Over the past decade, Deep Neural Networks (DNNs)
have become a popular approach to address such de-

manding applications as image/speech recognition, object
localization/detection, natural language processing, and guid-
ance/navigation [1]. Researchers have been able to achieve
high inference accuracy for many of these applications, in-
spiring new classes of smart products, reshaping our society
and our daily lives. Although many variants of DNN models
exist (e.g., Convolutional Neural Networks and Recurrent
Neural Networks [1]), the dominant computations used during
their training are matrix-based operations (General Matrix
Multiplication or GEMM). Spurred on by the emergence of
high performance platforms that are able to perform billions
of matrix-based operations efficiently, training a large-scale
DNN has become a reality [2], [3], [4]. GPUs have been used
effectively to efficiently train a DNN [5], [6], [7], thus enabling
this class of algorithms to reach unprecedented popularity.

The computer architecture community has explored meth-
ods to improve execution efficiency and memory usage when
processing DNNs. Of the many approaches pursued, leverag-
ing weight/activation sparsity has attracted a lot of atten-
tion [8], [9], [10], [11], [12], [13]. Prior studies have explored
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exploiting sparsity to accelerate DNN computations during
both training and inference on customized platforms (e.g.,
FPGAs and ASICs) [4], [8], [9], [12]. For inference, the major
source of sparsity occurs after applying weight sparsification
and quantization [14]. In contrast to inference, for training,
sparsity is produced by the ReLU activation function during
both forward and backward propagation, and in the Max
Pooling layer during backward propagation [10]. A recent
study found that there can be as much as 90% activation
sparsity in AlexNet [15].

Currently, leveraging sparsity for accelerating training
mainly targets customized platforms [4]. Sparsity during
training on a GPU is largely under-explored, even though
GPUs still serve as the primary platform for training
large-scale DNNs [16]. GPUs can effectively accelerate both
dense [17], [18] and sparse [19], [20] matrix operations. Given
the large number of zero values detected during training,
employing sparse matrix operations should be able to further
reduce training time on a GPU. We focus on leveraging acti-
vation sparsity for the following reasons: 1) we observe limited
weight sparsity (less than 1%) during DNN training, and 2) we
do not explore weight sparsification and quantization methods
in order to keep training lossless. We focus on accelerating
convolutional layers, as they are the most compute-intensive
layers in a DNN and take over 90% of the overall execution
time [21].

DNN training presents many challenges when attempting
to leverage activation sparsity. The DNN training is an it-
erative and dynamic process. The contents of the activation
maps keep changing due to the randomly selected inputs
(e.g., a batch of images) throughout the training. There-
fore, efficiently leveraging activation sparsity during training
presents the following challenges: i) tracking and profiling
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data sparsity introduces high overhead due to the need to
compute the degree of sparsity and the data movement be-
tween the CPU and the GPU; ii) the contents of activations
change dynamically throughout every iteration, requiring low-
overhead dynamic sparse format conversion. The conversion
overhead of current popular sparse matrix formats is too
high for dynamic conversion because: 1) the generation of
the indexing information is an inherently serial process, and
2) multiple data structures are needed, involving many write
operations. As a consequence, the overhead of dense-sparse
matrix format conversion can cancel out the benefits of using
sparse matrix operations.

In this paper, we present Spartan, a sparsity-adaptive
framework to accelerate training of DNNs on a GPU. We first
characterize sparsity patterns present in activations used in
DNN training. We also consider the current state-of-the-art
approaches for managing sparse matrices. Then, we highlight
the challenges of leveraging the sparse data while trying to
accelerate DNN training. Based on key observations from our
characterization results, we propose the Spartan framework
to address these challenges. This paper makes the following
contributions:

• We propose a novel sparsity monitor that intelligently
acquires and tracks activation sparsity with negligible
overhead. Using our monitor, we can significantly reduce
sparsity profiling overhead by 52.5×, on average. We
adopt a periodical monitoring technique, whose behavior
is regulated by two algorithms: i) a Dynamic Period Ad-
justment Algorithm (DPAA), and ii) a Sparsity Stability
Detecting Algorithm (SSDA). The former dynamically
adjusts the monitoring period, while the latter detects
the sparsity stability level.

• We propose a novel sparse format ELLPACK-DIB (Data
Index Bundling) based on ELLPACK-R [22], and design a
customized tile-based sparse GEMM algorithm that uses
this format.

• We propose a novel compaction engine located between
the L2 cache and main memory of the GPU, enabling dy-
namic compaction/conversion. It serves as a near mem-
ory processing unit, responsible for compacting sparse
data into the ELLPACK-DIB format during kernel ex-
ecution. The compaction engine consists of three major
components: i) a Sparsity Information Block (SIB), ii)
a Compacting Processor, and iii) a Prefetch Buffer. We
further customize the GEMM algorithm to utilize our
enhanced GPU architecture incorporating the Spartan
compaction engine.

• We evaluate our sparsity monitor during the training
process with five commonly-used DNN models, using
both CIFAR-10 and ImageNet datasets. We find that the
average overhead introduced by profiling is only 1.7%.
We evaluate the compaction engine using our customized
sparse GEMM algorithm. For convolutional layers, we
can achieve an average speedup of 3.4× for AlexNet,
2.14× for VGGNet-16, and 2.02× for ResNet-18, when
training on the ImageNet dataset.

To our best knowledge, this is the first work that exploits
activation sparsity to accelerate DNN training on a GPU. Our
proposed framework can be generalized to all GPU types, and
any DNN model that uses ReLU activation functions, pooling
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Fig. 1: The sparsity trend from one activation map of Cifar-
Net.

layers, and other types of layers that generate zeros.

2 Motivation
The degree of sparsity present in data enables us to leverage
sparse computations, which have been widely used in HPC
applications [23] and DNN models [4], [8]. Sparse computa-
tions can significantly improve execution performance, since
they can skip zeros when performing multiplication and sum-
mation operations, reducing the total number of operations
executed. In this section, we present our characterization of
activation sparsity observed during DNN training. We also
review the performance associated with state-of-the-art sparse
matrix multiplication solutions. Given the high sparsity level
(up to 80%) observed during the training process, and the
inherent inefficiencies of existing sparse matrix multiplication
solutions [19], [20], [24], we are motivated to develop our Spar-
tan framework that incorporates both software and hardware
features. We focus on characterizing activation sparsity for
two reasons: 1) we observe limited weight sparsity during
DNN training, and 2) we do not explore weight sparsification
and quantization methods in order to keep training lossless.

2.1 Activation Sparsity in DNN Training
Popular DNN models [25], [26], [27], [28] employ linear layers
that include convolutional and fully-connected layers, as well
as non-linear layers that include max-pooling layers and ReLU
activation functions. The ReLU activation function outputs
zeros if the input is negative, creating sparsity. Also, a max-
pooling layer performs a downsampling operation during for-
ward propagation and an upsampling operation during back-
ward propagation. The upsampling operation also generates a
large number of zeros.

Figure 1 illustrates the sparsity trend of one activation
map generated by a ReLU activation function after the second
convolutional layer of CifarNet [29], trained using the CIFAR-
10 dataset. From the figure, we notice significant sparsity
(around 70%), even though there is great diversity in the input
values across training iterations. We observe similar trends
across different variants of DNN models, such as AlexNet,
VGGNet, and ResNet. These trends and patterns are also
preserved when we randomly shuffle the inputs. We can
summarize the sparsity patterns observed as follows:

1) The sparsity patterns and distribution of zeros change
over time. This is because the training input changes on
each iteration.
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Fig. 2: Execution time breakdown for convolution using
clSparse and rocSparse, compared with MIOpen.

