
Control Theory for Principled Heap Sizing

David R. White Jeremy Singer
School of Computing Science

University of Glasgow
{david.r.white,jeremy.singer}@glasgow.ac.uk

Jonathan M. Aitken
Department of Computer Science

University of York
jonathan.aitken@york.ac.uk

Richard E. Jones
School of Computing

University of Kent
r.e.jones@kent.ac.uk

Abstract
We propose a new, principled approach to adaptive heap sizing
based on control theory. We review current state-of-the-art heap
sizing mechanisms, as deployed in Jikes RVM and HotSpot. We
then formulate heap sizing as a control problem, apply and tune
a standard controller algorithm, and evaluate its performance on
a set of well-known benchmarks. We find our controller adapts
the heap size more responsively than existing mechanisms. This
responsiveness allows tighter virtual machine memory footprints
while preserving target application throughput, which is ideal for
both embedded and utility computing domains. In short, we argue
that formal, systematic approaches to memory management should
be replacing ad-hoc heuristics as the discipline matures. Control-
theoretic heap sizing is one such systematic approach.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Allocation /
deallocation strategies

Keywords Heap Size; Control Theory; Virtual Machines; Jikes
RVM; HotSpot; Ergonomics

1. Introduction
The dynamic heap size of a garbage-collected program can have a
significant impact on its execution time. We believe that optimiza-
tion of per-program heap size will become more important with the
increasing use of garbage collection (GC) on embedded systems, as
well as the growth of utility computing via the cloud. The dominant
customer billing model for the latter is likely to be based on CPU
cycles and memory space rental [2, 6, 13, 16].

Unfortunately there is no general technique to determine, ahead-
of-time, the expected impact of a particular heap size on the execu-
tion time of a given program. Factors such as the dynamic alloca-
tion behavior of the software, the GC policy of the managed run-
time, and the underlying memory manager in the host OS compli-
cate the relationship between heap size and execution time. Many
programs proceed through distinct phases of dynamic allocation
behavior [15, 26, 28], thus it is important that the heap size adapts
to accommodate shifts in application allocation characteristics.

A good heap sizing mechanism should minimize the overhead
of GC, make efficient use of memory and avoid problems such as

Copyright c© ACM, 2013. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in ISMM’13, , http://doi.acm.org/10.1145/.

Copyright c© ACM [to be supplied]. . . $15.00

paging [36]. Setting a large static heap size is an inefficient use of
memory; this should be avoided.

This paper proposes the use of control theory [24] to adjust heap
sizes dynamically. In contrast to existing, heuristic-based tech-
niques for heap sizing, control theory provides a principled mathe-
matical approach. As virtual machines (VMs) become more sophis-
ticated and widespread, a progression from expert-designed, hand-
tuned heuristics to rigorous autonomic mechanisms is increasingly
appealing.

We implement a particular controller that monitors short-term
GC overhead, and seeks to maintain this at a pre-defined level by
adjusting the heap size accordingly. Using this controller, we are
able to maintain target levels of application throughput. This is
ideal for a high-level quality-of-service agreement, such as might
be required in a utility computing context [25].

With the exception of HotSpot’s ergonomics functionality [30]
most VMs do not provide users with the facility to specify where an
application’s execution should lie on the time-space tradeoff curve.
Alonso and Appel [3] describe the concept of flexible working
sets when employing garbage collection. There is a minimum heap
size below which an application cannot execute, and increasing the
heap size above this value reduces GC overhead, hence reducing
overall application time. Generally the garbage collector is tuned by
an expert, to give some average, acceptable level of performance.
Unless a fixed heap size is set, the user has no fine grained control
over tradeoff between memory and execution time. Whilst HotSpot
does provide this functionality, its implementation shares some of
the weaknesses of other heap sizing mechanisms, as we discuss
later.

This paper makes two main contributions:

1. It motivates and describes the use of a proportional-integral-
derivative (PID) controller for runtime heap sizing, including
high-level theory and low-level implementation details in Jikes
RVM.

2. It provides an empirical characterization of PID controller heap
sizing on a selection of DaCapo benchmark workloads, and
compares full-heap GC behavior with Jikes RVM and HotSpot
ergonomics heap sizing mechanisms.

2. Heap Size Sweet-Spots
If we consider the large-scale behavior of software, then we may
assess the impact of a (fixed) heap size on execution time. Figure 1
illustrates this relationship on a Linux system limited to 300MB
RAM by a kernel boot parameter, running Jikes RVM with the
antlr and lusearch benchmarks from the DaCapo suite (v2006-10-
MR2 [9]) using a full-heap mark/sweep collector, default inputs
and 30 repetitions. There is a balance to be struck between a small
heap, where GC overhead is high, and a large heap, where paging
may occur if limited memory is available. Each graph shows a

2000

2500

3000

3500

4000

4500

5000

5500

20 40 60 80 100 120 140 160 180 200
Heap Size (MB)

E
xe

cu
tio

n
T

im
e

(m
s)

(a) DaCapo 2006 antlr

7000

8000

9000

10000

11000

12000

13000

40 60 80 100 120 140 160 180 200
Heap Size (MB)

E
xe

cu
tio

n
T

im
e

(m
s)

(b) DaCapo 2006 lusearch

Figure 1: Heap size vs execution time for two benchmarks

‘sweet-spot’ at a specific heap size, where overall execution time
is minimized. This behavior is also reflected in realistically sized,
production configurations [10].

This curve will be affected by the VM’s environment, partic-
ularly the amount of available memory. Issues with paging fre-
quently occur when many applications are executing concurrently
on a machine, e.g. a compute node in a cloud data center, or where
memory is limited in embedded systems, e.g. an Android device.

While these graphs give us an idea of ‘optimal’ heap size if we
were forced to select a constant value ahead-of-time, in practice the
problem is dynamic and this optimum changes at different points
during execution. Therefore it is essential that any heap sizing
mechanism is adaptive and able to respond efficiently to changes
in application behavior.

3. Heap Sizing in Deployed VMs
In this section, we survey how two popular production VMs adapt
their heap sizes. This is generally a combination of both user-
specified thresholds (such as the -Xmx maximum heap size parame-
ter to the Java VM) and hand-crafted heuristics encoded within the
memory manager.

As a rule, such systems tend to be improvized, in that they
are not based on any underlying theory. Further, they are usually
conservative in that they prefer to increase heap size rather than
decrease it, and often at a slower rate than may be desired.

