
Exploiting the Correspondence between
Micro Patterns and Class Names

Jeremy Singer, Chris Kirkham
University of Manchester, UK
{jsinger,chris}@cs.man.ac.uk

Abstract

This paper argues that semantic information encoded
in natural language identifiers is a largely neglected re-
source for program analysis. First we show that words in
Java class names relate to class properties, expressed using
the recently developed micro patterns language. We anal-
yse a large corpus of Java programs to create a database
that links common class name words with micro patterns.
Finally we report on prototype tools integrated with the
Eclipse development environment. These tools use the
database to inform programmers of particular problems or
optimization opportunities in their code.

1 Introduction

Software reuse is the basis of modern programmer pro-
ductivity. At a high level, reuse involves design patterns. A
design pattern is a general solution to a recurring problem.
It provides a template that can be instantiated to specific
cases [5]. At a low level, source code can be reused di-
rectly. Existing functionality can be packaged into libraries
with a well-defined application programmer interface. Al-
ternatively (and more grubbily) code may be cut-and-pasted
from an existing program to a new program. This is the
main thesis of post-modern programming [13]. Why write
a fresh program to solve a problem, when someone else has
already written the same program, or a sufficiently similar
one?

This paper argues that there is another kind of software
reuse, entirely distinct from the above points. Coding con-
ventions should be identified and reused as much as possi-
ble. For instance, in Java, every time one sees a class name
ending with Impl, one expects the class to be an implemen-
tation of an interface or abstract class. The implicit conven-
tion is that many, if not all, of the methods of an Impl class
will override abstract methods from a superclass or inter-
face.

In this paper, we consider conventions that can be ex-
pressed in terms of micro patterns [6]. These are single-
class properties that are succinct, syntactic, non-trivial and
easily verifiable. Section 2.1 explains micro patterns in
more detail. Our hypothesis is that programmers implicitly
expect certain classes to conform to specific micro patterns.
The programmer’s expectation is encoded in the name of
the class. We restrict our attention to the Java programming
language. A recent Gartner report [12] stated that 80% of
the world’s new software is being developed in managed
programming languages like Java and C#. Class names are
verbose and meaningful in Java programs. Names gener-
ally have a form that matches the pseudo regular expression
(adjective)� (noun)+. We refer to the final noun in a class
name as the class name suffix. This is the only part of the
class name that we study in this paper. Section 2.2 explains
this in more detail.

This paper presents a study of Java programs to show
how class name suffixes relate to micro patterns. We exam-
ine the data to infer existing informal coding conventions. It
seems that certain ‘types’ of classes always exhibit certain
micro patterns. Section 3 demonstrates this point on a wide
range of real-world Java programs.

We envisage two main applications of this relationship
between micro patterns and class name suffixes. We have
created prototype versions of these applications, which are
integrated with the Eclipse development environment [1].
The first example is an interactive popup wizard which op-
erates at coding time. As the programmer creates new
classes, the wizard (reminiscent of the late lamented Mi-
crosoft Office Paperclip) suggests properties that this class
should exhibit, based on the relationship between suffixes
and micro patterns as learned from previously seen pro-
grams. The wizard should be able to auto-expand the source
code of the class to satisfy these properties, including anno-
tations, modifiers and code skeletons. The second example
application is a batch processing tool. This operates at code
review time. It postprocesses all the classes and checks to
see which micro patterns they exhibit. It should show which
classes break coding conventions by highlighting violations



and suggesting alterations. Section 4 describes these tools
in more detail.

We anticipate three benefits from these checking tools.

1. Maintaining the status quo. Respect of code conven-
tions ought to reduce the risk of bugs occurring due
to misunderstandings when other programmers main-
tain this source code at a later date. Maintenance pro-
grammers will have certain cultural expectations based
on class names. For instance, a class with the suffix
Constants would generally be expected to contain
public static final fields.

2. The tools may highlight bugs due to bad coding prac-
tice. If a class with a suffix that conventionally ex-
hibits some micro pattern property does not conform,
then perhaps the programmer has mis-coded the class
in some subtle way, and it really should conform to
convention. At the very least, the programmer should
be warned about his non-standard style to avoid prob-
lem (1) above.