2) Activation maps from different layers contain different
degrees of sparsity and sparsity trends over time.

3) The sparsity exhibits negligible variance during short
periods across consecutive training iterations.

4) The sparsity level increases gradually, then remains sta-
ble across many training iterations.

According to observations 1 and 2, we need an efficient
sparse format conversion to dynamically convert data stored
in a dense format to its sparse format, enabling efficient usage
of sparse matrix operations on demand. In addition, obser-
vations 3 and 4 suggest that exhaustive profiling of sparsity
during every iteration is not needed, motivating us to develop
an efficient profiling mechanism.

2.2 Characterization of Sparse Matrix Operations
Both convolutional and fully-connected layers use General
Matrix Multiplication (GEMM) as their primary computa-
tional kernel. The computation in the fully-connected layers
can be directly represented by GEMM, while the computation
in the convolutional layers can be a combination of an im2col
operation (transforming high-dimensional activation/feature
maps into a 2D matrix) and a GEMM operation [5]. Convo-
lutional layers dominate the overall DNN training time. In
particular, the convolutional layers alone can contribute to
approximately 90% of the training time [21], [30]. Therefore,
in this paper we are focused on improving GEMM-based con-
volutional layer performance, given its dominance on training
performance.

Next, we capture the execution time of a convolutional
layer during the forward propagation operation, comparing
the performance when using a popular Compressed Sparse
Column (CSC) [31] and a dense format. We configure the
convolutional layer using a filter size of 5 × 5 × 64 × 64
(CifarNet [29]). We evaluate the convolutional layer using a
dense format with AMD’s MIOpen, using both im2col and
dense GEMM kernels [32]. When using a sparse format,
we include the dense-to-sparse conversion (implementation
provided by the clSparse [24] library) between the im2col and
the sparse GEMM (using the implementation in the rocSparse
library [20]).

The execution time breakdown, as shown in Figure 2,
suggests that using a sparse matrix multiplication can sig-
nificantly reduce the GEMM execution time. However, as the
dense-to-sparse format conversion introduces large overhead
(approximately 85% of the overall execution time), the overall
execution time of the convolutional layers increases when
using a sparse format. To exploit the sparsity present in DNN
training, we need a new solution that can hide the dense-to-
sparse conversion overhead and accelerate the convolutional
layers.
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3 Sparsity Monitor
In this section, we present our sparsity monitor design, pro-
viding efficient and flexible sparsity monitoring during DNN
training. The sparsity monitor detects activation sparsity
before each convolutional layer in a DNN model, determining
when to leverage our sparse GEMM kernel acceleration dy-
namically, depending on the detected sparsity level. Running
on the CPU, our monitor is designed to reduce the overhead
of computing the degree of sparsity and the data movement
between the CPU and GPU. Figure 3a presents an overview
of the sparsity monitor, which consists of three components:
1) a scheduler, 2) a sparsity list, and 3) a sparsity calculator.
The regular workflow of the sparsity monitor is as follows.
First, the model information (i.e., the structure of the DNN
model and a list containing which activation maps we select
to monitor) is sent to the scheduler to initiate the monitoring
process. Next, the scheduler determines when to profile the ac-
tivation maps and enables the sparsity calculator to compute
the degree of sparsity based on the selected activation maps
(Data). Then the scheduler manages and updates the sparsity
list that contains the sparsity for individual activation maps
being monitored.

The scheduler manages and monitors each individual ac-
tivation map by regulating two important parameters: 1)
the monitoring period, and 2) the monitoring duration. The
former determines the timing gap between two monitoring
processes, while the latter indicates the length of the moni-
toring process. To avoid exhaustive monitoring, the monitor-
ing duration should be smaller than the monitoring period.
Once determined by user, the monitoring duration remains
the same across all monitoring processes. The monitoring
period, on the other hand, can be dynamically changed to
further reduce the profiling overhead. Specifically, we con-
sider the importance of observations 2, 3 and 4 presented in
Section 2.1. We propose multiple mechanisms to assist with
periodic monitoring, dynamically adjusting the monitoring
period. The mechanisms are: i) flexible monitoring, ii) fast
termination, and iii) dynamic management of the monitoring
period management.

i) Flexible Monitoring provides a mechanism to reg-
ulate the monitoring period in a flexible manner. For each
individual activation map, the monitoring process can have a
different monitoring period. As per observation 2, activation
maps from different layers present different levels of sparsity
and the sparsity associated with these activation maps may
change over time. Therefore, flexible monitoring can be more
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Fig. 4: Three monitoring processes with flexible monitoring
and fast monitoring disabled.

efficient in managing the monitoring process than using only
a single monitoring period. Figure 4 shows two examples of a
flexible monitoring process. In particular, the Data#2 (green
monitoring process) and Data#3 (orange monitoring process)
are two monitored activation maps that have different moni-
toring periods.

ii) Fast Termination stops the monitoring process if
the detected sparsity level is below a user-defined threshold.
By doing this, the monitoring duration is reduced to avoid
useless monitoring. Figure 4 also shows an example of fast
termination where the monitoring process stops for Data#1
(blue monitoring process) immediately after a low sparsity
level is detected.

iii) Dynamic Monitoring Period Management is the
most effective mechanism to reduce the overhead associated
with the sparsity computation and data movement, tuning the
monitoring period dynamically according to sparsity variance
throughout many training iterations. Dynamic Monitoring
Period Management maintains a two-state finite state ma-
chine: 1) Active and 2) Hibernate. We introduce these two
states to handle two possible scenarios according to obser-
vation 4: 1) when sparsity changes gradually and 2) when
sparsity remains at a stable level. In the Active state, the
monitoring period is shorter and can dynamically respond
based on a Dynamic Period Adjustment Algorithm (DPAA),
depending on the current sparsity trends. While in the Hi-
bernate state, the monitoring period is longer and shared by
all monitored activation maps for simplicity (further details
below). The transitions between the two states are shown
in Figure 3b. The conditions for transitions are regulated
by Algorithm 2, a Sparsity Stability Detecting Algorithm
(SSDA).

DPAA is enabled only in the Active state, adjusting the
monitoring period of each individual activation map. The
DPAA (Algorithm 1) can adjust the monitoring period by
maintaining history and storing the most recent measured
sparsity for every monitored activation map managed in the
sparsity list. The algorithm first collects the measured sparsity
and adds it to a history list, saving only a number of the
most recent measured sparsity. Then it checks the difference
between the most recent sparsity and the oldest in the history
list. If the absolute difference is smaller than a threshold, we
double the length of the monitoring period in the Active state.
The process continues until the monitoring period is larger
than the one used in the Hibernate state.

Algorithm 1 Dynamic Period Adjustment Algorithm
(DPAA)

1: Inputs: sparsity, history, max length, threshold, ac-
tive period, hibernate period

2: Outputs: N/A
3: if sizeof(history) < max length then
4: . Collecting the sparsity history
5: idx = sizeof(history)
6: history[idx] = sparsity
7: else
8: . Increase the monitoring period
9: if abs(sparsity - history[0]) < threshold then

10: active period *= 2
11: end if
12: if active period > hibernate period then
13: active period = hibernate period
14: end if
15: history.Update(sparsity)
16: end if

SSDA detects the stability level of sparsity, determining
when to transition between the Active and Hibernate state. As
described in Algorithm 2, in the Active state, the algorithm
polls through the sparsity list in Figure 3a. If the sparsity
levels of all selected monitored activation maps become stable,
the state can transit to Hibernate, a state where all activation
maps share the same monitoring period. While in the Hiber-
nate state, if any of the monitored activation maps exhibit
unstable sparsity trends, the state transits to Active, resetting
the monitoring period for all monitored activation maps to the
initial monitoring period.

