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Abstract
In this thesis, we investigate using the Language Modeling approach for ad hoc Infor-

mation Retrieval as a theoretically principled framework for encoding contextual evi-

dence. Using context to improve retrieval performance is a current challenge within the

discipline and presents a major challenge to the research community. The Language

Modeling approach provides a natural and intuitive means of encoding the context as-

sociated with a document. However, the Language Modeling approach also represents

a change to the way probability theory is applied in ad hoc Information Retrieval and

makes several assumptions for its application[112, 113, 57, 96]. We consider these

assumptions and study them in detail during the course of this thesis. Central to the

assumptions is the key implication that better retrieval performance can be obtained

through developing better representation of the documents. We posit that the con-

text associated with a document will enable the development of such representations -

context based document models. This premise relies upon the explicit and implicit as-

sumptions of the Language Modeling approach being valid, which have, up until now,

not been fully tested or verified. Through the course of this thesis we (1) formalize the

assumptions of the Language Modeling approach; (2) motivated by the implications of

these assumptions we present our framework for estimating context based document

models; (3) perform a comprehensive analysis of the main assumptions underlying the

Language Modeling approach, not only to validate the approach, but to deepen our un-

derstanding of the retrieval model itself, and; (4) empirically assess the performance of

the context based document models against the standard document models on various

test collections and contexts. Our findings show that there are occasions when context

based document models outperform the standard document model. Further analysis

with respect to underlying assumptions though reveals some of the limitations of the

Language Modeling approach. We discuss these limitations and suggest an alternative

approach for embedding context within the model. Finally, we propose an Integrated

Language Modeling approach which formalizes the existing theory and practice within

one framework. This not only addresses some of the concerns over the standard Lan-

guage Modeling approach, but also enables the integration of various forms of context

within the one framework.
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d ∈ D = {d1, . . . ,d|D|} the document space, where |D| the number of documents in

the collection

t ∈ T = {t1, . . . , t|T |} the term space, where |T | denotes the number of terms in the

collection

z ∈ Z = {z1, . . . ,z|Z|} the latent factors, where |Z| denotes the number of latent factors

k ∈ K = {k1, . . . ,k|K|} the topic space, where |K| denotes the number of topics

r denotes the binary random variable relevance1, which takes the two values, R and N.

R denotes relevance (to mean the document is judged relevant to the information

need)

N denotes non-relevance (to mean the document is judged not relevant to the infor-

mation need)

n(x,y) the number of times x occurs with or in y, usually in reference to the number
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1Note this deviates from the standard way of referring to a random variable.
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Chapter 1

Introduction

Searching and finding useful information can be quite an arduous task. For today’s

searcher the amount of information accessible is almost limitless, but only a very small

fraction of this available information will actually be relevant or useful to the searcher

and their information need(s).

This accessibility to information has resulted from a worldwide process of computer-

ization and networking of computing systems, referred to as the Internet or the World

Wide Web (WWW). Since the introduction of the World Wide Web there has been

a very large increase in the amount of digital information available, which continues

to grow at a phenomenal rate. The predominant kind of information on the Web is

textual documents, although other forms of digital data are becoming more prevalent

including images, speech, audio and video.

It is natural that an information seeker will resort to the WWW (or some other spe-

cific information repository located in the WWW) in order to satisfy their information

needs. However, given the overwhelming amount of information available they will

eventually suffer from Information Overload[133]. This is where the amount of infor-

mation presented, pushed or pulled, exceeds the cognitive capacity of the user. One

of the most effective ways to deal with the information overload is through the use of

Information Retrieval (IR) techniques.

6
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Information Retrieval is the discipline concerned with the representation, storage, orga-

nization, analysis, searching and dissemination and access to information objects[148].

This has culminated in a range of strategies for dealing with information being devel-

oped, such as: ad hoc Retrieval, Information Filtering, Document Classification, Clus-

tering, Summarization, Machine Translation, Information Visualization, Topic Detect-

ing and Tracking, and Information Extraction (See [7, 6, 141, 148, 128] for details

of such tasks). Each technique addresses a sub-problem when dealing with informa-

tion and attempts to reduce the Information Overload. For instance, if the information

seeker has a persistent long term information need, such as wanting to know all gossip,

rumors and discussions about their favorite sporting team, then topic tracking and de-

tection may be employed to automatically find information relevant to this desire[72].

