
An Information Theoretic Evaluation of

Software Metrics for Object Lifetime Prediction

Jeremy Singer1, Sebastien Marion2, Gavin Brown1, Richard Jones2,
Mikel Luján1, Chris Ryder2, and Ian Watson1

1 University of Manchester, UK
{jsinger,gbrown,mlujan,watson}@cs.man.ac.uk

2 University of Kent, UK
{sm244,r.e.jones,c.ryder}@kent.ac.uk

Abstract. Accurate object lifetime prediction can be exploited by al-
locators to improve the performance of generational garbage collection
by placing immortal or long-lived objects directly into immortal or old
generations. Object-oriented software metrics are emerging as viable in-
dicators for object lifetime prediction. This paper studies the correlation
of various metrics with object lifetimes. However, to date most studies
have been empirical and have not provided any information theoretic un-
derpinning. We use the information theoretic calculation of normalized
mutual information to measure correlation. We assess which metrics are
most useful for prediction and construct some simple yet accurate object
lifetime predictors.

1 Introduction

Generational garbage collection has long remained the dominant GC paradigm
[1, 2]. Yet it wastes much effort copying long-lived objects (and worse, immortal
objects) into older generations. These costs can be avoided if, whenever an object
is created in a program, the allocator can determine how long that object will
live [3–5]. This paper addresses how much and what kind of static information
is required to make such predictions.

An object lifetime prediction scheme takes some allocation context (such as
object type, allocation site identifier, or call stack context) as input; an allocation

site is a program location that creates a new object. The scheme generates a
lifetime prediction for the newly created object. This may be as precise as an
integer value [6] or as vague as a binary short/long indicator [3]. Accurate object
lifetime prediction is important for high-performance garbage collection systems,
as Section 2 explains.

Most existing prediction techniques are program-specific. That is, they pro-
file some program execution, record object lifetime data, then extrapolate fu-
ture predictions, for the same program, from this profile run. They look for
dynamic allocations that appear to be ‘similar’ to profiled allocations (usually
based on the allocation site location, or the allocated object type) and predict

the behaviour to be the same as it was on the profile run. This is known as self

prediction in the GC literature [7].

In contrast, this paper proposes a technique that profiles program X, then
uses data from X to make predictions about allocations in a different program
Y . This is known as true prediction in the GC literature [7]. The main insight
underlying our work is that we use measures of ‘allocation similarity’ that are not
program-specific. These similarity measures are object-oriented software metrics,
described in Section 3. Thus, the first key contribution of this paper is to
demonstrate that software metrics can be used to predict object lifetimes.

To date, most type-based object lifetime prediction schemes [8–10] only con-
sider the type of one object at each allocation site—namely the allocatee, which
we refer to as the destination object. However, another object type is involved
at the allocation site—namely the allocator, which we refer to as the source ob-
ject. Figure 1 shows a typical allocation site in a fragment of Java source code,
with source and destination object types (classes) explicitly labelled. Thus, the
second key contribution of this paper is to demonstrate that both source and
destination types should be considered for predicting object lifetimes.

class Src {

void f() {

Dst d = new Dst(); // allocation site

...

}
...

}

Fig. 1. Source code for an allocation site in Java, showing both the source and desti-
nation object types

Given that we can take a number of metric measurements (on source and
destination types) at each allocation site, the next issue to address is how to
determine the correlation between these metrics and the allocated object’s life-
time. We aim to determine a correlation score that is independent of programs,
programming languages, virtual machines and GC schemes. Section 5 uses an
information theoretic framework to measure correlation between metrics and
lifetimes, based around normalized mutual information (NMI) as a correlation
indicator. Thus, the third key contribution of this paper is to highlight NMI
as a good correlation measure for allocation site features that may be used to
predict object lifetimes.