4 ELLPACK-DIB Based GEMM
In this section, we explore a novel sparse format named
ELLPACK-DIB and a tile-based GEMM algorithm designed
to effectively exploit this format.

As discussed in Section 2, when using the CSC format, the
dense-to-sparse conversion is costly in terms of execution time.
Regular sparse formats, such as CSR/C [31] and COO [31], use
multiple data structures to store the non-zero elements and
indexing information. From our analysis of these formats, we
have identified two major factors contributing to the dense-
to-sparse conversion overhead. First, given a sparse matrix
with size M × N , storing the non-zero elements and calcu-
lating indexing information comes with a time complexity
of O(M × N). This is because storing a non-zero element
and calculating the associated indexing information depends
on the location and index of the previous non-zero element.
This dependency leads to a serialized conversion process that
lacks any parallelism. Second, we encounter a number of
writes needed to update multiple data structures for the non-
zero elements and associated indexing information. Note that
writes are commonly expensive and should be avoided as much
as possible.

We find that one variant of ELLPACK, ELLPACK-
R [22], has a structure wherein conversion can be parallelized.
ELLPACK-R in row-major order requires three data struc-
tures. The first one stores non-zero elements. The second one
stores the column index. The third one stores the number of
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Algorithm 2 Sparsity Stability Detecting Algorithm (SSDA)
1: Inputs: state, sparsity list, sparsity, history,

max length, threshold, active period, hibernate period
2: Outputs: N/A
3: if state == ACTIVE then
4: hibernation ready count = 0
5: for i = 1 to sizeof(sparsity list) do
6: if active period == hibernate period then
7: hibernation ready count++
8: end if
9: end for

10: if hibernation ready count == sizeof(sparsity list)
then

11: state.transit(HIBERNATE)
12: end if
13: end if
14: if state == HIBERNATE then
15: if sizeof(history) < max length then
16: idx = sizeof(history)
17: history[idx] = sparsity
18: else
19: if abs(sparsity - history[0]) >= threshold then
20: active period.reset(all)
21: state.transit(ACTIVE)
22: history.clear()
23: end if
24: end if
25: history.Update(sparsity)
26: end if

Columns

Int16
Row Index

FP16
Data

Non-Zero
Elements

NNZ per
Column

... ...

... ...

Fig. 5: The format of ELLPACK-DIB.

non-zero elements per row. The data structures for each row
are completely independent of each other, meaning that the
dense-to-sparse conversion can be parallelized, reducing the
time complexity to O(N).

Although the time complexity of the conversion is sig-
nificantly reduced, there are still three data structures. To
simplify the data structures, we propose ELLPACK-DIB
(Data Index Bundling). Considering that the data structures
for storing non-zero elements and column indices are exactly
the same size in ELLPACK-R, ELLPACK-DIB bundles the
data and the indices together, storing them in a single data
entity. Since we only use ELLPACK-DIB for activation maps
rather than weights, we use a column-major ELLPACK-DIB
format, as shown in Figure 5, producing an efficient data
access pattern for sparse GEMM.

Figure 5 presents the ELLPACK-DIB format in detail. As
indicated in the figure, we only need two data structures to
store the non-zero elements bundled the row index, and the

Algorithm 3 Tile-based GEMM algorithm Using
ELLPACK-DIB (GPU kernel)

1: Inputs: A, lda, B, ldb, ldc, nnz col, tile size
2: Outputs: C
3: row = MappingRow(group id, local id)
4: col = MappingCol(group id, local id)
5: sum = 0
6: local B[tile size][tile size]
7: local A[tile size][tile size]
8: for i = 1 to nnz col[col] with step tile size: do
9: idx = MappingTile(i, col, ldb)

10: x = local id / tile size
11: y = local id mod tile size
12: local B[x][y] = low2float(B[idx])
13: row idx = high2int(B[idx])
14: local A[x][y] = A[row + row idx * lda]
15: Synchronization
16: for j = 1 to tile size do
17: b idx = MappingLocalB(j, local id)
18: a idx = MappingLocalA(j, local id)
19: sum += local B[b idx] * local A[a idx]
20: end for
21: end for
22: C[row + col * ldc] = sum

number of non-zero elements (NNZ) per column. We use IEEE
half-precision floating point format (FP16) for the data and
a 16-bit unsigned integer for the row index. We only use this
format for converting activations during DNN training. The
actual computation in the sparse GEMM (described below)
still uses single precision (FP32) by converting FP16 data
back to FP32. Therefore, the precision lost during conversion
has little impact on the overall training performance [10], [33].
We use the second 16 bits to represent the row index. For
the index field, we maintain positional information so that
ELLPACK-DIB-based GEMM operations can generate the
same output as the dense GEMM operations. For the row
index, a 16-bit unsigned integer representation is sufficient for
all possible problem sizes in commonly-used DNN models. In
particular, the largest convolutional layer in both ResNet and
VGGNet has 4,608 elements (3× 3× 512) in one column after
performing the im2col operation [26], [28].

We propose a tile-based GEMM algorithm using
ELLPACK-DIB on GPUs. Algorithm 3 presents the kernel
details. Note that we use some OpenCL kernel parameters,
e.g., local id and group id [34]. The mapping functions (i.e.,
MappingRow, MappingCol, MappingTile, etc.) shown in the
algorithm are used to map the kernel parameters to a specific
location for memory access.

Our algorithm involves three matrices: 1) A, a dense
matrix for weights, 2) B, a sparse matrix for activations in
ELLPACK-DIB format, and 3) C, a dense matrix which is
the output. The parameters lda, ldb, ldc correspond to the
leading dimension of matrices A, B, and C, respectively.
Usually, the leading dimension is equal to the number of
rows of the matrix. Each tile of matrix C is mapped to a
workgroup [34], and each element of the tile is mapped to a
workitem/thread [34]. The threads in one workgroup first load
a tile of B in ELLPACK-DIB format, unpacking the data and
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row index accordingly. Then a tile of A is loaded, based on
the row index. Once tiles of A and B are ready, multiplication
and accumulation (MAC) are performed. This process is done
iteratively until we reach the number of non-zero elements per
column. To avoid load imbalance due to the varying number of
non-zero elements, we zero-pad the last tile of B, thus avoiding
potential branch divergence within a wavefront.

Figure 6 shows an example of this algorithm. In the exam-
ple, we have four tiles in C, colored with gray, blue, orange
and yellow. These four tiles share the three tiles (named T0,
T1 and T2) of matrix B in ELLPACK-DIB format. Only three
tiles are needed, as the non-zero elements only occupy three
tiles in this example. To compute the gray tile, the data from
matrix A (marked with gray to match the color of the gray
tile in matrix C) is selected based on the row index loaded
from tile T0, T1 and T2. The white area in A indicates the
unselected data. We follow a similar process for the blue,
orange and yellow tiles.

We evaluate the performance of dense-to-sparse conversion
of ELLPACK-DIB and the customized GEMM algorithm
using this format. Compared with CSC, the conversion time is
reduced by over 10× and the time for GEMM is also reduced.
Using the ELLPACK-DIB, we can achieve 19% speedup over
MIOpen given a 90% sparsity, for the same problem size as
indicated in Section 2. However, when we decrease the sparsity
(e.g., 80%), the speedup is gone. As such, the benefits are very
limited due to the conversion overhead. To address this over-
head, we develop a hardware-based conversion mechanism,
which is described in the next section.