3. Some micro patterns give opportunities for code op-
timization. If the tool can identify these micro pat-
terns in the source code with annotations, the compiler
can easily perform the appropriate transformation. It
is helpful for a programmer to know that certain class
properties can improve the performance of generated
code. The tools may be able to provide such optimiza-
tion hints. For instance, the Data Manager micro pat-
tern (see Table 1 for details) is an ideal candidate for
aggressive method inlining. It is helpful for the run-
time compiler to know where optimizations are most
likely to be beneficial. Properly targeted optimizations
drive down the cost:benefit ratio, thus leading to better
performance in an adaptive compilation system.

In summary, this paper makes three main contributions.

1. It presents an extensive study of the correspondence
between micro patterns and class name suffixes.

2. It describes prototype versions of two tools that take
advantage of this correspondence to suggest code com-
pletions or highlight convention violations. These
tools are built into the Eclipse framework.

3. It provides a brief sketch of possible applications of
these tools.

2 Background

2.1 Micro Patterns

Micro patterns are low-level, implementation-oriented
design patterns. Rather than describing an interaction be-
tween classes, a micro pattern is a property of a single

class. A class may exhibit zero or more micro patterns. Gil
and Maman [6] present a catalogue of 29 micro patterns.
These are intended to capture common object-oriented cod-
ing idioms. They comprise characterizations of degener-
ate classes, container classes and inheritance hierarchies.
Each micro pattern specifies a non-trivial, formal condition
on any or all of the attributes, types, name and body of a
class and its components. A micro pattern specification is
mechanically recognisable via simple static analysis tech-
niques.

Consider the Sampler micro pattern as an example. It
defines classes that have a public constructor and one or
more public static fields of the same type as the class.
Such classes provide clients with pre-fabricated instances
of the class as well as being able to make new custom in-
stances. In the Java API, java.awt.Color is a sampler
class. Table 1 shows the full set of micro patterns devised
by Gil and Maman [6].

2.2 Class Names

The standard Java naming convention is to merge
multiple words into a single word, with each word in
‘initial caps’ format [15].1 An example type name is
ByteArrayBuffer. This type is a conjunction of three
words: byte, array and buffer. The last word in a type name
is known as the suffix. We identify the suffix by searching
backward from the end of the type name string, until we
reach a capital letter character or an alphanumeric character
that is preceded by a separator character such as _ or $. The
substring from this position to the end of the string is its suf-
fix. In the above example, the type name suffix is Buffer.
Our hypothesis is that type name suffix is often an indicator
of micro patterns exhibited by that class.

3 Correlation Study

In order to demonstrate that the relation between class
names and micro patterns is valid in general, we must anal-
yse a large and varied corpus of Java programs. Table 2
describes the programs we used for this study. These are
all commonly available industry-standard benchmark suites
and open-source Java applications, that have been used in
previous research-based Java source code case studies.

The total number of classes in this corpus is 29398. The
number of distinct class name suffixes is 4031. These two
numbers make it clear that suffix reuse is common practice
for Java developers.

1also known as ‘Camel Case’.



Micro pattern Definition

D
eg

en
er

at
e

cl
as

se
s

Designator Interface with no members.
Taxonomy Empty interface extending another interface.
Joiner Empty interface joining two or more superinterfaces.
Pool Class which declares only static final fields, but no methods.
Function Pointer Class with a single public instance method, but with no fields.
Function Object Class with a single public instance method, and at least one instance field.
Cobol Like Class with a single static method, but no instance members.
Stateless Class with no fields, other than static final ones.
Common State Class in which all fields are static.
Immutable Class with several instance fields, which are assigned exactly once, during in-

stance construction.
Restricted Creation Class with no public constructors, and at least one static field of the same type

as the class.
Sampler Class with one or more public constructors, and at least one static field of the

same type as the class.