NMI measures correlation and determines the best allocation site features to
use in prediction, but it does not give any indication of the functional nature of

2

the predictor. (In this sense, NMI is quite unlike Pearson’s R coefficient, which
indicates that the correlation is linear.) Therefore in order to determine the
actual predictors, Section 5.4 uses various off-the-shelf machine learning algo-
rithms. The fourth key contribution of this paper is an evaluation of several
prediction schemes generated using standard machine learning techniques.

Finally, Section 6 assesses the NMI correlation scores and generated predic-
tors to see if they make sense, given our domain-specific knowledge. Is it possible
to explain the relative importance of the features, and the prediction rules in
an intuitive way? This interpretation of our information theoretic analysis is the
final key contribution of the paper.

2 Background

2.1 Garbage Collection is Important

Garbage collection (GC) is the automatic management of dynamically allocated
memory [11]. It has become a significant concern to the mainstream computer
industry, due to the rise of managed programming languages like Java and C#
[12]. These ‘modern’ object-oriented languages are designed to run on sandboxed
virtual machine (VM) systems, that use GC (amongst other techniques) for
memory safety.

2.2 High-Performance GC is Important

In such managed environments, GC accounts for a significant fraction of execu-
tion time. GC is wasted time as far as the application user is concerned, so there
is a need to minimise overall GC time. In addition, interactive or soft real-time
application users would prefer to have frequent, short GC pauses rather than
occasional longer pauses. These requirements motivate the adoption of genera-

tional GC [1, 2, 13]. The cost of a copying collection is determined by the volume
of objects that survive (are copied by) that collection. Starting from the weak
generational hypothesis that ‘most objects die young’ [1], generational GC allo-
cates all objects in a nursery space that is frequently collected. The relatively
few long-lived objects, identified as survivors of a threshold number of nursery
collections, are relocated to a larger, infrequently collected mature space. Thus,
generational GC improves both expected (but not worst case) pause time by
concentrating effort on the nursery where few objects are expected to survive,
and overall collection time by processing long-lived objects less frequently (and
hence giving them more time to die). In addition, some immortal objects will
survive until the end of the application’s execution. If these can be identified,
they can be allocated to an immortal space that is never collected. Most modern
high-performance VMs use some variant of the generational GC scheme [14–16]

2.3 Object Lifetime Prediction enables High-Performance GC

The generational GC scheme outlined above has one inefficiency. Long-lived ob-
jects are processed (possibly repeatedly) in the nursery space, and (eventually)

3

copied to the mature space. Immortal objects are repeatedly processed in mature
generation(s). If the GC system could identify long-lived (respectively immortal)
objects at or before their dynamic allocation point, it would be better to allocate
such objects directly into the mature (respectively immortal) space. This opti-
mization is known as pretenuring [3–5]. It depends upon accurate ahead-of-time
prediction of object lifetimes. However, an inaccurate predictor, which suggests
that short-lived objects are actually long-lived or immortal, can severely degrade
the GC efficiency, by clogging up the mature and immortal spaces with short-
lived objects. This causes artificial elongation of both their lifetimes and those
of their referents [17]. The extra garbage in the mature space will cause also an
increased number of mature space collections, which are expensive.

In our earlier work [18], we demonstrated that we could obtain lifetime ad-
vice from a simple form of software metrics, micro-patterns, [19]; guiding alloca-
tion with this advice improved the GC time of a generational copying collector.
However, micro-patterns provide only a very simple intra-class, largely syntac-
tic, object-oriented metric. In this paper, we seek to explore more sophisticated
software metrics that take into account both relationships between fields and
methods of the same class but also relations between classes. Furthermore, we
provide a sound, information theoretic underpinning to our exploration.

3 Software Metrics

Software metrics are used to capture concise and quantitative descriptions of
certain aspects of software systems. Metrics are generally used to measure code
size, complexity, quality and cost. Other information may be derived from these
metrics, such as programmer productivity and system maintainability. A key
advantage of software metrics is their independence from any system or pro-
gramming language. They are generally designed to be easy to compute. Often
automated tools are readily available to calculate metrics scores.