5 Compaction Engine
In this section, we present the design of a novel hardware
component named the compaction engine. The compaction
engine is designed as a near-memory processing unit. The
main purpose of it is to convert/compact sparse data to
the ELLPACK-DIB format during kernel execution, hiding
conversion overhead. The compaction engine consists of three
major sub-components: the sparsity information block or SIB
(Section 5.2), the compaction processor (Section 5.3), and the
prefetch buffer (Section 5.4).

5.1 Overview
Figure 7a presents a logical view of a GPU equipped with a
compaction engine. As shown in the figure, the compaction
engine logically sits between the L2 cache and main memory,
serving all banks of main memory/L2 and all Compute Units
(CUs) of a GPU.

The compaction engine provides compacted data in the
ELLPACK-DIB format in a programmer-transparent manner.
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Fig. 7: (a) GPU with a compaction engine. (b) Overview of
the compaction engine.
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Figure 8 shows an example of handling a single memory
request in our modified GPU with the compaction engine.
Note that the compaction engine only serves data requests
for reads, since only activations represented in matrix B
during DNN training need compaction/conversion when run-
ning sparse GEMM. The reasons why we do not consider
converting the activation maps through writes are twofold:
1) writes are costly, 64.3% slower than reads [35]. As such,
converting the activation maps on writes leads to a perfor-
mance degradation, and 2) dense GEMM is still used during
training when the sparsity level is low. Spartan only enables
sparse GEMM and the compaction engine after detecting
significant levels of sparsity. From Figure 8, the steps to handle
a memory request before the compaction engine are no differ-
ent than those present in a regular cache system. The only
difference is that memory requests issued from components
above the compaction engine (i.e., CUs, L1s and L2) expect
data in ELLPACK-DIB format. The compaction engine is
responsible to respond to memory requests for loading sparse
data, prefetching data stored in the original matrix format,
compacting the data using the ELLPACK-DIB format and
then returning them.

Prefetching overhead may lead to long latency when the re-
quested compacted data requires a large amount of data from
main memory. The worst-case scenario occurs when we need
to load an entire column to service a single memory request.
To avoid long-latency prefetching, we introduce a sparsity
information block (SIB), a hardware component to store the
profiled sparsity information while performing prefetching.
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The primary sparsity information stored in the SIB is a
series of bitmasks, where a value of “1” indicates a cache
line with non-zero elements and a value of “0” corresponds
to a cache line with only zeros. We describe the details in
Section 5.2. With the sparsity information stored in the SIB,
the compaction engine can carry out a more intelligent and
efficient way to issue prefetches, reducing prefetching latency.
In addition to the SIB, we also add a compaction processor
and a prefetch buffer. The former compacts the prefetched
data into ELLPACK-DIB format and profiles the sparsity
information at the same time. The latter stores the compacted
data and streamlines the process of sending data to L2.

Figure 7b presents an overview of the compaction engine
with the added components. To redirect data fetches of sparse
data to use the compaction engine, we add an additional
bit in the memory request, and extend an existing vector
load instruction (FLAT LOAD [36]) to indicate this special
data-load type. Upon receiving a memory read request for
the sparse activation maps (sparse memory request), the SIB
issues memory transactions for prefetching, based on the data
search algorithm we propose (further details in Section 5.2.1).
When the data arrives from main memory, the compaction
processor is activated to perform: 1) compaction, and 2)
profiling. After that, it updates the SIB using the profiled
sparsity information and stores the compacted data in the
prefetch buffer. Once the data is ready for the corresponding
request, the prefetch buffer will send it to the L2. We describe
the details of the SIB, the compaction processor and the
prefetch buffer in Sections 5.2, 5.3 and 5.4, respectively.

With the compaction engine, we no longer need a costly
SW-based dense-to-sparse conversion, and we do not need the
data structure for storing the number of non-zero elements
per column, as shown in Algorithm 3. To achieve the latter,
we add an additional bit in the data response to indicate
whether or not the compacted data is the last one in the
column. Instead of using an additional structure nnz col,
the program uses this additional bit (set by the compaction
engine) to terminate.

5.2 Sparsity Information Block
The sparsity information block (SIB) consists of multiple
entries for storing sparsity profiles for each column. Each
SIB entry contains two types of sparsity information (further
details in Section 5.2.2): 1) the sparsity bitmask, and 2) the
cache line mapping information (CMI). Because the basic unit
managed in the memory system is a cache line (i.e., 64 bytes
or 16 single precision (FP32) elements) [36], the SIB also
manages the sparsity information on a cache line basis.

The sparsity bitmask contains a series of bits, representing
the sparsity pattern present in the uncompacted data in a
column. For each bit, a value of 1 indicates a non-zero cache
line which has non-zero elements, whereas a 0 value indicates
a cache line with only zero elements. The position of the bits
is relative to the position of the cache line in the associated
column. For example, the first bit indicates the cache line
starting at row number 0, the second bit indicates the cache
line starting at row number 16, and so on.

The CMI records the mapping information between the
compacted data (to L2) and the uncompacted data (from
main memory). Each mapping entry is associated with one

0 1 0Sparsity
BitMask
Sparse

Data From
Mem

0 1

#0 #1 #2 #3 #4 #5 #6

0 1

Compacted
Data #0 #1

CMI #0:
NNC Needed: 2

Offset: 7

CMI #1:
NNC Needed: 1

Offset: 15

Sparse
Data #4

Sparse
Data #6

Sparse
Data #1

Last element Offset: 7

Last element Offset: 15

Fig. 9: An example of updating sparsity bitmask and cache
line mapping information.

compacted cache line (16 non-zero FP32 elements) and has
two parameters: 1) the number of non-zero cache lines needed
for filling 16 non-zero elements (NNC needed), and 2) the
offset indicating the last non-zero element in the last non-
zero cache line. The CMI has multiple entries, each of which
corresponds to a compacted cache line.

Figure 9 shows an example of setting the sparsity bitmask
and CMI entries. In this example, we have 7 sparse cache lines
(numbered #0 to #6) from main memory. Among them, only
three are non-zero cache lines, shown in blue (#1, #4 and #6).
The sparsity bitmask can be updated based on this layout.
These 7 sparse cache lines can be compacted into 2 compacted
cache lines, shown in green (#0 and #1). The compacted
cache line #0 has data from sparse cache lines #1 and #4.
The last element can be found in cache line #4, with an offset
of 7. As such, in CMI #0, the NNC needed value is set to 2
and the offset is set to 7. The compacted cache line #1 holds
data from cache lines #4 and #6. Note that this compacted
cache line also requires two sparse cache lines. However, the
previous cache line (#4) is prefetched before setting CMI #1.
As a result, we set the NNC needed to 1 and the offset to 15.

5.2.1 Data Search Algorithm

In order to avoid long-latency prefetches, we propose a data
search algorithm with three search modes that leverages the
sparsity information of the SIB (Algorithms 4 and 5). Guided
by the sparsity bitmask and CMI, the algorithm is able
to issue memory transactions in a more intelligent manner,
avoiding cache line accesses that do not contain the requested
data.