The information seeker is provided with an aggregated result set updated over time,

and is not burden by repeatedly searching. Another example is when a short document

summary is provided along with each of the document references in the ranked list of

search results[152]. It has been shown that the information seeker can identify rele-

vant material more readily, because they can examine the context in which the query

appears in the document. Such methods reduce the amount of time and effort required

in obtaining relevant documents.

The focus of this thesis is on the most popularly used IR technique, ad hoc Information

Retrieval. This is the main service rendered by a search engine, showing the reliance

information seekers place on IR technology. In a survey of Internet users during 1999,

it was shown that 85 percent have used a search engine[84]. The success of search en-

gine related companies over the past five years would suggest that this figure would be

much higher today. The purpose of a search engine, like that of any other Information

Retrieval System (IRS), is to satisfy the user’s underlying information need, by accept-

ing a request in the form of a query, and returning a set of references to documents

which will satisfy the user’s information need.

An information need could be as simple as locating reviews of the latest movies, or

more complex needs, such as locating Shakespeare prose containing the use of imagery

about life and death. Providing the information seeker with the ability to submit one

off queries about a particular topics enables them to quickly shift through documents
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in the collection. Since these queries are very dynamic and formulated on the fly, the

task is referred to as ad hoc.

The goal of ad hoc Information Retrieval is to return all those references which will

be relevant to information seeker’s information need, and ideally only those relevant to

be returned. Unfortunately this is seldom the case because of the inherent uncertainty

in the retrieval process. Consequently, a ranked list is usually provided, where the ref-

erences are ordered in decreasing relevance or usefulness. In the past, IRS have relied

upon using the content features within a document (i.e. the terms occurring within the

documents) to retrieve documents by matching the query terms to the document terms,

ignoring any contextual features internal or otherwise. Currently, IR researchers have

been exploring the use of context in an effort to improve the quality of the results re-

turned. A notable example is the PageRank[109] algorithm which attempts to gauge

the popularity of a page by the number and quality of incoming links. Often such con-

textual information is mixed together with a document’s content score in a heuristical

manner, without any clear rationale or basis. This is problematic because invariably

mixing parameters between the different scores need to be estimated and typically can

only be set according to the end result (i.e. try it and find out). The solutions obtained

are then specifically tailored for that particular case and may not generalize to other

cases. Preferably, we would like to incorporate the contextual evidence within the

model, such that: (1) it is done so in a principled manner, (2) any parameters can be

estimated a priori, and (3) that these settings provide comparable or superior retrieval

performance.

1.1 Research Questions and Hypothesis

In this thesis, we attempt to use context in a principled1 manner under the language

modeling framework for ad hoc text retrieval. By context, we mean the semantic

associations between documents, which can be expressed as a relationship between

1By principled we mean that there is a theoretical basis which the model is grounded in, where
the theoretical basis is derived from a particular branch of mathematics such as logic, probability or
geometry.
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one document and another. Semantic associations may be formed in number of ways,

not limited to but including; collaborative interactions with the collection, the topical

grouping of documents and references/links between documents. Essentially, a se-

mantic association is an association between documents made by a user of the system

which reflects in some way how the document relates to other documents within the

collection. For instance, when a journal article is written the author includes a list of

references, which may or may not be similar, but for the purposes of the document

are semantically related through the author’s text. Hence, we are trying to capture

how the user actually views the relationship between documents and exploit this dur-

ing retrieval. In Chapter 4, we shall see how this notion of context can be naturally

incorporated into the Language Modeling approach.

Considering context as the semantic associations between documents is related to the

Cluster Hypothesis[67], which states that:

Closely associated documents tend to be relevant to the same request

Traditionally, the association between documents has been implemented through clus-

tering the collection of documents in accordance to some similarity metric (such as

Dice’s co-efficient [148]). This uses the document’s content to form associations, such

that similar documents are grouped together. However, if the associations between

documents are defined semantically, then a corresponding context based hypothesis

can be expressed. We formulate this as the Context Hypothesis, which states:

Semantically associated documents tend to be relevant to the same request

To evaluate this hypothesis, as we have already mentioned, we employ the recently

proposed Language Modeling (LM) approach to ad hoc Information Retrieval. We

develop a principled approach that incorporates semantic associations within the doc-

ument language modeling process and contend that this is an implementation of the

Context Hypothesis.