C
on

ta
in

m
en

t Box Class which has exactly one, mutable, instance field.
Compound Box Class with exactly one non primitive instance field.
Canopy Class with exactly one instance field that it assigned exactly once, during in-

stance construction.
Record Class in which all fields are public, no declared methods.
Data Manager Class where all methods are either setters or getters.
Sink Class whose methods do not propagate calls to any other class.

In
he

ri
ta

nc
e

Outline Class where at least two methods invoke an abstract method on this.
Trait Abstract class which has no state.
State Machine Interface whose methods accept no parameters.
Pure Type Class with only abstract methods, and no static members, and no fields.
Augmented Type Only abstract methods and three or more static final fields of the same type.
Pseudo Class Class which can be rewritten as an interface: no concrete methods, only static

fields.
Implementor Concrete class, where all the methods override inherited abstract methods.
Overrider Class in which all methods override inherited, non-abstract methods.
Extender Class which extends the inherited protocol, without overriding any methods.
Limited Self Subclass that does not introduce new fields and all self method calls are to its

superclass.
Recursive Class that has at least one field whose type is the same as that of the class.

Table 1. Gil & Maman [6] classify micro patterns as (a) Degenerate classes and interfaces which
generally do not define any variable or methods, (b) Containment classes which explicitly manage
their internal fields, or (c) Inheritance classes which inherit from other classes.



program version description
Ashes Suite 1st public release Java compiler test programs
DaCapo 2006-10-MR2 Object-oriented benchmark suite
JEdit 4.3 Java text editor application
JHotDraw 709 Java graphics application
Jikes RVM 2.9.1 Java virtual machine, includes classpath library
JOlden initial release Pointer-intensive benchmark suite
JUnit 4.4 Test harness
SPECjbb 2005 Java business benchmark
SPECjvm 1998 Simple Java client benchmark suite

Table 2. Java benchmarks used in correlation study.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  2  4  6  8  10  12  14  16  18  20

fr
eq

ue
nc

y

minimum number of distinct classes in each suffix group

number of suffixes
number of classes

Figure 1. Graph showing how suffix groups
become less significant when they must have
large numbers of classes in the group.

3.1 Properties of Suffixes in the Corpus

Now we consider how the number of suffixes, and the
number of classes with these suffixes, change as we filter
the suffixes based on various properties.

Figure 1 shows the trend as we only consider those suf-
fixes that have a minimum number of different classes shar-
ing each common suffix. A point + at position (x, y) on
this graph indicates that there are y different suffixes in the
corpus that satisfy the property that, for each one of these
suffixes, there are at least x distinct classes that share that
suffix. The sharply decreasing curve shows that only a few
suffixes are shared across many classes. Around half the
suffixes are unique to a single class. From this information,
we deduce that around 50% of suffixes are one-off, and can-
not be used to predict general class properties. Conversely,
the other 50% of suffixes are reused, and can be used to
predict class properties.

Figure 2 shows the trend as we consider only those suf-

fixes that are dispersed across a minimum number of dif-
ferent Java program groups. Note that each row in Table
2 counts as a different program group. Our loose defi-
nition of a group refers to code that is developed or dis-
tributed by a single individual or organization. A point
+ at position (x, y) on this graph indicates that there are
y different suffixes in the corpus that satisfy the property
that, for each one of these suffixes, there are distinct classes
from at least x different program groups that share that suf-
fix. Over 66% of suffixes occur in a single program group.
There may be reuse within this program, but the reuse is
not dispersed to other program groups. This may indi-
cate single-programmer or in-house conventions that are not
widespread. Class properties based on such suffixes may be
useful for that individual or organization, but they are un-
likely to be valuable in a wider context. Conversely, we see
that around 33% of suffixes are present in multiple program
groups. We expect class properties based on these suffixes
to codify community conventions or programmer instincts.
Such properties should be useful in the widest context of
Java programs. In our corpus, the class name suffix List
is most widely dispersed since it is the present in 8 of the 9
program groups we examined.