3.1 Jikes RVM
Throughout this paper, we use Jikes Research Virtual Machine
(RVM) [4, 5], in combination with the Memory Management
Toolkit (MMTk) [8] as our experimentation platform. First, we
consider how it currently implements heap resizing. After each GC,
the HeapGrowthManager class is queried to determine a suitable

Heap Occupancy

G
C

O
ve

rh
ea

d

0.00 0.10 0.30 0.60 0.80 1.00
0.00 0.90 0.90 0.95 1.00 1.00 1.00
0.01 0.90 0.90 0.95 1.00 1.00 1.00
0.02 0.95 0.95 1.00 1.00 1.00 1.00
0.07 1.00 1.00 1.10 1.15 1.20 1.20
0.15 1.00 1.00 1.20 1.25 1.35 1.30
0.40 1.00 1.00 1.25 1.30 1.50 1.50
1.00 1.00 1.00 1.25 1.30 1.50 1.50

Table 1: Jikes RVM heap sizing look-up table

0

0.2
0.4

0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.9

1

1.1

1.2

1.3

1.4

1.5

Garbage Collection Load

Jikes Heap Resizing Ratio Function

Live Ratio

Figure 2: Visualizing the Jikes RVM heap resizing function

resize ratio for the heap based on two variables: these are ‘short-
term GC overhead’, g, and ‘current live ratio’, l. The resize ratio
r(g, l) is a function of these two variables. The function inputs are
calculated immediately after each GC has completed, as follows:

g =
Time taken for the most recent GC

Time since the last GC
(1)

l =
Amount of live data on the heap

Current heap size
(2)

The resize ratio r is calculated by using these two values as
indices into a look-up table. One version of the RVM look-up
table is illustrated in Table 1. The two variables are matched to
the values in bold, which represent interval boundaries, and the
resize ratio is generated based on this look-up table with some
interpolation. By calling the RVM source from Matlab, we can
visualize this function, as shown in Figure 2. The visualization
shows that this function is essentially a discrete valued function
using linear interpolation between values. We can also see the
discontinuities in the function, due to a small interpolation bug in
the source code.

The values in the look-up table are hardcoded in the VM and,
according to a private communication [18], were the result of trial-
and-error experimentation several years ago. We observe that:

• The system is not goal-oriented; there is no target state that it
aims to achieve, for example a particular heap size or value of
g.

• The mechanism is stateless: i.e. it does not take past behavior
into account.

• Trial and error is not an objective approach to determining good
coefficients.

• Hand-crafted heuristics are susceptible to programming errors,
unanticipated situations and pathological cases (for example,
the programming error above is only exposed when the input
variables are specific values).

• There is no evidence to believe that the heuristic is still valid.
The GC implementation has changed considerably since the
table was established. Why should we believe it still works?

Perhaps in view of these limitations, the resize function is
clearly conservative. When profiling the behavior of DaCapo
benchmarks, we have found this that the heap is rarely shrunk
significantly, and heap size growth lags behind application behav-
ior.

3.2 HotSpot
Since version 1.5, the Sun (Oracle) HotSpot JVM features an adap-
tive heap sizing policy known as GC ergonomics [30]. The user can
specify ahead-of-time values for three targets: (1) maximum GC
pause time goal, (2) application throughput goal (i.e. proportion of
overall execution time spent in application code), and (3) minimum
heap size. According to Sun’s published documentation [30], the
ergonomics system applies the following heuristics (in this order).
(a) If the GC pause time is greater than the pause time goal then de-
crease heap size to attain the goal. (b) If the pause time goal is being
met, then consider the application’s throughput goal. If the appli-
cation’s throughput goal is not being met, then increase heap size
to attain the goal. (c) If both the pause time goal and the through-
put goal are being met, then decrease heap size to reduce memory
footprint.

The heap sizing policy is implemented in the AdaptiveSize-
Policy class and its subclasses. We have examined code from the
OpenJDK v6 open-source release: it consists precisely of the above
series of hard-coded, case-based rules. The heap resize ratios are
less flexible than for Jikes RVM. In steady state, the heap growth
ratio is fixed at 1.2 for increases and at 0.95 for decreases. In the
early stages of execution, there is a supplementary value added to
the growth ratio for increases, so the first time the heap grows the
ratio will be 2.0. However this supplementary value decays towards
0 as further GCs occur. In summary, HotSpot heap sizing is more
goal-oriented than Jikes RVM, but still lacks a rigorous mathemati-
cal model. Vengerov [33] notes that the ergonomics policy is based
on ‘some heuristic rules that do not guarantee that the GC through-
put [or pause time] will actually be maximized [or minimized] as a
result.’

4. Heap Sizing as a Control Problem
We propose that heap sizing should be treated as a control problem.
Control theory is a well-established branch of engineering that can
be used to vary an input control signal to a system in order to
obtain a desired output signal. Commonly, feedback is employed
in what is known as a closed-loop controller. Figure 3 illustrates an
abstract control system. The deviation from the desired behavior
(the error of the output when compared to a reference signal) is
used as a feedback signal to adjust the input control signal. We rely
on existing work in control theory to produce a simple, elegant,
efficient and well-founded solution to the problem of adaptive heap
sizing.

A change in the system, such as a software phase change or
increased demand from other applications, can be considered as a
change in the optimal heap size. In this sense, we are attempting to
control a dynamic system such as those that may be encountered in
the field of control theory. The controller must respond effectively
to changes while ignoring spurious noise. Figure 4 illustrates this
situation.

������

��	�
����
��������� ����

������

��	�
����

� ����������

�	��	��

��
����	�� ��
����	��

�����

���	�
���

����	�

Figure 3: A closed-loop control system

Memory
Allocated

Heap Size Response
Time

Overshoot

Old Optimal
Heap Size

New Optimal
Heap Size

Figure 4: Heap sizing as a control problem

Traditional control theory is concerned with designing effective
controllers with regard to the following characteristics:

• Steady-state error: a system is said to have zero steady state
error if it eventually settles to the target value. In the case of a
mechanical lift system we would wish to have it stop exactly at
each floor. In the case of our system, we may expect to settle at
the desired value of g (for instance).

• Transient response characteristics: i.e. how quickly a system
responds to an input. In the case of a lift, if the response time
is slow the passengers may grow bored waiting to reach their
destination. However, they will feel uncomfortable acceleration
if the response time is too fast. In this terminology, current heap
sizing methods can be considered conservative, in that they
have a long response time.

4.1 Formulating the Problem
To consider heap sizing as a control problem, we must decide upon
the input control variable we will use to manipulate the system,
and the output measurement variable we will use as feedback to
modify the control variable. Our chosen control variable is the
heap resize ratio and in this work we will focus on g, the short-
term GC overhead as our measurement variable (alternatives might
include mark/cons ratio). This decision is partly based on the use
of g in the existing Jikes RVM heap sizing function and in the
ergonomics system provided by HotSpot. Any deployed controller
is likely to consider at least one other measured variable, but for the
moment we focus on g only. Note that we intend to demonstrate the
effectiveness of control theory in regulating the system, rather than
recommending one variable over another.

We make one modification to the GC overhead variable, i.e. we
calculate a median average over a sliding window of size five. The
sliding window is initialized with the GC overhead target value in
all five slots, and then updated with the most recent GC overhead

measurement in a FIFO style after each GC. This filtered average
was implemented after an empirical evaluation found excessive
noise in the GC overhead signal for controller tuning (see later,
Section 5.3). The sliding window average dampens this signal
somewhat. We denote this average as ĝ. HotSpot employs a similar
smoothing mechanism via its AdaptiveWeightedAverage class.
It computes average GC overhead x in terms of most recently
measured GC overhead g via the recurrence relation xn+1 =
αg + (1 − α)xn. The default α value is 0.5. Such exponentially
decaying sample calculations are common for lightweight overhead
management in software systems, e.g. QVM [7].

Controller design usually considers the evolution of the con-
trolled system in the time domain (before moving to the Laplace
domain). However, we adopt memory allocated as a proxy for time,
due to the variable nature of execution time across different proces-
sors. This is common practice in GC analysis literature ([22] p145).

5. Designing a Heap Size Controller
There is limited existing work on the mathematical characteriza-
tion of heap sizes for Java applications [32], and it is not clear
whether such formulations are generally applicable. It appears that
the equations describing heap size are tied to a particular system
configuration, for a fixed benchmark/input combination, with no
external dynamic variation. Instead we chose to treat the system as
a black box, and apply a popular and robust controller known as a
PID (proportional-integral-derivative) controller [14, 24].