The Language Modeling approach attempts to capture the statistical regularities within

the text of a document, and model the language as a probability distribution over all

the terms in the vocabulary. For each document, a document model which captures

its underlying generative nature of documents text is defined. Given the query text, a
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prediction can be made of the likelihood that the query text would have been generated

by each document model. This prediction is then used to rank the documents.

However, the LM approach makes three key assumptions about the IR process. The

second of these directly relates to the validity of the Context Hypothesis. The as-

sumptions imply that the user has some knowledge of the distribution of terms within

documents, and that the document models should reflect this understanding. Their un-

derstanding constitutes the context of the document. So implicitly the context of the

document, or what we associate it with, will affect our model of the document. This

is how we think of the document, and this should be reflected in the model of the doc-

ument - hence the creation of context based document models. By doing so should,

according to the assumptions, result in better retrieval performance.

In this thesis, we formalize the assumptions of Language Modeling and then provide a

comprehensive study to determine how well these assumptions hold in practice. Also,

we present our framework for generating context based document models, which is

motivated by the implications of the assumptions of Language Modeling. We perform

an empirical evaluation of these context based models and determine whether we can

generate a better representation of the documents using context, and whether this leads

to better retrieval performance. Finally, after considering the outcomes from our anal-

ysis, we propose an integrated Language Model which enables the user’s context to be

incorporated into the retrieval process in an alternative and seamless manner.

1.2 Structure of thesis

After the introduction chapter, the content of this thesis is divided into seven chapters.

An outline of the remaining chapters is detailed below:

• Chapter 2: The basic concepts pertaining to an Information Retrieval Sys-

tem, Information Retrieval models, their implementation and evaluation are pre-

sented.

• Chapter 3: A survey of the current literature about Language Modeling for ad
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hoc text retrieval is presented. This includes our formalization of the underlying

assumptions of the Language Modeling Approach.

• Chapter 4: Our approach to developing context based document models is pro-

posed. We include discussion on how this approach relates and differs from other

models previously proposed.

• Chapter 5: The underlying assumptions of the Language Modeling Approach

are empirically tested. We state each assumption as a hypothesis and then apply

tests to determine whether the assumptions hold.

• Chapter 6: Several different types of semantic association are used as the con-

text. Each is used to build context based document models which are tested

against the standard document modeling approaches. A continuation of research

on the second assumption is also included.

• Chapter 7: The results from all our experimental work are considered and in-

terpreted with respect to the hypotheses outlined during the course of the thesis

and how the findings relate or impact upon other research.

• Chapter 8: A summary of the thesis is presented along with areas of future

research directions stemming from the work presented herein.

1.3 Novel Contributions

Within this thesis there are several notable contributions. These are outlined below:

• The formalization of the underlying assumptions of the Language Modeling Ap-

proach for ad hoc Information Retrieval (See Section 3.2 and Appendix A).

• The development of a principled framework for context based document model-

ing (See Chapter 4).

• The analysis of the underlying assumptions of the Language Modeling approach

to ad hoc Information Retrieval (See Chapter 5).
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• An evaluation of Probabilistic Latent Semantic Analysis within a language mod-

eling framework (See Section 6).

• An empirical analysis of context based document language models on different

collections. Contexts were represented by the association between documents,

either through unsupervised learning techniques, user interaction, or through ex-

plicit user reference, such as hyperlinks and citations (see Chapter 6).

• An alternative explanation of relevance in the query likelihood approach (See

Chapter 7) which provides a different explanation of the role of smoothing.

• Comments on the estimation and assignment of parameters for document models

(See Chapter 7).

• The proposal of the integrated Language Modeling approach (See Chapter 7).

1.4 Publications

Publications arising as part of the thesis work:

1. Azzopardi, L. and Girolami, M. and van Rijsbergen, C. J. , Investigating the Re-

lationship between Language Model Perplexity and IR Precision-Recall Mea-

sures, In the Proceedings of the 26th Annual ACM Conference on Research
and Development in Information Retrieval, 2003.

2. Azzopardi, L. and Girolami, M. and van Rijsbergen, C. J., User Biased Docu-

ment Language Modeling, In the proceedings of the 27th Annual ACM Con-
ference on Research and Development in Information Retrieval, 2004.