Chidamber and Kemerer have proposed a set of six metrics for object-oriented
software [20]. These are well-known and generally accepted in the software en-
gineering community. Spinellis [21] has suggested the addition of two further
metrics. We adopt this set of eight metrics, henceforth referred to as the CK

metrics suite or cjkm, as a means of characterizing Java classes. Table 1 gives
details of each metric. We extract the metrics directly from Java bytecode files
using the ckjm tool [21].

Chidamber and Kemerer originally intended these metrics for human-oriented
managerial interpretation [22]. They have since been employed for other purposes
such as Java benchmark characterization [23]. Most recently, we have evaluated
the metrics for use in object lifetime prediction [10]. This paper extends our
earlier work. We now consider all eight CK metrics (rather than merely the
original six). In addition, we measure metrics for both allocator and allocatee
objects at each allocation site, whereas previously we only considered metrics
for allocatees.

4

weighted methods per class (WMC): Since ckjm uses a default weight of 1.0, this
is simply a count of the number of methods defined by the current class.

depth of inheritance tree (DIT): The java.lang.Object class has a DIT score of
1. The DIT score increments by 1 for every edge on the path through the inheritance
tree from the root to the current class.

number of children (NOC): The number of classes that are immediate subclasses
of the current class.

coupling between object classes (CBO): The number of classes upon which the
current class depends. This coupling can occur through method calls, field accesses,
inheritance, arguments, return types, and exceptions.

response for a class (RFC): Ideally, this should measure the number of different
methods that can be executed when an instance method of the current class is
invoked, summed over all instance methods for this class. This would involve cal-
culating the transitive closure of the method’s call graph, which has the potential
to be expensive and inaccurate. Instead, ckjm calculates a rough approximation
to RFC by simply counting method calls within the class’s method bodies. This
simplification was also used in the original CK metrics paper [20].

lack of cohesion in methods (LCOM): This counts sets of methods in the current
class that are not related through the sharing of some of the class’s fields. The ckjm
tool considers all pairs of the class’s methods. In some of these pairs, both methods
access at least one common field of the class, while in other pairs the two methods
do not access any common fields. The LCOM score is calculated as the number of
pairs that do share at least one field from the number of pairs that do not share
any fields.

afferent couplings (Ca): This measures the number of classes that depend on the
current class. Coupling is defined in the same way as for CBO above. Conceptually,
Ca is the inverse of CBO.

number of public methods (NPM): This is simply a count of the methods in the
current class that are declared as public. It can be used to give an indication of
the size of an API provided by a package.

Table 1. Description of the CK metrics suite

5

4 Data Collection Framework

component name version details

virtual machine Jikes RVM 2.4.4 BaseBaseSemiSpace config
library GNU Classpath 0.10
benchmark SPECjvm98 1.03 all except check
benchmark DaCapo β-051009 antlr, bloat, fop, hsqldb,

jython, pmd, ps

Table 2. Software analysed in object lifetime study

We gather object lifetime data from typical Java benchmarks running on
Jikes RVM, which is a Java-in-Java virtual machine [15, 24]. We are able to
analyse allocation sites within the VM, libraries and the benchmark applica-
tions. Table 2 gives full details of the analysed Java code3. We profiled with
our MemTrace system [18], using the base compiler at both build- and run-time
(BaseBase). We profile with BaseBase because our focus is on application objects
rather than optimising compiler data (which has a more pronounced effect on
smaller programs). We also wished to minimise the effect of compiler-allocated
data on exaggerating object lifetimes (which are measured in bytes—the size
of any allocation, e.g. by the compiler, between an object’s birth and death
contributes to its lifetime). Further, BaseBase MemTrace configurations gener-
ate comparatively smaller, although still several gigabyte, trace files. MemTrace
forces periodic full-heap collections to get tight bounds on object lifetimes. It
associates objects with their allocation sites by modifying the JIT compiler to
record allocation site identifiers in an object header word. Object birth times
are byte-accurate, and death times are accurate to the granularity of a full-heap
collection period, which is set to 64kB for all experiments in this paper.