We attempt to achieve and maintain a target GC overhead g∗ as
set by the user. Thus we do not model the system using differential
equations (for example), but rather we rely on empirical work to
tune the controller to the system. Similarly, we do not consider the
application of more sophisticated control methods such as a state-
space controller or the formulation of the problem as one of optimal
control. These may prove useful avenues for further research.

In our implementation, a decision about resizing the heap only
occurs immediately after a GC. This is consistent with the standard
Jikes RVM behavior. This ensures that we isolate the effect of the
controller as the single change to the system.

5.1 PID Controller
5.1.1 Why a PID Controller is Appropriate
The PID controller is an ideal selection for this problem; it offers a
three-term controller with zero-steady state error provided by extra
integral action and is proportionate to the time history and predicted
progression of the system response. Additionally it requires no
model of the system, in effect performing black-box control, albeit
one that is tuned rather than designed for the system.

5.1.2 PID Controller Theory
PID controllers implement a control technique that builds upon
compensator design. It used both proportional plus integral and
proportional plus derivative control to achieve improvements in
steady-state error and transient response time. A PID controller
uses the following time-domain equation:

u(t) = Kc

(
ε(t) +

1

Ti

∫ t

0

ε(t) dt+ Td
dε(t)

dt

)
+ b (3)

The PID controller operates on an error signal ε(t), developed
from the difference in the system input and output. This error value
is minimized by the three terms in the PID equation, which adjust
how quickly the controller reacts to a change in input, and therefore
a change in the error signal. The proportional term Kc provides a
term which is a linear multiplier of the error value at the current
time-step. This is a simple traditional gain control block. The value

of this gain adjusts the responsiveness of the controller and there
is a distinct trade-off that must be made: too small a value and the
system will respond slowly to an input, but too large a value and the
system will become unstable due to a phase inversion producing
positive rather than the desired negative feedback and thus signal
amplification rather than reduction.

The integral component, Ti, controls responsiveness to the time
history of the error signal. If the error signal is growing, it provides
an extra gain relative to the summation of the duration and mag-
nitude of this error. This helps provide an extra boost in reducing
the error to zero. As the integrative term only uses time history, a
high value may well produce overshoot in the desired value result-
ing in the system hunting for and oscillating towards a zero error.
Due to the introduction of an integral term this reduces any steady-
state error to zero. Any controller lacking an extra integral will con-
tain a steady-state error, a constant difference between desired and
achieved value when the system is allowed to settle.

The differential component, Td, controls responsiveness to a
predication made about the error signal. This helps add stability
and make the system more responsive to changes that diverge from
a zero steady state error. The derivative within the calculation
makes it very susceptible to measurement noise on the output.
The differential could produce a much larger signal that the actual
system response.

Our control signal, u(t), is the heap resize ratio at time t, i.e.

new heap size = u(t)× old heap size (4)
The control signal u(t) is given relative to a setpoint of b,

which in our case is a unitary resize ratio. The error measure
ε(t) = g∗− ĝ(t) is the deviation at time t from the desired garbage
collection overhead g∗. This error is calculated at the end of each
garbage collection, since g and hence ĝ only change after a garbage
collection event.

The constants Kc, Ti and Td control a proportional, integral
and derivative response to the error signal. The balancing of these
constants defines the controller behavior. Kc is referred to as the
overall ‘gain’ of the controller.

5.2 Controller Implementation
We instrumented the MemoryManager and HeapGrowthManager
classes from Jikes RVM and MMTk respectively to analyze the
behavior of the existing system and to allow us to perform the
design and tuning of our controller. In terms of the PID itself, we
made the following changes:

1. The MemoryManager class was modified to keep a running
count of total bytes allocated, to serve as a proxy for time.

2. The HeapGrowthManager class was modified to measure,
record and transmit values for the short-term GC load to the
PID controller, along with the count from MemoryManager.
This class also maintains a sliding window to calculate average
value ĝ.

3. The HeapGrowthManager class was also modified to use the
PID controller when considering a heap resize. Any resizing
respects the maximum and minimum heap sizes as specified
in the boot image and commandline parameters of the VM.
When heap size hits the lower or upper value, the PID controller
integral term is reset to zero to prevent integral windup, which
causes errors when signals are clipped at boundary values.

4. A PID class was created to maintain the controller operation.

A patch adding this controller to Jikes RVM is available online [1]
along with our source code, experimental scripts, analysis scripts
and output data.

5.3 Controller Tuning
The tuning process aims to tailor the controller to the characteristics
of the underlying system. We use the empirical tuning method by
Ziegler and Nichols [38] to determine the constants used in the PID
controller. This involves controlling the system with no integral or
derivative component. The gain Kc is adjusted until it reaches the
ultimate gain Ku, when the output signal begins to oscillate with
period Tu. The parameters for the PID controller in Equation 3 can
then be calculated as shown below:

Kc = 0.6Ku

Ti = 0.5Tu

Td = 0.125Tu (5)

This method is not favored for mechanical systems where there
is a risk of damaging the system by applying excess strain in reach-
ing the point of oscillation. This is especially true of high frequency
oscillations, which could damage mechanical components. Also,
the onset of the oscillations may prove difficult to identify if they
have a long time period. Additionally sharp-fronted input signals
may cause excessive strain by exceeding rates of demands on the
system, e.g. consider the situation when turning a car into a corner,
mechanical limitations will mean that too high a rate of turning
force from the driver will result in loss of control.

However this is an ideal approach for a software system, where
there is less concern about mechanical strain. Though this method
provides no guarantees about whether control of the system will
be optimal, rather it provides a good rule of thumb tuning pro-
cess for a system to be controllable without knowledge of the un-
derlying system model. The trade-off with developing the control
this way means that there is no guaranteed response, as we have
not developed the controller with any particular desired dynamics
in mind. Additionally the non-linearities in the underlying system
will change the dynamics of the controller response across the op-
erational range meaning the controller will behave with different
responses in different regions of operation.

6. Evaluation
6.1 Setup
In all these experiments, we execute the FastAdaptiveMarkSweep
configuration of Jikes RVM hg tip of 25th March 2013 with the
GNU Classpath library. We used the simple mark-sweep GC in
order to best expose the behavior of the PID controller (and other)
heap expansion managers. In particular, at this stage we wanted to
avoid any complexities of separately controlling the size of more
than one space (as would be necessary for a generational GC). As
above, the test machine is lightly loaded (although the load should
not affect our results provided that paging of the heap does not
occur), Mac OS X 10.8.2, 2GHz quad-core Intel Core i7, 4GB
1333MHz DDR3. In the interest of repeatability, we provide all
our code, scripts and data online [1].

We first run experiments using individual benchmarks from
the DaCapo suites with large inputs, and then create a ‘phased’
benchmark for further evaluation in Section 6.5. We use 3 bench-
marks from the DaCapo 9.12 suite and 8 benchmarks from the Da-
Capo 2006-10-MR2 suite; thus we used 11 benchmarks from the
25 in the suites. Of the 14 excluded, 10 were not used because the
Jikes RVM or the supporting Classpath library were incapable of
executing the benchmarks. A further 3 were not memory intensive
enough to provide sufficient data, and one was too slow and mem-
ory intensive to use efficiently. Full details are available online [1].