3. Azzopardi, L. and Girolami, M. and van Rijsbergen, C. J., Topic Based Language

Models for ad hoc Information Retrieval, In the Proceedings of the Interna-
tional Joint Conference in Neural Networks, 2004.

4. Azzopardi, L. and Girolami, M. and Crowe, M., Probabilistic Hyperspace Ana-

logue to Language, In the proceedings of the 28th Annual ACM Conference
on Research and Development in Information Retrieval, 2005.



Chapter 2

Basic Information Retrieval Concepts

In the previous chapter, we briefly outlined the purpose and tasks of ad hoc Information

Retrieval. Ad hoc Information Retrieval strives to provide the user with information

items which are relevant to the user given the user’s information need. This objective

exceeds the mandate of data retrieval, which strives to retrieve all items which satisfy

clearly defined conditions[148]. The retrieval of relevant information objects given

an information need, is less clearly defined as the information need is expressed as a

query. This is an imprecise description of the underlying information need and this

introduces an inherent uncertainty in the retrieval process. This chapter introduces the

basic concepts relating to ad hoc Information Retrieval, the different types of models

and the implementation, interaction and evaluation of Information Retrieval Systems.

2.1 Ad Hoc Information Retrieval

As previously mentioned, according to van Rijsbergen[148]:

Information Retrieval deals with the presentation, storage, organization of,
and access to information items.

This definition encapsulates the essence of any Information Retrieval System (IRS),

where the Information items could be text, images, audio, video or a combination of,

13
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Figure 2.1: The Translation of a user’s information need to query according to

Taylor[145].

all four, multimedia. Traditionally, the focus has been on text retrieval, since this is the

most predominant and abundant type of information available. The remainder of this

chapter and indeed this thesis, focuses on the retrieval of text documents. Furthermore,

this thesis is predominantly concerned with ad hoc retrieval for text documents. Ad hoc

text retrieval is the core Information Retrieval task, not only because it is most often

used and familiar to the general public but also because much of the research in other

IR tasks has drawn upon the research in this area (such as document classification,

filtering and summarization).

The goal of ad hoc Information Retrieval is to retrieve a set of references that will

satisfy the user’s information need. An information need arises when the user realizes

that their state of knowledge is inadequate to achieve their task or general goal [9].

This inadequacy can be of many sorts, stemming from a gap or lack in knowledge,

uncertainty of current knowledge and/or incoherence of available knowledge. It also

covers when the user is unable to specify their information need. This is referred to

as the Anomalous State of Knowledge (ASK)[9]. To address this ASK, the user may

consult a colleague, read a book, or in this case use an IRS. To use an IRS, the user

must express their information need as a query. Ideally, the IRS would then respond

by returning only those documents which would satisfy the user’s information need.

However, this is seldom the case, because of the inherent uncertainty in the querying

process.

The representation and expression of the information need has been long recognized

as a fundamental problem in Information Retrieval. In 1968, Taylor [145] recognized
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this, and suggested that the querying process goes through four levels (see Figure 2.1).

The first level is the visceral need, which is internal and actual but unexpressed and

perhaps even an inexpressible need for information. At the next level is the conscious

need, where there is a realization within the brain that a need exists and this need is

usually ambiguous and ill-defined. This conscious need then becomes the formalized

need, and is an expression of the user’s need. It is then reformulated into a query (now

representing the ‘compromised need’ in Taylor’s terminology) so it can be presented

to an Information Retrieval system. The query is a very sparse and poor substitute for

the user’s underlying information need.

At each level information is lost in translation from visceral need to the query, as a

result of three well known problems[102]. The first two problems, which degrade

the information need, occur when expressing the conscious need. They have been

referred to as the label effect[66] and the vocabulary problem[39]. The label effect

results when the user expresses his need in terms of ‘labels’ or ‘keywords’ and not

as a complete sentence. The vocabulary problem surfaces when there is a mismatch

between the ‘labels’ or ‘keywords’ used in the document and those used in the query.

The third problem is the formalization operation, which arises because the system

language is often not natural language. Hence, a translation from natural language to

the system language is required, further degrading the correspondence to the user’s

actual information need.