We classify object lifetimes using scheme proposed by Blackburn et al [4, 5].
They use maxLiveSize, the maximum volume of data live at any point in the
program’s execution, as a normalizing factor.

1. If an object dies later than halfway between its time of birth and the end of
the program, then it is classified as immortal.

2. Otherwise, if an object’s age is greater than Ta × maxLiveSize, then it is
classified as long-lived. We keep Ta = 0.45, as in [4].

3. Otherwise, the object is classified as short-lived.

These rules enable us to label each allocated object with a lifetime. Now,
for each allocation site, we consider the proportion of objects with each lifetime.
Blackburn et al [4, 5] classify allocation site according to the fraction Ss of short-
lived, Ls of long-lived and Is of immortal objects it allocates. Homogeneity

3 Only the seven DaCapo benchmarks listed in the table would run with Jikes RVM
v2.4.4.

6

factors Hlf and Hif determine the conservatism of the decision to pretenure
into the mature and immortal spaces respectively. Higher homogeneity factors
reduce the number of sites classified as long-lived or immortal. We retain the
same values as the original version [4], namely Hlf = 0.6 and Hif = 0.0.

1. If Is > Ss + Ls + Hif , the site is classified as immortal.
2. If Is + Ls > Ss + Hlf , the site is classified as long-lived.
3. Otherwise, the site is classified as short-lived.

Now we are able to label each allocation site with an expected object lifetime.
Finally, we use the ckjm tool [21] to harvest CK metrics values for each

class under consideration (from Jikes RVM, GNU classpath libraries, and bench-
marks). We identify the source and destination object types at each allocation
site, and associate the appropriate set of metrics values with the corresponding
lifetime. This means we create a database with one entry per allocation site.
Each entry has the CK metrics for the source and destination object types, and
the object lifetime. Now we are able to perform data mining and information
theoretic analysis on this database.

Note that we only analyse object allocations at present, so we ignore array
allocations entirely. We feel that array allocations must be treated differently,
since the destination does not have a set of CK metric values. In theory, we
could use the CK metric values belonging to the array elements, but this still
does not deal with arrays of primitive types or references. In terms of the 50476
allocation sites in our profile data, 40432 are object allocation sites and 10044
(around 20%) are array allocation sites.

For all of the information theoretic analysis in Section 5, we discretize the nu-
merical metrics values into labelled bins for various ranges, using the Kononeko
MDL method in weka [25].

5 Information Theoretic Analysis

5.1 Calculation of Information Theory Measurements

The fundamental information theoretic measure is entropy, which quantifies the
information content in a given source of data: the more ‘randomness’ or unpre-
dictability in the data source, the higher the entropy value. Consider a device
producing symbols according to a random variable X, defined over a finite al-
phabet of possible symbols SX . If we assume each successive symbol si ∈ SX is
independent of the previous ones, the unconditional entropy is defined as,

H(X) = −

|SX |∑

i=1

p(i) log(p(i)) (1)

where p(i) is the probability of the ith symbol being produced. Note that all
logarithms are taken to base 2. In practical terms, p(i) can be calculated with
frequency counts, i.e.:

p(i) =
number of occurrences of symbol si

total number of symbols seen
(2)

7

This paper assumes the produced symbols to be a common CK metric mea-
surement on a sequence of dynamic object allocations. This gives us a stream of
metric values, for which we can calculate an entropy measure.

The conditional entropy measures the dependence between two different sym-
bol streams. In our case, we could take two measurements on each element of
a sequence of dynamic object allocations. For instance we could measure a CK
metric for each newly created object and its lifetime. These are two different
random variables X and Y respectively with two different alphabets SX and SY

but there may be some dependence between them, which we can quantify by
conditional entropy.