DaCapo v. Benchmark Target g Kc Kc/Ti KcTd

2009 pmd 0.09 6.6 0.01 1300
sunflow 0.03 9.0 0.03 750
xalan 0.04 8.4 0.02 1100

2006-10-MR2 bloat 0.11 6.0 0.02 620
eclipse 0.14 5.4 0.01 810
fop 0.06 7.8 0.01 1300
jython 0.21 4.8 0.00 1200
luindex 0.09 7.2 0.06 230
lusearch 0.05 5.4 0.01 980
pmd 0.15 5.4 0.01 950
xalan 0.04 8.4 0.01 1820

Table 2: Target GC Overhead Values and Tuned PID Parameters for
each Benchmark

6.2 Experiment A: Establishing Realistic Overhead Targets
We ran each benchmark on the standard RVM for an unlimited
number of iterations, until 100 garbage collections had been com-
pleted, with the heap size limited to the range [50, 250MB]. The
average GC load in these runs was calculated, and subsequently
used to provide a realistic target value for the PID in controller in
Experiment C. Table 2 shows the resulting target values. Each value
is the median of our ‘sliding window’ GC overhead ĝ, hence each
value in the table is actually a median of medians.

6.3 Experiment B: Tuning the PID Controller
Next, we enabled the PID controller and ran the same benchmarks
in order to follow the Ziegler-Nichols method of PID tuning as
described in Section 5.3. The heap size was limited to [50, 500MB],
and we increased the gain Kc until the system began oscillating
around the goal values derived in Experiment A. Figure 5 gives
an example of an oscillating system; the quality of the oscillations
achieved varied between benchmarks, and the noise in the signal
made tuning a subjective and imperfect process.

We took three measurements of the period for each benchmark
(example shown in Figure 5) and took the median period as our
final measurement. This allowed us to calculate coefficients for the
PID equation on a per-benchmark basis. Note that if we were to
deploy the PID controller generally, we would choose an average or
other summary statistic of these values, but here we were interested
in (i) a limit study of the optimal application of the technique, and
(ii) whether tuning varies with the application.

6.4 Experiment C: Evaluation
We then enabled the PID controller with the coefficients derived
from Experiment B; we set the goal value g∗ of the controller to
be the target values from Experiment A. The results for the eleven
benchmarks are given in Figure 6.

There is a pair of graphs for each benchmark: the top graph of
a pair shows how the garbage collection overhead varies with time,
as the PID controller attempts to achieve the designated target. The
bottom graph of a pair shows how the heap size is changed to
achieve this goal. Each point represents a single garbage collection.
Note that the graphs have different scales.

The PID controller adjusts the size of the heap in response to
any deviations from the target GC overhead. Over time, we would
expect adjustments to decrease provided that the software does not
exhibit large variations in memory consumption. Thus, a smoother
graph on the left should be reflected in a converging heap size on
the right; this is what we see.

For the 2009 and 2006 xalan benchmarks the PID controller
rapidly reduces the error and converges the heap size to a reason-

1000 2000 3000 4000 5000

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

Tuning: bloat gain=10

Time (MB)

g

Target g

Figure 5: Experiment B: Example of an Oscillating System During
Controller Tuning

able value. Note the decreasing amplitude as time progresses for
both xalan graphs. There is an initial start-up period, which varies
in length between the two. Similarly, the 2009 pmd and 2006 fop
benchmarks, for example, settle well and the PID maintains a low
error.

In contrast, the 2006 bloat and 2006 jython benchmarks are less
stable and result in dramatic changes in heap size; the PID con-
troller struggles to reduce the error that results from large temporal
variations in GC overhead. The PID has a natural responsiveness
defined by its parameters; in this case the PID provides very light
damping which results in the poor, oscillating, response.

In these experiments, we allowed the PID to resize the heap
almost without restraint, and we apply the calculated resize at ev-
ery possible opportunity (i.e. immediately after every GC event).
However, the main purpose of the PID is to provide a better cal-
culation of what the heap size should be, rather than determining
how frequently we resize the heap. Hence, it is possible to imag-
ine subsampling the PID output, i.e. only executing a subset of the
resizes indicated by the lower graphs. This would lead to a more
stable heap size, at a potential cost of reducing the responsiveness
of the PID and increasing deviation from the target g∗ value. An-
other way to reduce the variation in heap size would be to further
smooth the measurement of GC overhead, by further filtering of g.

To summarize, the PID works well at controlling the median
GC overhead, but when g is subject to a large amount of variation,
heap size will also vary greatly. This is likely due to high frequency
content in the input signal causing some instability in the controller,
which could be rectified by using a slightly smaller gain at the
potential expense of some responsiveness. Alternatively it may
be necessary to incorporate further control logic surrounding the
PID or more intensive filtering, to find a balance the stability of
heap size versus the efficiency gains of using a more responsive
controller.

6.5 Experiment D: Comparative Evaluation on Phased
Benchmark

In this study, we compose two DaCapo 2009 benchmarks to in-
duce phased behavior. The artificial workload is two iterations of
xalan followed by two iterations of sunflow, both with large in-
puts, The sequence is repeated many times, within the same VM
instance. This behavioral profile may be similar to a Java applica-
tion server which runs diverse jobs. Our objective is to provide an
empirical comparison of different heap sizing mechanisms: default
RVM/MMTk, Ergonomics, and PID controller.

We run all the phased benchmark experiments with the modified
Jikes RVM build outlined above, using a full-heap mark/sweep
GC. We set the initial and minimum heap size to 50MB, and the
maximum heap size to 500 MB. We run each phased benchmark
test for 500 full-heap GCs, which is always enough to change phase
from xalan to sunflow several times.

For the RVM/MMTk default heap sizing policy (as outlined in
Section 3.1) there are no parameters to set apart from the minimum
and maximum heap size.

For the Ergonomics policy, we implement a simple case-based
ergonomics scheme (as outlined in Section 3.2) in Jikes RVM. We
use the same hard-wired parameters as in HotSpot, The full source
code for this cut-down ergonomics reimplementation is available in
our online repository [1]. Our ergonomics system does not support
a GC pause time goal since we have no nursery generation to resize,
but specifies an application throughput goal (from which we derive
a GC overhead target) and a minimum and maximum heap size.

For the PID controller, we initially used the mean value of the
corresponding PID parameter settings for xalan and sunflow as
reported in Table 2. However we have reduced the proportional
controller gainKc to prevent the system clipping; this aids stability.
We have reduced Kc to 0.75 times the mean value of xalan and
sunflow gains from Ziegler-Nichols tuning, to iterate towards more
desirable behavior. This is a common process in controller design,
especially for non-linear systems where some manual tuning is
often necessary to produce improved responses.

We set the GC overhead target g∗ to 0.05, which is a represen-
tative value. We use this g∗ value for both the PID controller and
the ergonomics mechanism.

Figure 7 shows how the heap size changes over time with each
policy. Workload phases are clearly marked on the graph. From
the graph, we see that Ergonomics and PID heap sizing are more
responsive than Jikes RVM. This is particularly noticeable at the
beginning of a phase. Further, we see that Ergonomics is more con-
servative than PID in its heap size decrease actions (PID generally
decreases earlier and further). Finally, there is a memory leak in
this phased benchmark since the overall trend for all policies is to
converge on the maximum heap size. This is caused by repeated
classloader and recompilation activity bloating the immortal data
region.