3.2 Properties of Micro Patterns in the
Corpus

Now we use Gil and Maman’s micro pattern tool to re-
late class name suffixes with micro patterns. The tool is
mp-20060306. This performs a simple static analysis on
Java bytecode class files or jar archives. The tool only takes
in the order of minutes to process all 29398 classes in our
training corpus. For each class, it reports class metadata and
a binary array of 29 values for the micro patterns which this
class exhibits. Entry i is set to 1 if the class exhibits the ith
micro pattern, or 0 otherwise. Figure 3 shows some sample
lines of output from the micro pattern tool.

Table 3 shows that each of the 29 micro patterns is ex-
hibited by some classes in the corpus. The relative preva-



org.apache.xml.serialize.HTMLdtd,dacapo-2006-10-MR2,N,19,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

org.apache.batik.transcoder.svg2svg.SVGTranscoder$DoctypeValue,dacapo-2006-10-MR2,N,2,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0

net.sourceforge.pmd.rules.design.SwitchDensityRule$1,dacapo-2006-10-MR2,N,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

org.w3c.dom.svg.SVGAnimatedPreserveAspectRatio,dacapo-2006-10-MR2,Yes,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0

Figure 3. Extract of text output from Gil and Maman’s micro pattern identifier tool, operating on the
DaCapo benchmark jar archive file. The micro pattern array is shown as elements 6–34 inclusive on
each line of comma-separated values.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  2  4  6  8  10

fr
eq

ue
nc

y

minimum number of benchmarks in which each suffix appears

number of suffixes
number of classes

Figure 2. Graph showing how suffix groups
become less significant when they must be
shared across multiple program groups.

lence of each micro pattern generally agrees with the figures
quoted in Gil and Maman’s original research (Table 4 in
[6]). In addition, we count the number of classes that do not
exhibit any micro patterns. There are 12668 non-exhibiting
classes in our corpus. This accounts for 43% of the total
number of classes, which means that the micro-pattern cov-
erage score for our corpus is only 57%. Ideally this cover-
age figure would be higher, although Gil and Maman report
on some code bases that have even lower coverage scores
so our corpus is not unusual in any sense.

This low coverage statistic does not reduce the signif-
icance of our suffix to micro pattern relationships, since
we consider all classes (including non-exhibiting classes)
in the studies below. Our rules would not admit that a non-
exhibiting class could have a suffix that would definitely
imply the class should exhibit a certain micro pattern. If a
non-exhibiting class did share a common suffix with an ex-
hibiting class, then this would reduce the confidence level
of any rules regarding that particular suffix.

Micro pattern percentage
Limited Self 19.1
Implementor 13.0

Sink 12.6
Stateless 9.0
Overrider 7.7
PureType 6.8

Box 5.0
Compound Box 4.2
Function Object 3.8

Taxonomy 3.8
Extender 3.5
Canopy 3.5

Immutable 3.4
Pool 2.3

Function Pointer 1.8
State Machine 1.7
Common State 1.6
Data Manager 1.3

Recursive 1.2
Cobol Like 1.2
Restricted 1.0

Pseudo Class 0.9
Joiner 0.8

Outline 0.8
Trait 0.7

Sampler 0.6
Augmented Type 0.5

Record 0.5
Designator 0.3

Table 3. Relative frequency of each micro pat-
tern, in relation to the total number of Java
classes in the corpus.



3.3 Correspondence between Suffixes and
Micro Patterns

The key measure is the correspondence between suffix
and micro patterns. Naturally, this is a non-trivial relation-
ship. If we can show that there is some strong correspon-
dence between certain suffixes and micro patterns, then we
have a basis to support our hypothesis, namely: Type name
suffix is often an indicator of micro patterns exhibited by
that class.

Recall from Section 3.2 that 43% of classes do not ex-
hibit any micro patterns at all. On the other hand, some
classes exhibit multiple micro patterns. Gil and Maman
study these details extensively in their introductory paper
on micro patterns [6].

With respect to suffixes, we need to consider all classes
that share a common suffix. The micro patterns exhibited
by the suffix will be the intersection of the sets of micro
patterns exhibited by each class. We actually relax this def-
inition. If a suffix s is shared by 10 classes, but only 9 of
them exhibit micro pattern p, then we say that we have 90%
confidence that p corresponds with s, and so on. As we in-
crease the confidence level, the number of correspondences
drops.