The three search modes of the algorithm are as follow:
1) accurate search, 2) prudent search and 3) hasty search.
Each of these modes corresponds to one potential scenario.
For example, accurate search is used when the SIB holds
the target CMI entry. The data search algorithm can find
the locations of sparse data in main memory based on the
information stored in the CMI entry. The prudent search is
used when no CMI entry can be found, but a sparsity bitmask
exists. This scenario can happen when a CMI entry is replaced
by a newer one. In this scenario, memory transactions are
issued based only on the bitmask. The hasty search mode is
used when neither a sparsity bitmask nor CMI entry exists,
i.e., the application is in the warm-up phase.
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Function Name Description

FindFirstNonZeroBit Find the location of the first non-
zero bit.

FindNextBitLocation Find the location of a bit which
is N non-zero bits away from a
given bit location. N is an integer
number.

FindNextNonZeroBit Find the location of a bit which
is the next non-zero bit from a
given bit location.

TABLE 1: Descriptions of functions used in the data search
algorithm.

Algorithm 4 Data Searching Algorithm (Accurate Search)
1: Inputs: bitmask, CMI, address
2: Outputs: mem trans[ ]
3: entry = GetCMIEntry(CMI, address)
4: bit location = FindFirstNonZeroBit(bitmask)
5: for i = 0 to entry.idx-1 do
6: bit location = FindNextBitLocation(bitmask,

bit location, CMI[i].NNCNeeded)
7: end for
8: for j = i to entry.NNCNeeded do
9: mem tran = AddrCalc(bit location)

10: mem trans.append(mem tran)
11: bit location = FindNextNonZeroBit(bitmask,

bit location)
12: end for

Table 1 lists the descriptions of bitmask functions used
in Algorithms 4 and 5. The major operation needed for
implementing these functions is a bit shift.

The accurate search accurately locates the bit locations
identifying where the memory transactions should be issued,
according to the cache line mapping information. The algo-
rithm loops through all of its previous CMI entries, using
the parameter NNC needed to arrive at the desired location.
Then it issues the memory transactions based on its own
NNC needed value. The prudent search first issues memory
transactions from the location of the first non-zero bit in
the bitmask. Then it traverses through the bitmask, issuing
memory transactions only based on the non-zero bits. The
hasty search issues memory transactions in a consecutive
manner from the first bit of the bitmask.

5.2.2 SIB Management
Considering that the size of the compacted data in a column
can vary with different column sizes, as well as the sparsity
level, we adopt an approach to dynamically determine the
entry size and allocate space for the sparsity bitmask and
CMI. Figure 10 shows the contents of a SIB entry.

From the figure, the SIB entry is composed of three
parts: 1) metadata, 2) a sparsity bitmask and 3) cache line
mapping information. The metadata has fixed 6 bytes used for
storing meta-information, including column number, current
bit count in the bit mask and current number of valid CMI
entries. We define K as the entry size in bytes, N the sparsity
bitmask size in bytes, and M the CMI size in bytes. N can be
determined by the column size col size using the equation:
dcol size/128e. K can be determined based on the column

Algorithm 5 Data Searching Algorithm (Prudent Search and
Hasty Search)

1: Inputs: bitmask, prefetch length, address, search mode
2: Outputs: mem trans[ ]
3: if search mode == Prudent then
4: bit location = FindFirstNonZeroBit(bitmask)
5: end if
6: if search mode == Hasty then
7: bit location = 0
8: end if
9: for j = i to prefetch length do

10: mem tran = AddrCalc(bit location)
11: mem trans.append(mem tran)
12: if search mode == Prudent then
13: bit location = FindNextNonZeroBit(bitmask,

bit location)
14: end if
15: if search mode == Hasty then
16: bit location++
17: end if
18: end for

Column Number

16 Bits

Metadata

cache offset

4 Bits

CMI entry

Byte#0 Byte#1 Byte#0 ...... Byte#N-1 Sparsity Bitmask

8 Bits representing 128 elements

Metadata Sparsity Bitmask Cache Line Mapping Info SIB entry

Fixed length K bytes

6 Bytes N Bytes M Bytes

Bit Count

16 Bits

CMI Size

16 Bits

NNC needed

4 Bits

Fig. 10: The overview of a SIB entry.

size as well. M can be calculated using K − 6 − N , which is
also the maximum allowable number of CMI entries (a CMI
entry only needs 1 byte). To determine K, we heuristically
categorize the column size into one of four classes: 1) larger
than 4096, 2) between 2048 and 4096, 3) between 1024 and
2048 and 4) smaller than 1024. We set K to 256, 128, 64 or 32
if the column size fits in category 1), 2), 3), or 4), respectively.

Given that CMI has a limited number of entries, we
propose a sliding window replacement scheme. When the CMI
is full, we remove the oldest CMI entry and keep the latest
entries. By using this scheme, we keep the most recent records,
taking advantage of the temporal locality.

5.3 Compaction Processor
The compaction processor contains multiple compaction pro-
cessing units, servicing multiple prefetched data from main
memory in parallel. Figure 11 shows the organization of
the compaction processor. When activated, each compaction
processing unit processes the data from an associated buffer
(i.e., the data buffer shown in the figure) and then sends
the compacted data to the prefetch buffer and the sparsity
information to the SIB.

Figure 12 shows a diagram of the compaction processing
unit (ComPU). The ComPU is a special purpose SIMD unit
that performs two tasks: 1) FP32 to FP16 conversion, 2)
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Fig. 12: The overview of the compaction processing unit.

comparisons with 0. The SIMD width is set to 16 as the
memory requests to main memory are issued on a cache
line basis. A fine-grained bitmask is generated according to
the comparison results, reflecting the sparse pattern within
the processed cache line. The ComPU uses this bitmask to
select the non-zero elements, which are later bundled with
the corresponding row index according to the ELLPACK-DIB
format. In addition, the fine-grained bitmask is sent to the SIB
as profiled sparsity information. Note that the row index can
be calculated based on the memory transaction SIB issues.

5.4 Prefetch Buffer
The prefetch buffer has a multi-lane FIFO structure for
storing data from the compaction processor. Each lane cor-
responds to an active SIB entry. During prefetching, the com-
pacted data are stored in-order in the prefetch buffer. Once
the prefetch buffer has collected one compacted cache line
(i.e., 16 bundled elements) for a memory request, the data is
sent to the L2. Due to prefetching, sometimes the compacted
data is stored in the prefetch buffer before the sparse memory
request arrives. We keep this data in the buffer. By doing so,
we can take advantage of the earlier prefetch to further reduce
data fetching latency.

6 Experimental Methodology
We evaluate the overhead of the software-based sparsity mon-
itor on real hardware. Besides, we evaluate the improvements
due to the hardware-based compaction engine using a state-
of-the-art GPU simulator.

On the one hand, our experimental setup for evaluating
the sparsity monitor uses two different classes of hetero-
geneous systems, targeting the training of DNN models at
different scales. Both systems are equipped with CPU and
GPU. The first one is a desktop-grade system, equipped with
an AMD Radeon RX Vega56 [37] as the GPU platform and
an Intel(R) Core(TM) i7-8700 as the CPU platform. We select
VGGNet-11 [26] and ResNet-10 [28] as the DNN models and

Parameter Size/Number

Maximum History Length 10
Sparsity Threshold 0.3
Initial Monitoring Period 500
Hibernation Monitoring Period Unit 10000

TABLE 2: Specifications of the sparsity monitor.

use the CIFAR-10 dataset [38] for training. The second one
is a server-grade system, equipped with an NVIDIA Tesla
V100 [39] as the GPU platform and an Intel(R) Xeon(R) E5-
2630 as the CPU platform. We select AlexNet [25], VGGNet-
16 [26] and ResNet-18 [28] as the DNN models, and use the
ImageNet dataset [40] for training. We implement the sparsity
monitor on TensorFlow 1.4 [41]. Table 2 shows the values for
the parameters of the sparsity monitor that were described in
Algorithms 1 and 2. We use the rule of thumb to determine
a minimum sparsity threshold that presents performance gain
using our method.