In response to a query the IRS will return a ranked list of documents, where the ranking

is in decreasing order of usefulness or relevance with respect to the submitted query 1

Relevance is an integral concept within information retrieval, as the goal is to retrieve

relevant information. However, defining what is meant by relevance and deciding what

is relevant is very difficult. Relevance may be referred as meaning topicality, use-

fulness, user satisfaction, situational relevance, similarity, and utility amongst others

[101]. For further reading and discussion about relevance see [101, 102, 22, 131, 35,

110]. However, in this thesis, we consider relevance as the concept pertaining to the

usefulness of a document with respect to the user’s information need[25]. Thus, if a
1Strictly speaking an IRS does not actually return the documents, but references to documents. For

convenience, we shall dispense with the formality.
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document satisfies a user’s information need it is said to be relevant, if the document

does not, then the document is said to be not relevant. Further, the relevance of a doc-

ument is only known after the user has examined the document and deems it relevant

(or not).

Once the user reviews the documents and makes a judgement about the relevance of

the documents in the ranked output, feedback may be given to the system. This inter-

action with the system may continue in a series of stages of refining/reformulating the

information need until the user decides to curtail their search session, hopefully, with

their information need satisfied.

2.1.1 IR and other tasks

As we have previously mentioned ad hoc IR is related to other IR tasks, such as In-

formation Filtering (IF) and Document Classification (DC). The scenarios for IF and

DC are slightly different than ad hoc IR, but essentially the need to score and classify

a document with respect to an information need (expressed as a query) is the same.

In ad hoc IR, the collection of documents is assumed to be relatively static and single

uses of the IRS for a one time information need, hence ad hoc where the query is an

impoverished representation of the information need. On the other hand, in Informa-

tion Filtering, new incoming documents are continually being added to the collection

(in a document stream), and the information need is expressed adequately or at least

somewhat more verbosely than in an ad hoc IR. This is because the user is expected

to dedicate a reasonable amount of time to constructing and refining the filter (query).

The filter represents the users’s long term and persistent information need, constructed

from a set of example relevant documents. When new documents are added to the col-

lection they are classified as relevant or not to the filter. Hence the observation that ad

hoc IR and IF are two sides of the same coin[8], as the tasks are essentially the same but

from two different perspectives. IF is dynamic with a well defined information need,

while ad hoc IR is static, with a vague, ill defined information need, though both ad

hoc IR and IF can be viewed as addressing a document classification problem. In Doc-

ument Classification, there is a set of classes which have a set of documents assigned
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Figure 2.2: A typical view of an Information Retrieval System[148].

to each class. Class assignment can be determined using the probability of a document

given each class. Now, if there are only two classes, relevant and non-relevant with

respect to the query, then the document classification task is essentially ad hoc IR[86].

The documents from the collection or stream are ranked or scored according to the

probability of the document belonging to the relevant class or not. In the case of IF,

it is generally assumed that a set of exemplars exists for the relevant and non relevant

classes. This is a luxury not afforded to ad hoc IR, under the DC interpretation, the

query terms form a very sparse and solitary ‘document’ example of the relevant class.

So far we have described the process of ad hoc retrieval, and how it compares to

some of the other tasks in IR. In the next section, we describe the components of an

Information Retrieval System.

2.2 Information Retrieval System

The main components of an Information Retrieval System to facilitate the goal of ad

hoc information retrieval are shown in Figure 2.2. An IRS takes as input a set of
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documents and the user’s query. The documents and query are transformed into the

representation expected by the retrieval model. The matching function, which is de-

fined by the IR model, is then used to rank documents according to the query. The user

evaluates the ranked list and may provide some kind of feedback to the IRS. The main

components are:

• Document and Query Representations The document/query is parsed into to-

kens, before an undergoing a series of operations to transform the raw tokens into

indexable features. The indexable features are then used to represent the docu-

ment and query. The final representation will depend on the model/matching

function employed by the IRS.

• Model - Matching Function The Information Retrieval Model determines the

matching function employed. The matching function is used to score document

representations against query representations. A ranked list of documents is pre-

sented to the user for evaluation2. Ideally, the ranked list is ordered in decreasing

usefulness or relevance[120].

• Evaluation The user inspects the ranked list and determines which documents

are relevant. These judgements are used to evaluate the performance according

to the position of the relevant documents in the ranked list.

• Feedback The most general interpretation of feedback is any interaction with the

system following retrieval. However, feedback is generally limited to relevance

feedback[124], which refers to the set of documents marked as relevant and non-

relevant by the user. The Relevance feedback is used to refine and reformulate

the query.