Figure 4 shows the trend in number of correspondences
at various confidence levels. We record the number of corre-
spondences for suffixes that occur in at least n of the bench-
mark groups, for n between 1 and 4. When n is set to 1,
the correspondence may be local to a single benchmark pro-
gram. When n is set to 4, it seems that the correspondence is
widespread, and therefore almost certainly not programmer-
specific. For n > 4, there are only a handful of correspon-
dences.

The message from Figure 4 is clear: even though the
number of correspondences reduces as we increase the con-
fidence and coverage thresholds, there are still some useful
correspondences remaining. In the next section, we present
three of these high-confidence widely dispersed correspon-
dences and endeavour to explain them.

3.4 Benefits of Hindsight

To briefly review our achievement so far: we have anal-
ysed a corpus of Java programs and extracted correspon-
dences between the set of class name suffixes S and the set
of micro patterns MP . Given s ∈ S and mp ∈ MP , a
correspondence (s,mp) may be treated as a rule. The rule
states that whenever a class name ends in s then that class
should exhibit micro pattern mp.

This section considers three example rules that relate
class name suffixes and micro patterns. These rules were
generated from the corpus described above. We aim to show
that the derived rules make sense. They are basically an au-

 1

 10

 100

 1000

 10000

 0.5  0.6  0.7  0.8  0.9  1

nu
m

be
r 

of
 s

uf
fix

 <
->

 m
ic

ro
 p

at
te

rn
 r

ul
es

confidence

n = 1
n = 2
n = 3
n = 4

Figure 4. Graph showing how the number of
micro pattern to suffix relations changes as
we alter the confidence threshold. Note log
scale on y-axis. These tests are for all suf-
fix groups with two or more classes, that are
seen across n benchmark groups, for four
different values of n.

tomated identification of ‘common sense’ that is applied by
software engineers at development time. If, given the hind-
sight afforded by our data mining, the rules make sense to
programmers, then we can have some confidence that any
programmer-help/hints system based on these rules may be
useful. In addition, we suggest potential optimizations that
could be enabled if these rules are observed, and potential
bugs that could be occur if the rules are broken.

3.4.1 Comparable

The Comparable suffix is shared between 10 classes in
two benchmark groups. 100% of these classes exhibit the
PureType micro pattern. This means that the classes only
contain abstract methods. They have no fields or static
members. Effectively, Comparable classes are interfaces
to be implemented.

Possible optimization: The interface membership may
be encoded in a low-level manner, perhaps using spare
bits in the object header. This avoids some of the run-
time overhead associated with object-orientation. Note that
instanceof tests could be optimized in the same man-
ner.

Possible bug: If a programmer broke the convention and
provided a ‘default’ method implementation for a Compa-
rable class, then he may forget to override this method in a
subclass, leading to incorrect behaviour of comparison op-
erations. (Inexperienced Java programmers often make this
kind of mistake with String equality, for instance.)



3.4.2 Assert

The Assert suffix is shared between nine classes in
four benchmark groups. 89% of these classes exhibit the
Stateless micro pattern. Stateless classes only have fields
that are marked as static and final—i.e. constants.
This is typical of assertion code, which largely consists of
small methods that compare parameters against compile-
time constants.

Possible optimization: Such classes are excellent can-
didates for aggressive constant propagation. This may not
be enabled by default in an adaptive compilation environ-
ment due to the generally high cost:benefit ratio. The bene-
fit should be greater than average for Assert classes.

Possible bug: A developer may break this rule by ne-
glecting to mark fields as final in a library Assert class.
Such fields may be updated by malicious application code
to prevent the application from failing the assertions.

3.4.3 Exception

The Exception suffix is shared between 839 classes in
six benchmark groups. 88% of these classes exhibit the Sink
micro pattern. Methods in Sink classes do not propagate
calls to any other methods. All methods are leaf methods.

Possible optimization: Methods in these classes are
good targets for inlining. Also objects allocated in these
methods are good candidates for stack allocation. Although
one assumes that exception code is not normally frequently
executed, it is occasionally used as a standard control flow
mechanism, particularly in the lusearch benchmark from
DaCapo and the 228 jack benchmark from SPECjvm98.