H(Y |X) = −

|SX |∑

i=1

p(i)

|SY |∑

j=1

p(j|i) log(p(j|i)) (3)

This is the first order conditional entropy. The required probabilities can again
be computed from frequency counts:

p(j|i) =
number of times sj occurs with si

number of occurrences of si

(4)

First order conditional entropy has a minimum value of zero and a maximum
value of log(|SY |). In the example above, it measures the uncertainty we have
in the lifetime of an object given the value of a certain CK metric. If lifetime
values are produced uniformly at random over the alphabet SY , then eq.(3) will
converge in the limit to log(|SY |).

The mutual information between X and Y is a measure of the agreement, or
correlation, between them. The mutual information is,

I(X;Y) = H(Y) − H(Y |X) (5)

This is easily computed from the entropy measurements we have already de-
scribed above. This measurement is symmetric, i.e. I(X;Y) = I(Y ;X), and
quantifies the reduction in our uncertainty of Y when the value of X is revealed.
Unlike Pearson’s R correlation coefficient, which only detects linear correlations
between random variables, mutual information can detect arbitrary nonlinear

relationships.

I(X;Y) can be normalized to a value between 0 and 1 by dividing it by
min(H(X),H(Y)). The maximum value of normalized mutual information (NMI)
indicates that there is perfect correlation between the two variables. Given the
value of one variable, it is always theoretically possible to construct a predictor
that will predict the value of the other variable with 100% accuracy. A low value
of NMI indicates that there is little information, and therefore little opportunity
for accurate prediction of Y given X. A zero value of NMI indicates that the two
variables are entirely uncorrelated, so knowing the value of one variable does not
avail for making predictions about the other variable’s value.

8

5.2 Correlation of Individual Features

Our first analysis assesses the utility of single CK metrics as features for predict-
ing object lifetimes. The NMI scores are shown in Table 3. The rows are sorted
according to NMI values. Each row reports the NMI of a single metric with the
object lifetime. Most of the figures are disappointingly low. For instance, know-
ing the NOC metric (number of child classes) for source and destination classes
is almost useless for predicting lifetimes. Other metrics show limited potential:
six metrics have NMI scores above 0.25.

The top two metrics in Table 3 are CK metrics for source objects. We might
assume that it is more important to know about the source object than the
destination object, or at least, it is important to know something about the
source object as well as the destination object. This is an important insight! Until
now, most type-based object lifetime studies only consider characteristics of the
destination object (the allocatee) rather than the source (the allocator). The
only type-based study that considers both source and destination characteristics
[18] does not conduct a formal assessment of the relative importance of these
source or destination characteristics.

metric NMI

lifetime 1.000

source LCOM 0.370

source RFC 0.342

dest LCOM 0.324

dest RFC 0.314

dest NPM 0.261

dest WMC 0.257

source WMC 0.233

source CBO 0.180

source NPM 0.163

source Ca 0.117

dest DIT 0.079

dest Ca 0.056

source DIT 0.037

source NOC 0.035

dest CBO 0.030

dest NOC 0.012

Table 3. NMI-based correlation of single features with lifetime

5.3 Conditional Mutual Information Maximization

Table 3 reveals that single features all have low NMI scores. We require a com-

bination of features to obtain reliable predictions. However one problem with
selecting features based only on NMI is that this selection process does not
take account of cross-correlation between features. It is best to select features
that have high individual correlation with the class to predict and have low
cross-correlation with each other. Fleuret [26] presents an attractive algorithm
to do automatic feature selection based on mutual information that considers

9

cross-correlation. His technique is known as conditional mutual information max-

imization (CMIM). The approach iteratively picks features that maximize their
mutual information with the class to predict, conditioned on features already
picked. This CMIM criterion does not select a feature similar to already picked
ones, even if it is individually informative, since such a similar feature does not
carry additional information about the class to predict.

Conditional mutual information is calculated as:

I(U ;V |W) = H(U |W) − H(U |W,V) (6)

This value is an estimate of the quantity of information shared between U and
V when W is known. If V and W carry the same information about U, then the
two terms on the right are equal and the conditional mutual information is zero,
even if both V and W are individually informative. Conversely if V contains
information about U which is not present in W, then the difference is large and
the conditional mutual information is high.