6.6 Discussion
One might ask why we did not use a replay compilation methodol-
ogy when generating these heap sizing graphs. Our answer is that
we want to demonstrate that our PID controller can be deployed
in realistic (i.e. adaptive compilation) scenarios, rather than con-
strained experimental environments. Rather than steady state be-
havior, we are interested in the dynamic unstable behavior of ini-
tialization and phase change. In real use, the adaptive compiler op-
erates and affects heap expansion. We did not want to ignore this.

Similarly, one might ask why the results for each heap sizing
policy are not drawn from multiple runs, and displayed with con-
fidence intervals. The difficulty is that, in Jikes RVM, GC does
not occur deterministically in relation to memory allocation (even
when replay compilation is enabled). So each run of a benchmark

●●●

● ● ●

●●●

● ●●●

●●

●

●

●●

●●

●● ●●

●●●

●●

●●

●●

●

●

●●●●
●●
●●

● ●

●●●
●
●●●

●
●
●●

●●●

●●●●

●
●●●●

●●●●●●●●●●
●
●●●

●●●
●
●●●●

●●●●●
●●●●

0 5000 10000 15000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time (MB)

g

(a) GC Overhead for DaCapo 2009 pmd

●●

●●●

●

●

●●

●
●●

●

●

●

●●

●●
●

●

●●●●●●

●

●●●

●
●

●

●●

●

●

●●●●●●●

●

●

●

●
●
●
●●

●●●●●
●●●●

●●●

●●

●

●

●

●●●

●

●
●

●●

●

●

●

●●

●

●●●

●
●

●

●

●●●●

●

●

●
●●

0 2000 4000 6000 8000

0.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0
0.

04
5

Time (MB)

g
(b) GC Overhead for DaCapo 2009 sunflow

●●

●●●

●

●●●
●

●

●

●

●●●

●●●

●●
●
●

●

●

●

●●●

●

●●●

●●●

●

●●●●
●●

●
●●●●

●●●
●

●●●
●●●

●●●●●●●●
●●●●●

●
●●●●●●●

●●●●
●
●●●

●●●
●
●●●●

●

●●●

●

0 2000 4000 6000 8000 10000 12000

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Time (MB)

g

(c) GC Overhead for DaCapo 2009 xalan

●●●●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

0 5000 10000 15000

10
0

20
0

30
0

40
0

50
0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(d) Heap Size for DaCapo 2009 pmd

●●●

●

●

●●

●●

●●●●

●

●

●●

●

●●●

●●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●

●

●●
●●●

●●●●●●●●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

0 2000 4000 6000 8000

50
10

0
15

0
20

0
25

0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(e) Heap Size for DaCapo 2009 sunflow

●●●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●●
●

●
●

●
●
●
●
●●

●
●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●●●●

●

●

●

●

●
●

●

●

●

0 2000 4000 6000 8000 10000 12000

50
10

0
15

0
20

0
25

0
30

0
35

0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(f) Heap Size for DaCapo 2009 xalan

●●

●●●

●●●

● ● ●

●●●

●●●

●●●

●● ●

●●●

●●●

●●●

●●●

●

●●

●

●

●●
●●

●

●

●●

●●

●

●

● ●

●●

●

●

●●

●

●●

●●●

●

●●●

●

●

●●●

●● ●

●●●

●●●

●●●

●●●

●●●●

● ● ●

●●●

0 2000 4000 6000 8000 10000 12000 14000

0.
05

0.
10

0.
15

0.
20

0.
25

Time (MB)

g

(g) GC Overhead for DaCapo 2006 bloat

●●

●●●●●

●

●●●

●●●

●

●●
●●

●
●●●

●
●
●●

●

●●

●●

●●●●

●●●

●●●

● ● ●

●●●

● ●●

●

●●

●●

● ●

●

●●●
●

●
●
●

●●●

●

●
●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●● ●

●●●

●

0 5000 10000 15000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time (MB)

g

(h) GC Overhead for DaCapo 2006 eclipse

●●●

● ● ●

●●●

●

●●

●

●

●
●

●●●
●●

●●●●

●●

●

● ● ●

●
●

●

●●●

●●
●

●●
●
●●●●

●●

●●●

●●
●●

●●

●●
●
●
●
●
●
●
●

●

●

●●●

●●●
●●

●●●●●
●●●●●●●●●●●

●

●

●●●
●

●

0 5000 10000 15000

0.
05

0.
10

0.
15

0.
20

Time (MB)

g

(i) GC Overhead for DaCapo 2006 fop

●●●

●

●

●

●

●●

●

● ●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●●

●

●

●●

●

●

●

●

●●●

●

● ●

●

●

0 2000 4000 6000 8000 10000 12000 14000

10
0

20
0

30
0

40
0

50
0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(j) Heap Size for DaCapo 2006 bloat

●●●●●●●●

●

●

●

●

●

●●
●

●

●●●

●
●
●
●
●

●

●●

●

●●

●

●

●

●●●

●●●

●
●
●

● ● ●

●
●

●

●● ●

●

●

●

●●

●

●

●

●

●
●●●●●

●●

●

●

●

●

●

●●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

0 5000 10000 15000

10
0

20
0

30
0

40
0

50
0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(k) Heap Size for DaCapo 2006 eclipse

●●●●

● ● ●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●●

●

●

● ●

●

●

●●

●

●●

●●

●
●●●

●
●

●
●

●

●

●

●

●●

●

●
●●

●

●●●

●
●

●
●

●

●

●

●

●

●
●●●

●
●●

●
●●●

●●
●

●●●●●●●●

●
●

●
●
●
●

0 5000 10000 15000

10
0

20
0

30
0

40
0

50
0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(l) Heap Size for DaCapo 2006 fop

Figure 6: Evaluating the PID Controller on the DaCapo Benchmarks

●●

●●●●
●●

●●

●●

● ● ●

●

●●●

●●●●●●

● ● ●

●

●●

●

●

● ● ● ●●

●●●●

●●●

●●●

● ● ●

●●

●

●

●

●

●

● ●

● ● ●

●●●

● ●
● ●

●

●

●

●●

●

● ● ●

●

●●●

●●●

● ●

● ●

●

●●●

● ●

● ●

●●

0 5000 10000 15000 20000

0.
2

0.
4

0.
6

0.
8

Time (MB)

g

(m) GC Overhead for DaCapo 2006 jython

●●●

●●●●

●

●●

●●
●

●

●

●

●

●●●

●

●●●

●

●
●

●

●

●●
●●●●●

●

●●●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

●
●●●

●

●●●

●●●

●

●●●

●●

●

●●●●

●●●

●

●●●●

●

●●●

●

●●●●●
●

●

●

0 500 1000 1500 2000 2500 3000

0.
06

0.
07

0.
08

0.
09

0.
10

Time (MB)

g
(n) GC Overhead for DaCapo 2006 luindex

●●

●●●

●●●

●

●

●●●

●●●

●

●●●●

●●

●

●

●
●
●

●●
●

●●●

●●●●

●●●
●●●

●●●

●

●

●

●●●●●
●●●

●
●

●

●●●

●

●●●●●●●●
●

●●
●
●

●●

●

●●

●
●

●

●●●

●

●●●●●
●
●●●

●

0 2000 4000 6000 8000 10000 12000

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Time (MB)

g

(o) GC Overhead for DaCapo 2006 lusearch

●●●●●●●

●

●

●

●

●

●

● ●●

●

●●●

●

●

●

●●●

● ● ●●

●●

●

●

● ● ●● ●

●

●

●●

●

●

●

●●●

● ● ●

●

●

●

●

●

●

●

●● ● ● ●

●●●

●● ● ● ●

●

●

●●

● ● ● ● ●

●

●

●

●

●
●

● ● ● ●●

●●●

● ● ● ●

●

0 5000 10000 15000 20000

10
0

20
0

30
0

40
0

50
0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(p) Heap Size for DaCapo 2006 jython