Possible bug: Consider a method f that throws excep-
tion e. The code to handle e may call a method in e which
(perhaps unknown to the programmer) calls f again. This
would throw the exception recursively. Again, this is a mis-
take a novice programmer may make, but any rules-based
advice we can supply would be valuable. If we observe the
rule that exceptions do not propagate calls to other methods,
then such a disaster scenario is unable to occur.

4 Applications

To exploit these rules in a real-world Java development
environment, we require:

1. a database that records correspondences between suf-
fixes and micro patterns (Section 4.1)

2. a selection of tools that analyse source code and com-
municate information from the database to the devel-
oper (Sections 4.2 and 4.3)

4.1 Database

The database must be indexed on class name suffix. It
will store a set of micro patterns associated with each suf-
fix. In order for the user to be able to specify thresholds to
eliminate less likely rules, each entry must store the num-
ber of times a particular (s,mp) correspondence holds and
the number of contradictions. (This allows us to compute a
percentage confidence score for each rule.)

The database must be compiled from a large training
corpus of Java programs at system-install time. The de-
veloper may select these training programs, or there may
be some standard set. For instance, in the case of a soft-
ware company with specific in-house coding conventions, it
may be useful to train on an exclusive corpus of Java pro-
grams developed by the company. In the extreme case, one
could imagine a de-centralized world-wide database sys-
tem, which could be queried online or cached locally.

Ideally, the database should be updated continuously as
new Java programs are created. This enables the database
to adapt to new programming conventions and practice, per-
haps as new APIs are introduced to the Java language. In
addition, it allows a developer to personalise the database
by deleting rules that she does not consider helpful.

Our prototype database is stored as plain ASCII text. We
search using UNIX utilities like grep. Obviously this ap-
proach would not scale well as database size increases.

4.2 Interactive Wizard

Our first application that uses the database is an inter-
active coding-time wizard, which suggests micro pattern
properties for developers to consider for classes as they be-
gin to declare those classes. As soon as the developer com-
pletes typing the class name, the interactive wizard analy-
ses name suffix, queries the database and pops up with sug-
gested micro patterns that this class should exhibit.

Ideally, the wizard should provide links to documenta-
tion that explains what each micro pattern entails. If the de-
veloper agrees with the wizard’s suggested micro pattern(s),
the wizard instruments the class source code accordingly.
Perhaps the wizard might even add skeleton Java code to
conform to the appropriate constraints.

Classes conforming to a micro pattern should be marked
as such, either by implementing a marker interface, or by
means of Java 1.5 style class-level annotations. These can
be checked later, for instance by the analysis tool described
in Section 4.3.

We implemented a prototype wizard in the Eclipse de-
velopment environment. We extended a simple source code
editor with a plugin that suggests completion proposals ac-
cording to class name suffixes. If the user clicks on a com-
pletion proposal, the appropriate implements clause is



Figure 5. Screenshot of Eclipse plugin sug-
gesting a micro pattern to be exhibited by the
TreeNode class.

added to her class source code. Figure 5 shows a screen-
shot of the tool in action. The suffix rule states that the
Node suffix should exhibit the Recursive micro pattern,
which means that the class should have an instance field
of the same type as the class. This is a simple linked-list
or binary-tree style data structure. When there are multiple
rules to apply, we can use their differing confidence levels
as a relevance measure, which Eclipse uses to sort the list
of suggestions presented to the user.

4.3 Lint-like Checker

The second application that uses the database is a non-
interactive checker, akin to the lint static analysis tool. At
code-review time, the checker tool is invoked by the de-
veloper, either in the development environment or on the
command line. This tool outputs warnings about possible
violations of suffix / micro pattern rules.

The source code may contain explicit micro pattern an-
notations, inserted at coding time using a tool as in Section
4.2. In this case, the tool simply checks to ensure that the
specified micro patterns’ constraints are not violated. If they
are, an error message is reported to the user.