The CMIM algorithm operates as follows. It aims to pick k features from a
total of n, in order of relevance with the most relevant feature first. Incidentally,
if we use CMIM to select n features from n, then we get a relevance-ordered
ranking of our entire feature set which takes into account cross-correlations in a
way that our simple ranking based on NMI scores in Table 3 did not.

The algorithm maintains a score vector, with one element for each feature.
Initially, the score vector is set up so score[i] contains the unnormalized mutual
information score for the ith feature (with the lifetime). At each iteration, the
feature with the highest score value is taken as the next selected feature. Then
the score vector is recomputed, with each element score[i] set to the minimum
value of (score[i], I(lifetime; ith feature|last selected feature). This ensures that
score[i] is low if at least one of the features already picked is similar to the ith
feature.

Fleuret [26] gives a full explanation of the algorithm, including various op-
timization techniques using lazy evaluation and boolean bit-vectors. We imple-
ment his CMIM algorithm and use it to rank the CK metric features in order of
relevance for object lifetime prediction. Table 4 gives the results of this CMIM
analysis. Note that in the table, each score is the highest value in score vector
at that particular iteration, for a feature that has not been selected by previous
iterations.

5.4 Prototype Prediction Schemes

In order to evaluate the feature selection and ranking decisions above, we gen-
erate several predictors using the C4.5 tree learner algorithm. We report the
accuracy of these decision tree predictors, but as yet we have not used the pre-
dictions to optimize generational GC, so we are unable to give real benchmark
speedups at this stage.

Recall that the total object lifetime database contains around 40,000 entries.
Each entry records source and destination CK metrics for a single scalar alloca-
tion site, together with the most likely lifetime for objects allocated at that site.

10

metric CMIM score

source LCOM 0.407

dest RFC 0.345

source RFC 0.177

source CBO 0.144

dest LCOM 0.142

source NPM 0.113

source WMC 0.104

source Ca 0.086

dest NPM 0.085

dest WMC 0.072

dest Ca 0.061

source DIT 0.041

dest DIT 0.038

dest CBO 0.033

source NOC 0.025

dest NOC 0.007

Table 4. CMIM-based ranking of features for prediction of object lifetime

The data is randomly split 50:50 into training/test sets. This is repeated for five
trials. To use just five trials may not seem enough for statistical significance.
However the results in all our experiments have such low variance that more
than five trials is not necessary.

We investigate how the (mean) accuracy of the generated decision tree varies
as different numbers of features are added. The features are selected according
to their ranking from the CMIM algorithm, as shown earlier in Table 4. Figure
2 presents the results, including error bars to indicate plus/minus one standard
deviation. It is evident that a tree built using all 16 features has an accuracy
of approximately 78%. This is significantly better than the performance of the
weka baseline ZeroR predictor, which has an accuracy score of 44.8%. The ZeroR
predictor always selects the most frequently occurring outcome, assuming all
allocation sites are equally likely.

Note that when we select just the top three features indicated by CMIM, the
generated predictor achieves 77.6% accuracy, for a significantly reduced decision
complexity. After pruning, the three-feature trees had on average just 10 nodes,
while the 16 feature trees had on average 40 nodes. It is clear to see that three
features provide similar accuracy to 16 features, at a much lower complexity
cost. This is clear justification for the application of feature selection techniques
outlined earlier in the paper.

As a further extreme example, we consider only the top two features identified
by CMIM. This feature reduction, combined with aggressive pruning, enables
us to visualize the decision boundaries of a small C4.5 decision tree. Figure
3 illustrates this map. It is a graphical presentation of a simple set of rules,
that achieves 75% accuracy on the test data. The primary advantage of this
visualization is that it can also support interpretation of the rules. We present
three ‘intuitive’ instantiations of the rules below:

1. The point marked + in the map corresponds to an allocation site in the
Dacapo pmd benchmark. The source class is pmd.ast.JavaParser. The des-

11

0 2 4 6 8 10 12 14 16

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Total Number of Features Used

A
cc

ur
ac

y
on

 T
es

tin
g

D
at

a

Fig. 2. Graph showing how C4.5 predictor accuracy changes with number of metric
features for lifetime prediction

tination class is the LookaheadSuccess inner class of the source. The map
shows that this allocation is predicted to be short-lived. This seems likely,
given domain-specific knowledge that look-ahead events are frequent in the
parsing process, and the specific inner class contains no long-term state.