On the other hand, we use MGPUSim [42] to model
the compaction engine in a baseline AMD Radeon Instinct
MI6 [43] GPU. Table 3 lists the details of the MI6. Table 4
lists the specification of the modeled compaction engine. We
consume half of the space (1MB) of the baseline L2 cache for
the storage of data related to the compaction engine, intro-
ducing no additional overhead for storage. In practice, the L2
space partition and the compaction engine are enabled only
when launching a sparse GEMM kernel. When launching a
dense GEMM kernel, the entire L2 space is used by the kernel.
In our experiments with the compaction engine enabled, the
portion of the L2 space devoted to compacted data is static.
However, the size of the partition could be set dynamically –
a direction for future work.

Next, we present the methodology used to evaluate the
compaction engine. Our evaluation is presented on a layer-by-
layer basis. First, we select only the computation of the con-
volutional layers in forward propagation in our experiments,
because the computations of convolutional layers in backward
propagation are transposed convolutions [44], resulting in a
very similar pattern as compared to forward propagation. To
demonstrate the effectiveness of the compaction engine, we
first select the convolution filter with the largest filter size
(3×3×512×512) and three different activation sparsity levels
(65%, 70% and 85%, which are levels observed during the
training of VGGNet-11 and ResNet-10 on CIFAR-10 dataset).
Then, we conduct an extensive evaluation of all convolutional
layers of AlexNet, VGGNet-16, and ResNet-18, using the
sparsity levels observed during the training on the ImageNet
dataset. In these experiments, we collect data during training
across a number of epochs (one epoch indicates one round
of training involving all images in the dataset). We pause
sparsity profiling of each monitored activation map when we
detect stability (5 epochs when training with ImageNet, 2
epochs with CIFAR-10).

In our experiments we use two different types of input
data, but with the same sparsity levels. The first is synthesized
data that has random locality (i.e., Synthetic), where the non-
zero data is uniformly distributed. The second is obtained
from training on real world dataset (i.e., Real). Table 5
provides the details of our experiments. We select three layers
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Parameter Size/Number

CU 36

Shader Array 9

L1 Vector Cache 16KB 4-way per CU

L2 Cache 2MB (without compaction engine)
1MB (with compaction engine)

DRAM 4GB

TABLE 3: Specifications of the baseline Instinct MI6 GPU.

Parameter Size/Number

SIB 512KB
Prefetch Buffer 512KB
Compaction Processing Unit 32

TABLE 4: Specifications of the Spartan compaction engine.

Model Name Sparsity Batch Size

ResNet-10 Layer A 65% 128/256
VGGNet-11 Layer B 70% 128/256
VGGNet-11 Layer C 85% 128/256
AlexNet Convx-y 45%-65% 128
VGGNet-16 Convx-y 35%-55% 64
ResNet-18 Convx y-z 30%-50% 64

TABLE 5: Experimental setup for evaluating the compaction
engine.

Model Scheduler
Data
Transfer

Sparsity
Calculation

AlexNet 2.8% 47.2% 50%
VGGNet-16 0.2% 46.1% 53.7%
ResNet-18 0.4% 56.4% 43.2%

TABLE 6: Average execution time breakdown of the sparsity
monitor (%).

(Layer A, Layer B and Layer C) as representative layers for
the models, all with the same filter size. Layers A, B, and C
correspond to the second convolutional layer from the fourth
residual block of ResNet-10, the fifth convolutional layer of
VGGNet-11 and the seventh convolutional layer of VGGNet-
11, respectively. For AlexNet and VGGNet-16, we use Convx-
y, where the x and y values index the convolutional layer and
sparsity level, respectively. For ResNet-18, we use Convx y-z
to represent the layers, where the x, y and z values correspond
to the residual block, the convolutional layer within the resid-
ual block, and sparsity level, respectively. Our baseline is a
highly optimized dense matrix multiplication kernel we have
selected from the AMD APP SDK [45].

7 Results and Analysis
Next, we present the evaluation results for both the sparsity
monitor and the compaction engine.

Table 7 provides the execution time overhead of using
exhaustive profiling (i.e., measuring sparsity every training it-
eration) and profiling with our sparsity monitor. Our baseline
is a DNN training process without performing any sparsity
profiling. The training process runs for 50,000 training iter-
ations for VGGNet-11 and ResNet-10, and 150,000 training
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Fig. 13: The profiling process of the sparsity monitor
(VGGNet-11).
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Fig. 14: The profiling process of the sparsity monitor
(AlexNet).

iterations for AlexNet, VGGNet-16, and ResNet-18. From the
table, we can see that profiling with the sparsity monitor
has negligible overhead when training the DNN models (a
maximum of 5.7%).

Table 6 shows the average execution time breakdown of
the sparsity monitor in percentage of the total execution
time, while monitoring AlexNet, VGGNet-16, and ResNet-18.
From the table, the sparsity calculation overhead and data
transfer time between CPU and GPU dominate execution.
The overhead of the scheduler is negligible.

Figure 13 shows the data sparsity monitoring over time
for the input of the fourth convolutional layer in VGGNet-11.
Figure 14 shows the same profiling process at the input of the
second convolutional layer in AlexNet. In these figures, the
blue line shows the sparsity trend. The × symbols show when
discrete sparsity measurements are collected by the sparsity
monitor. From these results, we can see that the sparsity
monitor is able to capture sparsity trends quite closely. The
monitoring period (i.e., the distance between two ×’s) is
extended whenever the sparsity monitor detects more stability
in the degree of sparsity.

In terms of the performance improvements obtained using
the compaction engine, we first present the speedup shown
in Figure 15. Monitoring the activation maps from training
VGGNet-11 and ResNet-10 with the CIFAR-10 dataset (real
data), we can achieve a 1.24× average speedup using a batch
size of 128, and achieve 1.56× average speedup with batch size
of 256.

In Figure 15 we can also see that the benefits of our
compaction engine are limited when using small image sizes
(32 × 32) and small batch sizes. This is because the GPU
suffers less memory pressure when using small image or batch
sizes. In Figure 19b, the L2 cache hit rates for dense GEMM
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Model Type VGGNet-11 ResNet-10 AlexNet VGGNet-16 ResNet-18
Dataset CIFAR-10 ImageNet
Exhaustive Profiling 14.9% 49.4% 21.4% 46.4% 94.2%
Profiling with the
Sparsity Monitor 0.3% 0.6% 1.2% 5.7% 0.9%

TABLE 7: Overhead of two types of sparsity profiling: 1) exhaustive profiling and 2) sparsity monitor profiling. Overhead is
reported relative to DNN training without any sparsity profiling.
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Fig. 15: The performance improvements for layers A, B, and
C, using the configurations described in Table 5.

have already reached over 95% when the batch size is 128.
The compaction engine has little impact on the overall perfor-
mance as the memory performance of dense GEMM is already
close to the upper-bound when batch size is 128. However, as
we increase the batch size to 256, the L2 cache hit rate of dense
GEMM drops to 83%. Then the compaction engine becomes
more beneficial.