On the other hand, the source code may not contain ex-
plicit micro pattern annotations. In this case, the tool infers
micro patterns that are implicit in the class name suffixes,
based on some threshold confidence level predetermined by
the user. Again, the tool checks the constraints and reports
any violations back to the user.

The tool will show snippets of source code that cause mi-
cro pattern constraint violations. It may be able to provide
suggested alterations to the code. This tool can be run in

stand-alone mode or as part of a development environment.
Figure 6 shows the output from our tool when it discov-

ers that a TreeNode class does not have a TreeNode
field, yet it is marked as implementing the Recursive micro
pattern.

5 Related Work

Since their introduction in 2005 [6], micro patterns have
been applied throughout the fields of program analysis and
software engineering.

Kim et al [8] use micro patterns to track program evolu-
tion throughout the development process. They show how
to detect likely program bugs by observing changes in a
class’s micro patterns over time. The Sourcerer open
source code search engine [3] employs micro patterns as a
potential search criterion. Marion et al [11] use micro pat-
terns to characterize classes at allocation sites. They con-
struct a mapping from micro patterns to object lifetimes,
which is used to optimize the allocation of long-lived ob-
jects in a generational garbage collector by means of pre-
tenuring.

We identify correspondences between Java class name
suffixes and micro patterns, which no-one else has done be-
fore. We use this information to provide support to the de-
veloper at and after coding time. Other research only uses
the information after coding is complete. We assert that
micro patterns can both improve runtime optimization op-
portunities and reduce bugs. Each of the other papers men-
tioned above only focuses on one of these two activities.

Høst and Østvold [7] conduct a detailed study of a mas-
sive corpus of Java applications. They focus on method
naming conventions. They extract the key verb from the
start of each method name, and see how this correlates
with various simple method attributes. They use statisti-
cal analysis and information theory to build a lexicon of
frequently occurring verbs and their attributes. This work
is most similar in spirit to our own, except that they fo-
cus on method names and initial verbs, whereas we have
studied class names and noun suffixes. They have pro-
duced automated documentation of existing code conven-
tions, whereas we have used our identified conventions to
implement developer-friendly tool assistants.

Our research involves predicting class properties without
performing static analysis on the source code of that class.
As demonstrated above, we are able to predict class prop-
erties before the source code is present. The most related
work we have found is a preliminary study by Turner et
al [16]. They predict low-level method properties (such as
whether the method contains a for-loop) from the method
signature, using a Naive Bayes classifier. They report on
prediction of method properties from several packages in
the standard Java API libraries. However this small pilot



*Violation* of the Recursive micro pattern!
Class TreeNode, declared in file:TreeNode.xml, line 9
does not contain any instance fields of type TreeNode
This rule has confidence 75%

Figure 6. Text output from our micro pattern checker tool working on the TreeNode source code
shown earlier.

study does not seem to have been followed up, presumably
due to lack of useful applications for this information.

The most active research areas for semantic information
extraction are program comprehension, software mainte-
nance and reverse engineering. These are large fields, so
we only present a few representative examples.

Liblit et al [10] explore programming as a cognitive com-
munication task. They analyse real-world source code iden-
tifier names. They find psychological motivation for ‘mean-
ingful’ identifier names in imperative and object-oriented
programming languages.

Biggerstaff et al [4] show how source code identifier
names can be used to build up a set of program concepts
that encapsulate high-level design issues in a system. Their
concept assignment process is grounded in artificial intelli-
gence techniques. Once identified, the concepts are useful
for program comprehension, documentation recovery, spec-
ification reverse engineering and refactoring.

Lawrie et al [9] analyse variable identifier names in large
programs written in various imperative and object oriented
languages. They aim to measure consistency of variable
names (which is related to the problems of synonymy and
homonymy in natural language). They conclude that pro-
gramming languages have a more limited use of vocabulary
than natural languages.

Anquetil and Lethbridge [2] evaluate the relevance of
Pascal record identifier names in a legacy telecoms appli-
cation. They provide a framework to assess whether a pro-
gram naming convention is reliable for use in program com-
prehension and reverse engineering tools.