●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●●●●●●●

●●●

●

●●●●●●●

0 500 1000 1500 2000 2500 3000

50
55

60
65

70

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(q) Heap Size for DaCapo 2006 luindex

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
●
●

●●

●

●
●

●●
●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●●●●●

●●●●
●

●

●

●

●

●●●●●●●●●●
●●

●●

●
●●

●

●●●

●

●
●

●●

●●●●●●●●●

0 2000 4000 6000 8000 10000 12000

10
0

20
0

30
0

40
0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(r) Heap Size for DaCapo 2006 lusearch

●●●

●●●

●●●

● ● ●

●●●

● ● ●

●●●

● ●●

●●●

●●●
●
●
●
●●

●●
●●●●

●●●●

●●

●●

●●

●

● ● ●

●●●

● ● ●

●●●

● ●●

●●●

● ● ●

●●●

●● ●

●●●

● ● ●

●●●

● ● ●

●●●

● ●●

●●●

0 5000 10000 15000

0.
1

0.
2

0.
3

0.
4

Time (MB)

g

(s) GC Overhead for DaCapo 2006 pmd

●●

●● ●

●●●

● ●●

●●●

● ● ●

●●●

●● ●

●●●

●● ●

●●●

●●●

●

●
●
●

●

●
●●

●●
●
●●●●●●●●●

●●●●
●●●●●●●●●●

●●
●

●●
●●●●●●●●●●●●●●●●

●●
●●●●●●●●

0 5000 10000 15000

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Time (MB)

g

(t) GC Overhead for DaCapo 2006 xalan

●●●●

●

●

●

●

●

●

● ● ●

●●●

● ● ●

●●●

●● ●

●

●

●

●●●

●
●

●
●●

●●

●

●
●

●

●
●
●●

●
●

●●

●

●

●

●

● ●

●●●

● ● ●

●●●

●● ●

●

●●

● ● ●

●●●

● ● ●

●●●

● ●●

●●●

● ● ●

●●●

●● ●

●●

0 5000 10000 15000

10
0

20
0

30
0

40
0

50
0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(u) Heap Size for DaCapo 2006 pmd

●●●

●

● ●

●

●

●

●● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

●
●●

●

●
●
●

●
●

●

●●
●●

●●●●●●●
●●

●
●
●
●●●●●

●●●●●●
●●

●●
●●●

●
●

●●●●●
●●●●●●

●

●
●
●●●●●●●

0 5000 10000 15000

10
0

20
0

30
0

40
0

50
0

Time (MB)

H
ea

p
S

iz
e

(M
B

)

(v) Heap Size for DaCapo 2006 xalan

Figure 6: Evaluating the PID Controller on the DaCapo Benchmarks (continued)

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

100200300400500

P
ha

se
d

B
en

ch
m

ar
k

C
on

tro
l:

H
S

T
im

e
(M

B
)

HS (MB)

xa
la

n
su

nf
lo

w
xa

la
n

su
nf

lo
w

xa
la

n

Ji
ke

s
P

ID
E

rg
on

om
ic

s

Figure 7: Comparison of three heap sizing policies on a phased benchmark

with a particular heap growth policy will give a different curve,
with points at different x values.

We have deliberately omitted any evaluation of benchmark exe-
cution times with the three heap sizing policies. In truth, they are all
largely similar. The key point is that, to reduce execution time, the
goal-oriented policies (PID, Ergonomics) enable the user to specify
a lower GC overhead target which will result in a correspondingly
larger heap size. Jikes RVM on the other hand has no such facil-
ity, apart from the coarse-grained initial and maximum heap size
parameters.

We measured the overhead of the heap resizing calculation
and found it to be negligible. In a micro-benchmarking test, we
ran 10 million iterations of each heap resizing method, supplying
randomized input. The Ergonomics and PID resizing methods each
took around 1 second to complete 10 million iterations. The default
Jikes RVM resizing method took around 2 seconds to complete 10
million iterations. Jikes RVM takes longer because it does multiple
array lookups for bounding, followed by multiple floating-point
operations for interpolation. However the overhead of a single
resize calculation (which happens once per GC) is minimal in
comparison to the total cost of a GC.

7. Related Work
Heap sizing is a well-studied problem, and many researchers have
attempted to provide better mechanisms. Most of these techniques
have not been adopted by commercial VMs to our knowledge.
(Note that we have already reviewed existing VM techniques in
Section 3.)

7.1 Heuristic Approaches to Heap Management
Brecht et al. [12] discuss the concept of a ‘sweet-spot’ in heap size,
similar to our own discussion in Section 2. They introduce a novel,
heuristic-based, heap sizing mechanism for the Boehm GC. The
heap grows by different amounts, depending on its current size in
relation to a set of threshold values. The threshold values are hand-
tuned for each system configuration, with the aim of reducing GC
overhead while avoiding paging. Note that the heap size is never
reduced; this is a restriction of the Boehm GC [11].

Most recent work on dynamic heap sizing has the explicit goal
of avoiding paging (e.g. [19, 21, 34, 35]). Yang et al. [34, 35] em-
ploy reuse distance histograms and a simple linear model of the
heap required; their approach requires modifications to the under-
lying OS. The Page-level Adaptive Memory Manager (PAMM) at-
tempts to discover the optimal heap size for a number of appli-
cations running on a machine, taking advantage of software phase
behavior [36]. The Isla Vista system uses allocation stalls as a warn-
ing of impending GC-induced paging [19] and resizes the heap ac-
cordingly. Isla Vista uses an additive increase / multiplicative de-
crease heap sizing policy, based on TCP congestion control. The
heap grows linearly when there are no allocation stalls, and shrinks
aggressively as soon as allocation stall activity is detected. Hertz et
al. [21] use a region of shared scratchpad memory to allow concur-
rently executing VMs to exchange page fault and resident set size
information in order to coordinate collections and heap sizes. The
cooperative aspects of the memory manager are encoded using a
fixed set of rules, known as Poor Richard’s memory manager.

Alonso and Appel [3] describe a user-level advice service, that
concurrent garbage-collected ML applications can query to deter-
mine whether to grow or shrink their runtime heaps. When an ap-
plication requests advice, it passes the parameters describing its
current state with respect to GC (e.g. current GC overhead and the
proportion of live data on its heap). The advisor returns a ∆S value
that specifies a heap size change for the application. The advisor
uses a hard-coded, hand-tuned equation to determine values for ∆S

based on this application’s CPU time and memory size, in relation
to the other concurrent applications.

7.2 Mathematical Models for Heap Management
Although it may seem like a somewhat subjective distinction, the
following papers deal with heap resizing using principled mathe-
matical models, rather than arbitrary heuristics.

Sun et al. [31] consider the problem of a single Java application
server that has isolated, per-application heaplets within a single
JVM. Each heaplet’s size can be set independently. They introduce
a simple analytical model, which adapts the size of all heaplets in
order to equalize the GC frequency over all applications.