Next, in Figures 16, 17 and 18 we show the performance
improvements obtained for all the convolutional layers pre-
senting sparse inputs for AlexNet, VGGNet-16 and ResNet-
18, respectively. From the figures, when training with the
activation maps using the ImageNet dataset (real data), we
can achieve an average 3.4× speedup for AlexNet, a 2.14×
speedup for VGGNet-16, and 2.02× speedup for ResNet-18.

From these results, we highlight two interesting observa-
tions: 1) Given the same problem size (same filter size and the
number of input and output channels), the speedup increases
when the batch size grows, and 2) using data from the actual
training has a better performance than using synthetic data.
We will present a detailed analysis of these results in the next
section.

7.1 Performance Analysis
To demonstrate the effectiveness of the compaction engine, we
now present our performance analysis using three L2-related
performance metrics: i) the number of memory transactions
performed in L2, ii) the L2 hit rate, and iii) L2 read latency.
We use normalized values for metrics i) and iii), relative to the
value obtained when using dense GEMM (labeled as ”dense”).
We use the absolute value for metric ii). For demonstration
purposes, we only show results from the Layer C in VGGNet-
11 and the Conv4 layer in AlexNet. Other layers show similar
trends. For layer C, we vary the batch size from 128 to
256. For the Conv4 layer in AlexNet, we vary the batch
size from 16 to 128. Inspecting Figures 19a-19c, we can see
that the compaction engine reduces the number of memory
transactions and reduces the memory access latency in L2,
increasing the L2 hit rate, especially when the batch size

grows. The trend becomes more evident in Figures 20a-20c,
where we use the ImageNet dataset. First, the compaction
engine enables our proposed sparse GEMM, which has fewer
memory accesses. Even though the sparse GEMM algorithm
leads to poorer data locality, it has little impact on the overall
performance, especially when using real-world datasets for
training. Second, the pattern of non-zero elements in the
activation maps is regular and consecutive, as a result of the
compaction engine, leading to a higher L2 hit rate with fewer
memory accesses. Last, the compaction engine’s prefetching
mechanism significantly reduces the average access latency,
enabling the compacted data to be efficiently stored in a
prefetch buffer. From our results we see that the compaction
engine can achieve better memory performance when trained
using a real-world dataset. This can be explained by the fact
that the real data captures data locality better than the
synthetic data. In Figure 19a and 20a, we noticed that the
normalized number of memory transactions drops when the
batch size increases. We find that the dense GEMM suffers
more with increased batch size. When we increase the batch
size to be n times larger, the activation maps grow by a
factor of n. The compaction engine can effectively alleviate
the extra pressure placed on the memory system given the
same hardware configuration, reducing the number of memory
accesses and caching the compacted data in the prefetch
buffer.

7.2 DNN Training Speedup Modeling and Estimation

In this section, we discuss our model to accelerate DNN
model training and estimate the benefits of Spartan for DNN
training.

One challenge we experienced in this work is that the sim-
ulation of a full model training is extremely time consuming.
Even equipped with a state-of-the-art GPU simulator such as
MGPUSim [42], one training iteration of a full DNN model
can take more than a day to complete. However, simulating
one epoch of training using the ImageNet dataset (10,000 it-
erations) would take more than 27 years to complete. Second,
running simulation of a full model is not needed. As pointed
out in previous DNN acceleration studies [21], the convolu-
tional layers dominate the execution time. The speedup of the
convolutional layers can alone serve as a reliable predictor of
the overall training performance.

To estimate the overall training performance, we capture
a model to calculate the speedup for DNN training using the
compaction engine. We formalize the model in Equation 1.
Equipped with this model, we can easily compute the poten-
tial benefits of Spartan across an arbitrary number of training
iterations.
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Fig. 16: Performance improvements of convolutional layers in AlexNet.
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Fig. 17: Performance improvements of the convolutional layers in VGGNet-16.
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Fig. 18: Performance improvements of the convolutional layers in ResNet-18.

1

O +
N∑
i

Mi∑
j

P
CiRij

Sij

(1)

Similar to the strong scaling of Amdahl’s law, we propose
a speedup model that also consists of two terms, O and P . The
P term represents the percentage of total GPU kernel execu-
tion that is due to the convolutional layers in the DNN. The
O term is the contributions due to other execution, including
time spent in other layers (e.g., reLU, batch normalization,
pooling, and softmax), overhead of the GPU kernel launch,
and overhead of the sparsity monitor. Ci is the proportion of
execution time for each convolutional layer, where

∑N
i Ci = 1

and N is the number of convolutional layers in a DNN. Rij is
the detected sparsity level across the entire training, where∑Mi

j Rij = 1 is for the ith convolutional layer and Mi is

the detected sparsity level. Sij is the speedup of the ith

convolutional layer given jth sparsity level.
We measure O and P values using DNNMark [46],

while considering the overhead of the sparsity monitor. Ta-
ble 8 shows the measured P values when training AlexNet,
VGGNet-16, and ResNet-18 for the ImageNet dataset, across
5 epochs. The O values can be calculated by computing
1 − P . We also measure the Ci using DNNMark and Rij

using the sparsity monitor. We use the speedup obtained
from the simulator as Sij . Table 8 also includes the esti-
mated speedup (2.29×, 1.87×, and 1.55×) of the training
for AlexNet, VGGNet-16, and ResNet-18, with ImageNet
dataset, across 5 epochs.

7.3 Hardware Cost Estimation
Given that Spartan is a software-hardware co-design solu-
tion, we also need to evaluate the hardware cost involved.
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Fig. 19: Performance metric of Layer C: (a) Normalized num-
ber of transactions.(b) L2 hit rate. (c) Normalized L2 read
latency.

AlexNet VGGNet-16 ResNet-18

P 87.40% 88.58% 82.20%
Speedup 2.29 1.87 1.55

TABLE 8: Measured P values and estimated speedup for
training of AlexNet, VGGNet-16, and ResNet-18, with the
ImageNet dataset, across 5 epochs.

As a major component of Spartan, the sparsity monitor is
implemented in software, so no hardware cost is incurred. The
only component that incurs hardware cost is the compaction
engine. As the storage required by compaction engine (see
Table 4) shares the space with the L2 cache, no additional
hardware cost is needed for storage (though there is some
minor performance overhead due to the logic for data look-
up). For the processing part of the compaction engine, we
need one 1-bit shifter and address calculator (one multiplier
and an adder) for the SIB. We need 16 comparators, 16 FP16
converters, a 16-bit register, a selector and a multiplexer for
each compaction processing unit.

16 32 64 128
Batch Size

0.0

0.5

1.0

No
rm

al
ize

d 
#T

ra
ns

ac
tio

ns dense synthetic real

(a)

16 32 64 128
Batch Size

0.0

0.5

1.0

L2
 H

it 
Ra

te

dense synthetic real

(b)

16 32 64 128
Batch Size

0.0

0.5

1.0

No
rm

al
ize

d 
La

te
nc

y dense synthetic real

(c)

Fig. 20: Performance metric of Conv4 in AlexNet: (a) Normal-
ized number of transactions.(b) L2 hit rate. (c) Normalized L2
read latency.

8 Related Work
Exploiting sparsity (e.g., in weights and activations) to ac-
celerate Deep Neural Networks has been widely discussed in
previous research. This prior work can be divided into two
main categories: 1) accelerating training and 2) accelerating
inference.