2. The * point corresponds to an allocation site in DaCapo bloat. The source
class is bloat.tree.PrintVisitor. The destination class is StringBuffer.
This allocation is predicted to be short-lived. This seems appealing, since
StringBuffer objects are generally ephemeral and the PrintVisitor class
presumably makes a traversal over the entire tree, creating and emitting a
textual representation of the tree nodes. We speculate that this narrow band
of short-lived objects between 58 and 59 on the dRFC axis is almost entirely
due to StringBuffer objects.

3. The % point corresponds to any allocation site whose destination class is
String. All such allocations are predicted to be long-lived. Again, this ap-
peals to intuition since String objects are immutable and often contain
long-term information.

In earlier work [18], we used rules rather than decision trees in our object
lifetime predictors. A single rule is equivalent to a single path from the root node
to a leaf node in the decision tree. Some paths match many cases in the dataset,
whereas others only have a single match. Some paths have 100% successful pre-
diction rate, whereas other paths have lower accuracy. Selecting a subset of rules
from the decision tree enables us to eliminate unpopular or inaccurate decisions.
In addition, single rules are easier to interpret than a complete decision tree.

12

Fig. 3. 2-dimensional map showing how allocation sites with various metric values map
onto different lifetimes. Shaded areas represent short-lived allocations. Unshaded areas
represent immortal allocations.

6 Explanations of Analysis

Feature selection is a fundamental topic in Machine Learning. Too many features
can lead to overfitting of a learning model, and hence poor performance when
the learning system is deployed in the field. It is important to distinguish here
between feature selection, and feature extraction. The former is the focus of this
paper. The latter encompasses techniques such Principal Components Analysis

(PCA) and Bayesian Automatic Relevance Determination (ARD) [27].

Extraction techniques measure functions of features, which are linear for
PCA and nonlinear for ARD. The typical result is a ‘black-box’ mathematical
function of the original data. The meaning of the original features is lost. In
contrast, feature selection techniques such as those based on conditional mu-
tual information maximization allow us to retain original meaning and provide
human-readable explanations of how a feature is useful in combination with
others.

For instance, we can attempt to interpret the feature ranking provided by
CMIM in Table 4. This shows us that LCOM and RFC are important metrics,
and that source metrics are generally more important than destination metrics.
Note how there is only one out of eight CK metrics for which the destination
value is ranked above the source value in the table.

The LCOM and RFC metrics measure the complexity of a class, in terms
of methods. Recall from Section 3 that LCOM measures how various sets of
methods in a class access disjoint field sets in the class, and RFC measures how
many methods are called directly by the methods of a class. These two values
provide a precise way to characterize a class. Perhaps this kind of precise metric
‘fingerprint’ what is needed to get accurate object lifetime predictions. We know

13

that many of the generated rules match multiple allocation sites, but in future
work we should study whether these sites have different source and destination
types. The key question is: do the rules we generate with CK metrics generalize
well over types, or do the metrics values in a single rule simply alias onto a single
(source,destination) type pair?

7 Conclusions and Future Work

In this paper, we have shown that the Chidamber and Kemerer object-oriented
software metrics suite can be used to predict object lifetimes accurately. We have
used basic concepts from information theory to determine correlation of metric
features with lifetime, to rank features in order of relevance, and to select the best
features as predictor inputs. We have created, evaluated and interpreted some
simple prediction schemes based on the C4.5 decision tree learner algorithm.

We plan to implement object lifetime prediction strategies based on CK
metrics, to determine if they lead to improvements in GC performance, using
the infrastructure of our earlier experiments (which was based on object micro-
patterns [18]) in order to obtain some empirical performance results.