Tay and Zong [32] demonstrate how to derive a page fault equa-
tion that relates the number of page faults to actual heap size and
resident heap size. Such an equation characterizes the behavior of
a single program run with a specific input, given fixed GC and OS
policies. Tay and Zong introduce a heap sizing rule (an equation
that uses the same parameters as the page fault equation) and pro-
vide a coherent interpretation for its formulation. When the heap
sizing rule is applied, the number of page faults during execution is
minimized. The weakness in this approach is that the equations are
not readily transferable to another situation, i.e. a change in appli-
cation input, or transient system load would necessitate retuning to
generate new parameter values for the page fault equation and heap
sizing rule.

Vengerov [33] derives a mathematical equation to characterize
the throughput (proportion of time spent in application execution
rather than GC, i.e. 1 − g in our notation) of the generational
collector in HotSpot. Based on this model, Vengerov then devel-
ops a mechanism for tuning the GC parameters so as to optimize
the throughput. The major difficulty in estimating and optimizing
throughput in HotSpot arises from its multiple generation spaces
and decoupled GC policies in each space. Vengerov’s work is rel-
evant to ours, in that it controls heap size parameters and seeks
to minimize GC time. However he tackles the problem in an en-
tirely different way, using a white-box approach. As an expert GC
analyst, he constructs a mathematical model of the whole system,
then designs a custom tuning algorithm. We feel that our black-
box approach is simpler. However we have only demonstrated it on
a full-heap collector (i.e. no young generational spaces) where all
throughput measurements are precise.

Singer et al. [27] use microeconomic supply and demand theory
to characterize GC behavior. They apply the concept of elasticity
to heap size, and devise a new elasticity-based approach to heap
expansion. In the reported experiments, heap growth is rapid and
difficult to control. Damping is required: this is not envisaged in
their crude microeconomic framework, but would be implicitly
provided in a PID controller. Another shortcoming of their heap
sizing approach is that a target elasticity value is not an intuitive
parameter for a user or system administrator to set. On the other
hand, a controller target GC overhead is much easier to understand.

7.3 Control Theory for Heap Management
As far as we are aware, there are only two other instances of
control-theoretic approaches to memory resource allocation [17,
29]. These are application-specific optimizations, rather than gen-
eral VM mechanisms.

Storm et al. [29] deal with autonomic database configuration.
They use control theory to implement a self-tuning memory man-
ager that handles adaptive heap sizing for databases. A typical en-
terprise database has distinct heaps for various memory-intensive
features. e.g. compiled SQL cache, buffer pool, sort memory. The
solution proposed by Storm et al. uses a cost/benefit estimation
model for resizing individual heaps, with an overall tuning objec-
tive of equalizing the cost/benefit metrics for all heaps. The tun-

ing is accomplished using a multi-input multi-output (MIMO) con-
troller with an integral control law (cf. the I component of a PID
controller). They enumerate the advantages of a controller-based
tuning approach as (i) fast convergence, (ii) rapid adaption, and
(iii) stable response to noise.

Gandhi et al. [17] use control theory to improve performance
of the Apache web server. The two high-level system outputs that
their controller attempts to optimize are CPU and memory utiliza-
tion metrics. The system administrator must set desired values for
CPU and memory utilization. The two controller inputs are Apache
tuning parameters for (i) the maximum number of simultaneous
clients, and (ii) the pause time on an http client connection before
it is closed. The web server is modeled as a black box, and charac-
terized using experimental data. The controller is a simple MIMO
proportional integral controller (cf. the P and I components in a
PID controller). Controller parameter values are tuned using pole
placement and linear quadratic regulator techniques. There is lim-
ited system performance evaluation in the paper.

We note that the application of control theory to computer
systems, and particularly cloud-based resource sharing virtualized
systems, is a growing area of research activity [20, 23, 25, 37].

8. Conclusion
8.1 Summary
In this paper, we have proposed the use of control theory for
dynamic heap sizing of garbage-collected applications. We have
described the deployment of a PID controller in the Jikes RVM
memory management system. We have characterized the behavior
of this heap size controller on a set of standard Java benchmarks,
and compared it with two existing, heuristic-based heap sizing
mechanisms.

Our goal in employing control theory is as much to provide a
rigorous approach as it is to provide a near-optimal solution. So
long as our controller is robust and competitive with hand-crafted
alternatives, then we propose that its solid foundation should prove
a compelling argument for its adoption.

8.2 Discussion of Limitations
In one sense, it is difficult to make a fair comparison between our
PID controller and the existing heap sizing mechanism in Jikes
RVM, since it is not clear what the current system is trying to
optimize, whereas the PID controller has an explicit goal. We
hope eventually to design a controller that frees the user of the
need to specify a target GC overhead, which will enable a more
straightforward comparison. This may require the application of
optimal control theory.

An obvious limitation is the need to tune a PID controller for a
specific scenario. As we discuss in Section 6.3, the parameter val-
ues are fairly similar across the range of DaCapo benchmark work-
loads. For clearly distinct workloads, one can use gain scheduling
to swap in a new set of parameters. In general, most heuristic-based
approaches require some amount of tuning effort, so this is a com-
mon weakness. All tuning was performed manually in our experi-
ments, however automated PID tuning packages are widely used in
industrial settings.

All the experiments reported in this paper use a full-heap,
mark/sweep GC. This seems to be a useful base case to demon-
strate our new control-theoretic technique. We have not examined
generational copying collection at all. We expect that the same
techniques should be applicable to generational GC, but that the
process of interacting with the controller will be more complex.
We note that both Jikes RVM and HotSpot use their heuristic heap
sizing mechanism for both generational and non-generational GC,
possibly with different growth ratio parameters. We also note that

Vengerov’s work [33] on computing overall GC overhead from
nursery GC overhead may be applicable.

Another potential concern is the possibility of address space
fragmentation caused by excessively frequent heap size changes,
particularly with non-moving collectors. In defense of our scheme,
we observe that all production VMs support adaptive heap sizing,
and there is a general complaint from users that VMs are ‘not ramp-
ing up the heap size quickly enough.’ Further, modern memory
managers like MMTk support the mapping of logical heap spaces
onto discontiguous region in virtual address space.

So far, our controller does not support paging avoidance, i.e. it
does not account for the right-hand half of the sweet-spot curves in
Section 2. The currently deployed Jikes RVM heap resizing mecha-
nism is also oblivious to paging. For future work, we hope to incor-
porate a second controller (using a subsumption model) that will
reduce the heap size if it detects paging activity. Such a compound
controller would drive an application’s heap size towards the sweet-
spot region of execution automatically and adaptively.

8.3 Future Work
In addition to extending our control-theoretic system to handle
generational collectors and paging avoidance, we have a more
ambitious objective.

We envisage a set of VM instances, executing concurrently on
a manycore server. Each VM has its own low-level heap resizing
mechanism, similar to the PID controller described in this paper.
However a higher-level meta-controller is needed at the system
level, to ensure that all the VMs co-operate fairly, or in a manner
that satisfies (possibly diverse) client policies. We imagine this
meta-controller will drive the target variables of the underlying
controllers, using some kind of statistical, economic or game theory
model.

