
Java fork/join implementation

Jeremy Singer
University of Glasgow

ConcurrentHashMap

<String, Vector<Integer>>

String is key: “Zadok the priest”

Integer is word position in file: 23641

Vector is list of positions for repeated Strings

hash(key) -> index i

hash(key) -> index i

hash(key2) -> index j

ForkJoinPool

Dequeues

WorkerThreads

ForkJoinTasks

Sun UltraSPARC T2

CMP (8 cores)

SMT (8 threads)

UMA (4MB L2
32GB main)

Concordance algorithm

1) Read file into String array

2)

a. Split into regions (with lookahead for N)

b. Allocate one ForkJoinTask per region

c. Each task finds phrases, adds index to global
ConcurrentHashMap

3) Iterate over keys in HashMap, print out index
vector

Timing breakdown

• 1) read 4MB file – 8.7s

• 2) create concordance for N=4 – 10.8s

• 3) print results (unsorted, 43MB) – 115s

Timing issues

• Heap growth

• Garbage collection

• Number of tasks per worker thread

• Number of threads

• Contention in ConcurrentHashMap

• Size of ConcurrentHashMap

Exploring 2d parameter space (4MB)

Exploring 2d parameter space (100MB)

Further params to tune

• (see timing issues)

• Exhaustive exploration impossible

• Search-based auto-tuning techniques

– Machine learning

– (already do this for garbage collection config)

http://siscaconcordance.googlecode.com