Training. Jain et al. [10] proposed Gist, a strategy for
exploiting sparsity of selected activation maps to achieve
efficient data compression for saving memory space. How-
ever, this approach selects the activation maps based on the
assumption that some data may contain a high degree of
sparsity. The authors provide few insights as to how spar-
sity characteristics evolve with training. Their focus is on
their optimizing memory usage and incur a 4% performance
overhead. Dey et al. [47] and Cao et al. [48] present re-
configurable hardware architectures for accelerating training,
which use pre-determined and structured sparsity to lower
memory and computational requirements. The main prob-
lem with the proposed designs is that they cannot capture
dynamic sparsity patterns. Rhu et al. [11] present a general
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purpose compression DMA engine that can be used for high-
performance DNN virtualization. The virtualization strategy
uses the CPU’s memory to increase the available memory
space and improve the overall training performance. Qin et
al. [4] proposed SIGMA, a flexible and scalable accelerator ar-
chitecture, adopting a novel reduction tree microarchitecture
to accelerate irregular sparse matrix operations. However,
SIGMA targets custom accelerator architectures rather than
GPUs.

Inference. Turner et al. [49] and Yu et al. [50] show that
generating sparsity in the network weights can actually hurt
inference performance, which is one of the motivations for
designing specialized accelerators. For example, Han et al. [8]
took advantage of pruned and quantized weights to design an
energy-efficient inference engine for embedded systems, which
was evaluated on nine DNN benchmarks. This work targets
fully-connected layers, though only accounts for roughly 10%
of the overall computation in modern DNNs. Cnvlutin [51] is
an accelerator that follows a value-based approach to dynam-
ically eliminate ineffectual multiplications (those that include
an operand that is zero). However, the sparsity levels observed
by the authors (44% on average) is lower than the sparsity
observed in our study. Minerva [52] exploits observed network
sparsity to minimize data accesses and MAC operations, and
enables low-power acceleration for highly-accurate DNN pre-
diction. While impressive work, this accelerator targets power-
constrained mobile environments. Eyeriss v2 [53] proposes
an accelerator architecture designed for running compact
and sparse (in the weights and activations) DNNs. However,
this accelerator is mainly targeted for compact DNNs such
as MobileNet. Han et al. [9] and Ren et al. [54] present
efficient speech recognition engines that can work directly on
a compressed sparse LSTM model and are implemented using
an FPGA. However these accelerators are specific for LSTMs,
not CNNs. Gray et al. [55] take advantage of the structured
sparsity patterns of computation maps to accelerate inference
with block-sparse matrix operations. However, this approach
is evaluated only with one network model and may incur
accuracy loss.

Each of the previous approaches has its own merits and
limitations when exploiting sparsity. Our framework provides
the following advantages over these works: i) The design of
our sparse monitor is based on insights from an extensive
characterization study on sparsity behavior in the training
process. Therefore, it is able to efficiently and accurately
measure sparsity; ii) The monitoring is done adaptively during
training; iii) The sparsity is measured with a focus on acti-
vation maps instead of weights, meaning no potential model
accuracy loss; iv) Finally, the additional cost for monitoring
the sparsity is negligible. In particular, our novel ELLPACK-
DIB format, combined with our efficient Compaction Engine
hardware, enables us to accelerate sparse matrix operations.

9 Conclusions and Future Work
In this paper, we present Spartan, a framework leveraging
activation sparsity to accelerate DNN training on a GPU. Our
work characterizes the sparsity patterns present in activation
maps during training. We highlight major challenges associ-
ated with using state-of-the-art sparse libraries: 1) the large
overhead of profiling sparsity during training, and 2) the long
latency of dynamic dense-to-sparse conversion.

To address these challenges, we design a novel sparsity
monitor, exploiting the activation sparsity trends during
training. The sparsity monitor can significantly reduce spar-
sity profiling overhead 52.5×, on average, leading to negligible
overhead during sparsity profiling. In addition, we propose
ELLPACK-DIB, a novel sparse format that addresses con-
version overhead, and delivers a customized GEMM library
that works with this new sparse format. To further hide the
conversion overhead, we propose a novel hardware component,
the compaction engine, to dynamically compact sparse data
into ELLPACK-DIB format during run time. We integrate the
compaction engine in an AMD Instinct MI6 GPU, simulated
using MGPUSim. The results show that, for convolutional
layers, we can achieve an average speedup of 3.4× for AlexNet,
2.14× for VGGNet-16, and 2.02× for ResNet-18.

In the future, we plan to perform a broader design space
exploration for Spartan. We also plan to study the impact of
the sparse pattern on performance.
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José Cano received the MS and PhD degrees
in computer science from the Polytechnic Uni-
versity of Valencia (UPV), Valencia, Spain, in
2004 and 2012, respectively. He is currently an
assistant professor with the School of Computing
Science, University of Glasgow, Glasgow, U.K,
where he leads the Intelligent Computing Lab.
He was a postdoctoral researcher with the Poly-
technic University of Catalonia (UPC) between
2012 and 2013, and with the University of Edin-
burgh between 2014 and 2018. He has authored

over 30 refereed publications. His research interest focuses on the
intersection between computing systems and machine learning. He has
served as a co-organizer, as a chair (publicity and session), and as a
TPC in numerous conferences and workshops. He is a member of the
IEEE TPDS Review Board, and the ACM TACO distinguished reviewers
Board. He is member of ACM.

José L. Abellán received the BS, MS, and PhD
degrees in computer science and engineering
from the University of Murcia, Murcia, Spain,
in 2007, 2008, and 2012, respectively. He is
currently an associate professor with the Poly-
technic School, Catholic University of Murcia
(UCAM), Murcia, Spain. Prior to joining UCAM
in 2014, in the summer of 2011, he was a pre-
doctoral researcher at the University of Ferrara,
Ferrara, Italy. From 2012 to 2014, he was a
postdoctoral researcher with the ICSG research

laboratory, Boston University, Boston, MA, USA. He has authored over
50 refereed publications and 1 book. He has served as a TPC, as a Chair
(program, publicity, session, and track chair), and as a co-organizer in
numerous conferences and workshops. He is a member of the HiPEAC,
IEEE, ACM, and CAPA-H networks, and a member of the ACM TACO
distinguished reviewers Board. He was the recipient of a HiPEAC 2011
collaboration grant, the best paper award at IPDPS 2011, and the
HiPEAC 2019 and 2020 paper awards. His research interests include
HW/SW co-design for energy-efficient HPC and edge computing.

David Kaeli received a BS and PhD in Elec-
trical Engineering from Rutgers University, and
an MS in Computer Engineering from Syracuse
University. He is presently a COE Distinguished
Processor on the ECE faculty at Northeastern
University, Boston, MA where he directs the
Northeastern University Computer Architecture
Research Laboratory (NUCAR). Prior to joining
Northeastern in 1993, Kaeli spent 12 years at
IBM, the last 7 at T.J. Watson Research Center,
Yorktown Heights, NY. Dr. Kaeli is a Fellow of

the IEEE and a Distinguished Scientist of the ACM. In 1996, he received
the NSF CAREER Award.


	Introduction
	Motivation
	Activation Sparsity in DNN Training
	Characterization of Sparse Matrix Operations

	Sparsity Monitor
	ELLPACK-DIB Based GEMM
	Compaction Engine
	Overview
	Sparsity Information Block
	Data Search Algorithm
	SIB Management

	Compaction Processor
	Prefetch Buffer

	Experimental Methodology
	Results and Analysis
	Performance Analysis
	DNN Training Speedup Modeling and Estimation
	Hardware Cost Estimation

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Shi Dong
	Yifan Sun
	Nicolas Bohm Agostini
	Elmira Karimi
	Daniel Lowell
	Jing Zhou
	José Cano
	José L. Abellán
	David Kaeli