Acknowledgments
We are grateful to Tony Printezis and Mario Wolczko for confirm-
ing our understanding of the HotSpot heap resizing mechanism. We
thank David Matthews and Sophia Drossopoulou for commenting
on an early draft of this paper. We also acknowledge the help of the
anonymous referees.

This research was partly supported by the London Mathemati-
cal Society and the Scottish Funding Council through the SICSA
project.

References
[1] Experimental resources. http://sf.net/p/jikesrvm/

research-archive/40.

[2] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir.
The resource-as-a-service (RaaS) cloud. In USENIX Conference on
Hot Topics in Cloud Computing, 2012.

[3] R. Alonso and A. W. Appel. An advisor for flexible working sets. In
Proceedings of the 1990 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, 1990.

[4] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-
D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srini-
vasan, and J. Whaley. The Jalapeño virtual machine. IBM Systems
Journal, 39(1), 2000.

[5] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar, and M. Trapp. The
Jikes research virtual machine project: Building an open source re-
search community. IBM Systems Journal, 44(2):1–19, 2005.

http://sf.net/p/jikesrvm/research-archive/40
http://sf.net/p/jikesrvm/research-archive/40

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view
of cloud computing. Communications of the ACM, 53:50–58, 2010.

[7] M. Arnold, M. Vechev, and E. Yahav. QVM: an efficient runtime
for detecting defects in deployed systems. In Proceedings of the
23rd ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 143–162.
ACM, 2008.

[8] S. M. Blackburn, Perry Cheng, and K. S. McKinley. Oil and water?
high performance garbage collection in Java with MMTk. In Proceed-
ings of the 26th International Conference on Software Engineering,
pages 137–146. ACM, 2004.

[9] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In Proceedings of the ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA). ACM, 2006.

[10] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B. Moss. Belt-
way: Getting around garbage collection gridlock. In ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 153–164. ACM, 2002.

[11] H.J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807–820,
1988.

[12] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling garbage
collection and heap growth to reduce the execution time of Java appli-
cations. ACM Transactions on Programming Languages and Systems,
28:908–941, 2006.

[13] R. Buyya, S. Y. Chee, and S. Venugopal. Market-oriented cloud
computing: Vision, hype, and reality for delivering IT services as
computing utilities. In Proceedings of High Performance Computing
and Communications, pages 5–13, 2008.

[14] A. Datta, M.T. Ho, and S.P. Bhattacharyya. Structure and synthesis of
PID controllers. Springer, 2000.

[15] E. Duesterwald, C. Cascaval, and Sandhya Dwarkadas. Characterizing
and predicting program behavior and its variability. In Proceedings of
Parallel Architectures and Compilation Techniques, 2003.

[16] D. Durkee. Why cloud computing will never be free. Queue, 8:20:20–
20:29.

[17] N. Gandhi, D.M. Tilbury, Y. Diao, J. Hellerstein, and S. Parekh.
MIMO control of an Apache web server: modeling and controller de-
sign. In Proceedings of the American Control Conference, 2002.

[18] David Grove. Private Communication, 2011.
[19] C. Grzegorczyk, S. Soman, C. Krintz, and R. Wolski. Isla vista

heap sizing: Using feedback to avoid paging. In Proceedings of
the International Symposium on Code Generation and Optimization,
2007.

[20] J. Hellerstein, S. Singhal, and Qian Wang. Research challenges in
control engineering of computing systems. IEEE Transactions on
Network and Service Management, 6(4):206–211, 2009.

[21] M. Hertz, S. Kane, E. Keudel, T. Bai, C. Ding, X. Gu, and J. E. Bard.
Waste not, want not: resource-based garbage collection in a shared
environment. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Memory Management (ISMM).

[22] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Hand-
book: The Art of Automatic Memory Management. Chapman & Hall,
2012.

[23] C. Karamanolis, M. Karlsson, and X. Zhu. Designing controllable
computer systems. In Proceedings of the 10th conference on Hot
Topics in Operating Systems, 2005.

[24] N. S. Nise. Control Systems Engineering. John Wiley & Sons, Inc.,
3rd edition, 2000.

[25] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. Salem. Adaptive control of virtualized resources in
utility computing environments. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems. ACM,
2007.

[26] S. P. Reiss. Dynamic detection and visualization of software phases. In
Proceedings of the 3rd International Workshop on Dynamic Analysis.
ACM, 2005.

[27] J. Singer, R. E. Jones, G. Brown, and M. Luján. The economics
of garbage collection. In Proceedings of the 10th ACM SIGPLAN
International Symposium on Memory Management (ISMM). ACM,
2010.

[28] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selection of
application-specific garbage collectors. In Proceedings of the 4th
ACM SIGPLAN International Symposium on Memory Management
(ISMM). ACM, 2004.

[29] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao, and
M. Surendra. Adaptive self-tuning memory in DB2. In Proceedings of
the 32nd International Conference on Very Large Data Bases, 2006.

[30] Sun. Garbage collector ergonomics. http://docs.oracle.com/
javase/1.5.0/docs/guide/vm/gc-ergonomics.html.

[31] K. Sun, Y. Li, M. Hogstrom, and Y. Chen. Sizing multi-space in heap
for application isolation. In Companion to the 21st ACM SIGPLAN
Symposium on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA). ACM, 2006.

[32] Y.C. Tay and X.R. Zong. A page fault equation for dynamic heap
sizing. In Proceedings of the first joint WOSP/SIPEW International
Conference on Performance Engineering, 2010.

[33] D. Vengerov. Modeling, analysis and throughput optimization of a
generational garbage collector. In Proceedings of the 9th ACM SIG-
PLAN International Symposium on Memory Management (ISMM).
ACM, 2009.

[34] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. Cramm: virtual
memory support for garbage-collected applications. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation.
ACM, 2006.

[35] T. Yang, E.D. Berger, M. Hertz, S.F. Kaplan, and J.E.B. Moss. Auto-
matic heap sizing: Taking real memory into account. In Proceedings
of the 4th ACM SIGPLAN International Symposium on Memory Man-
agement (ISMM). ACM, 2004.

[36] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and M. Ogihara.
Program-level adaptive memory management. In Proceedings of the
5th ACM SIGPLAN International Symposium on Memory Manage-
ment (ISMM). ACM, 2006.

[37] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and
K. Shin. What does control theory bring to systems research? SIGOPS
Operating Systems Review, 43:62–69, 2009.

[38] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic
controllers. Transactions of the American Society of Mechanical
Engineers, 64:759–768, 1942.

http://docs.oracle.com/javase/1.5.0/docs/guide/vm/gc-ergonomics.html
http://docs.oracle.com/javase/1.5.0/docs/guide/vm/gc-ergonomics.html

	Introduction
	Heap Size Sweet-Spots
	Heap Sizing in Deployed VMs
	Jikes RVM
	HotSpot

	Heap Sizing as a Control Problem
	Formulating the Problem

	Designing a Heap Size Controller
	PID Controller
	Why a PID Controller is Appropriate
	PID Controller Theory

	Controller Implementation
	Controller Tuning

	Evaluation
	Setup
	Experiment A: Establishing Realistic Overhead Targets
	Experiment B: Tuning the PID Controller
	Experiment C: Evaluation
	Experiment D: Comparative Evaluation on Phased Benchmark
	Discussion

	Related Work
	Heuristic Approaches to Heap Management
	Mathematical Models for Heap Management
	Control Theory for Heap Management

	Conclusion
	Summary
	Discussion of Limitations
	Future Work