Pollock et al [14] show how the accuracy of software
searches can be improved by using natural language terms
to index documents and then to construct search queries.
Their main target program analysis is aspect-oriented refac-
toring of legacy code.

Unlike these works, we are not doing any kind of deep
semantic analysis of identifiers at present. We simply asso-
ciate identical class name suffixes with a common set of mi-
cro patterns. We expect that this could be used for program
comprehension purposes, although that is not our primary
motivation.

6 Conclusions

This paper has presented and empirically validated the
hypothesis: type name suffix is often an indicator of mi-
cro patterns exhibited by that class. We have analysed a
large corpus of real-world Java programs and extracted a set
of correspondences between class name suffixes and micro
patterns. This is useful for:

1. formalizing the instinctive behaviour of programmers.
The rules presented in Section 3.4 make sense to Java
coders, although they may not have expressed them in
this way.

2. exploiting these rules for program optimization and
bug detection, via development tools like our proto-
type Eclipse plugins described in Section 4.

For future work, we intend to repeat our analysis with
other parts of Java class names apart from the suffix.
Promising ideas include consideration of meaningful adjec-
tives at the head of a name. In addition, we hope to mature
our Eclipse plugins to the extent that we can use them in a
case study, in order to determine whether such tools actually
result in any quantifiable benefits in development practice or
program performance.

References

[1] Eclipse project. http://www.eclipse.org.
[2] N. Anquetil and T. Lethbridge. Assessing the relevance of

identifier names in a legacy software system. Proceedings
of the 1998 Conference of the Centre for Advanced Studies
on Collaborative Research, 1998.

[3] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor,
P. Baldi, and C. Lopes. Sourcerer: a search engine for open
source code supporting structure-based search. In OOPSLA,
pages 681–682, 2006.

[4] T. Biggerstaff, B. Mitbander, and D. Webster. Program un-
derstanding and the concept assignment problem. Commu-
nications of the ACM, 37(5):72–82, 1994.

[5] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison Wesley, 1994.

[6] Y. Gil and I. Maman. Micro patterns in Java code. In OOP-
SLA, pages 97–116, 2005.



[7] E. W. Høst and B. M. Østvold. The programmer’s lexicon,
volume I: The verbs. In Proceedings of the Seventh IEEE
International Working Conference on Source Code Analysis
and Manipulation, pages 193–202, 2007.

[8] S. Kim, K. Pan, and E. Whitehead Jr. Micro pattern evolu-
tion. In Proceedings of the International Workshop on Min-
ing Software Repositories, pages 40–46, 2006.

[9] D. Lawrie, H. Feild, and D. Binkley. Syntactic identifier
conciseness and consistency. In Proceedings of the Sixth
IEEE International Workshop on Source Code Analysis and
Manipulation, pages 139–148, 2006.

[10] B. Liblit, A. Begel, and E. Sweeser. Cognitive perspectives
on the role of naming in computer programs. In Proceed-
ings of the 18th Annual Psychology of Programming Interest
Group Workshop, 2006.

[11] S. Marion, R. Jones, and C. Ryder. Decrypting the Java
gene pool: Predicting objects’ lifetimes with micro-patterns.
In Proceedings of the International Symposium on Memory
Management, pages 67–78, Oct 2007.

[12] T. P. Morgan. Evans data cases programming language pop-
ularity. The Unix Guardian, 3(46), 2006. http://www.
itjungle.com/tug/tug121406-story03.html.

[13] J. Noble and R. Biddle. Notes on postmodern programming.
OOPSLA Onward!, pages 49–71, 2002.

[14] L. Pollock, K. Vijay-Shanker, D. Shepherd, E. Hill, Z. Fry,
and K. Maloor. Introducing natural language program anal-
ysis. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and En-
gineering, 2007.

[15] Sun Microsystems. Code conventions for the Java program-
ming language, Sep 1999. http://java.sun.com/
docs/codeconv.

[16] K. Turner, P. Cardin, S. Reid, and J. Clawson.
Predicting Java source code properties from a natu-
ral language specification, 2002. Unpublished draft
available from http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.91.3692.