References

1. Ungar, D.: Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In: Proceedings of the First ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environ-
ments. (1984) 157–167

2. Lieberman, H., Hewitt, C.: A real-time garbage collector based on the lifetimes of
objects. CACM 26(6) (1983) 419–429

3. Cheng, P., Harper, R., Lee, P.: Generational stack collection and profile-driven
pretenuring. In: PLDI. (1998) 162–173

4. Blackburn, S.M., Singhai, S., Hertz, M., McKinley, K.S., Moss, J.E.B.: Pretenuring
for Java. In: OOPSLA. (2001) 342–352

5. Blackburn, S.M., Hertz, M., McKinley, K.S., Moss, J.E.B., Yang, T.: Profile-based
pretenuring. ACM Transactions on Programming Languages and Systems 29(1)
(2007) 1–57

6. Inoue, H., Stefanovic, D., Forrest, S.: On the prediction of Java object lifetimes.
IEEE Transactions on Computers 55(7) (2006) 880–892

7. Barrett, D.A., Zorn, B.G.: Using lifetime predictors to improve memory allocation
performance. In: PLDI. (1993) 187–196

8. Shuf, Y., Gupta, M., Bordawekar, R., Singh, J.P.: Exploiting prolific types for
memory management and optimizations. In: POPL. (2002) 295–306

9. Huang, W., Srisa-an, W., Chang, J.M.: Dynamic pretenuring schemes for gen-
erational garbage collection. In: IEEE International Symposium on Performance
Analysis of Systems and Software. (2004) 133–140

10. Singer, J., Brown, G., Luján, M., Watson, I.: Towards intelligent analysis tech-
niques for object pretenuring. In: Proceedings of the International Conference on
Principles and Practice of Programming in Java. (Sep 2007) 203–208

14

11. Jones, R., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management. Wiley (1996)

12. Jones, R.: Dynamic memory management: Challenges for today and tomorrow.
In: Proceedings of the International Lisp Conference. (2007) 115–124

13. Baker, H.G.: Infant mortality and generational garbage collection. ACM SIGPLAN
Notices 28(4) (1993) 55–57

14. Sun Microsystems: The Java HotSpot Virtual Machine (2001) Technical White
Paper.

15. Alpern, B., et al.: The Jalapeño virtual machine. IBM Systems Journal 39(1) (Feb
2000) 211–238

16. Persson, M.: Java technology, IBM style: Garbage collection policies (May 2006)
Garbage collection in the IBM SDK 5.0.

17. Ungar, D.M., Jackson, F.: An adaptive tenuring policy for generation scavengers.
ACM Transactions on Programming Languages and Systems 14(1) (1992) 1–27

18. Marion, S., Jones, R., Ryder, C.: Decrypting the Java gene pool: Predicting objects’
lifetimes with micro-patterns. In: Proceedings of the International Symposium on
Memory Management. (Oct 2007) 67–78

19. Gil, Y., Maman, I.: Micro patterns in Java code. In: OOPSLA. (2005) 97–116
20. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE

Transactions on Software Engineering 20(6) (1994) 476–493
21. Spinellis, D.: ckjm—Chidamber and Kemerer Java metrics (2005)

http://www.spinellis.gr/sw/ckjm/.
22. Chidamber, S.R., Darcy, D.P., Kemerer, C.F.: Managerial use of metrics for object-

oriented software: An exploratory analysis. IEEE Transactions on Software Engi-
neering 24(8) (1998) 629–639

23. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: OOPSLA. (2006) 169–190

24. Alpern, B., et al.: The Jikes research virtual machine project: Building an open
source research community. IBM Systems Journal 44(2) (Feb 2005) 1–19

25. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. 2nd edn. Morgan Kaufmann (2005)

26. Fleuret, F.: Fast binary feature selection with conditional mutual information.
Journal of Machine Learning Research 5 (2004) 1531–1555

27. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007)

15