A detailed description of each component is presented in the following sections.

2However, not all models will provide a ranked list. For example, the Boolean Model returns a set
of documents which satisfy the query expression.
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2.3 Document and Query Representation

The indexing process is the pre-processing of the document (or query) to extract a set of

features to represent that document (or query). The three most common preprocessing

steps are lexical analysis, morphological normalization and term feature selection.

The extracted set of features for a document is used to construct a document repre-

sentation and this serves as a model of the original information contained within the

document. Whilst the aim is to model the original information content of the docu-

ment as accurately as possible, simplifications are required to cater for computational

and storage constraints. The indexing features could consist of phrases, grammatical

structure, amongst other units but are typically words (or word derivatives) extracted

from the document. If these are selected by the indexing process, then the indexing

unit is referred to as a term.

The following subsections describe the types of actions performed at each step of the

indexing process. However, not all actions or steps need be applied. In the simplest

case, a term could be simply a token from the document. However, various experi-

ments have shown that performing pre-processing can improve retrieval effectiveness,

reduce storage costs and improve efficiency. An example of transforming original doc-

ument text into indexable units is also provided to complement the explanation. The

original text is shown in Figure 2.3 and the transformations (tokenization, stemming

and stopping) are shown in Figure 2.4.

2.3.1 Lexical Analysis

This is an essential part of the indexing process where the text in the document is bro-

ken into tokens (tokenization). This process may also include ignoring any text which

is not a word, transforming the words to all one case, and addressing any punctuation

such as apostrophes and hyphens[6]. Other considerations may also include[34]:
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• structure within the document such as XML3 and HTML4

• formatted documents such as portable document format and postscript

• tag or meta data

• numerical equations, scientific formula and other symbolic notation

Sometimes more implicit structure within the text such as phrases, entities, and acronyms

may also be considered and indexed. However, more sophisticated techniques from

Natural Language Processing (NLP) that have been applied to extract more useful

units of representation have been met with limited success[138]. The more successful

approaches have tended to be ‘shallow tools’ that do not perform a complete parse of

the document, for instance, the extraction of entities from documents and the disam-

biguation of words. It has been shown that linguistically motivated features are not

necessary to achieve effective IR [138]. Indeed, the marriage between NLP and IR has

been described as a loose coupling as opposed to an integrated pair [136]. NLP tends

to focus on specific well understood problem domains within text, while IR is con-

cerned with the retrieval of relevant information, which is characteristically uncertain

in nature.

2.3.2 Morphological Normalization

The most commonly applied form of Morphological Normalization within IR is suffix

stripping or stemming and is used to reduce words down to their base word variant[114,

74, 65]. The Porter Stemming[114] algorithm, one of the most popular stemmers,

which extracts the term stem by utilizing the structure within complex suffixes that

occur in the English langauge. Since suffixes are composed of simpler suffixes, each

simpler suffix is removed in turn to reduce the word to its stem. For instance, ‘termi-

nator’, ‘terminating’, ‘termination’, ‘terminate’ all have a word stem ‘termin’. This

has the advantage of reducing the number of terms that are indexed and allows greater

matches between word stems. However it also results in the loss of some information.
3XML is Extensible Markup Langauge.
4HTML is Hyper Text Markup Language.
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SCENE II.
A bedchamber in the castle: DESDEMONA in bed asleep; a light burning.

Enter OTHELLO.

OTHELLO:

It is the cause, it is the cause, my soul,

Let me not name it to you, you chaste stars!

It is the cause. Yet I’ll not shed her blood;

Nor scar that whiter skin of hers than snow,

And smooth as monumental alabaster.

Yet she must die, else she’ll betray more men.

Put out the light, and then put out the light:

If I quench thee, thou flaming minister,

I can again thy former light restore,

Figure 2.3: Original Document Text: A short extract from Othello by Shakespeare as

example text. See Figure 2.4 for the transformation to indexable units (terms).

For instance when the word ‘terminal’ is used to refer to an airport building, as op-

posed to implying death, then stemming ‘terminal’ back to ‘termin’ will match stems

of a different context. Nonetheless, experimental analysis has confirmed that suffix

stripping tends to improve IR performance [46, 65].

Other normalization techniques also include, but are not limited to:

• Synonym normalization where words that have the same meaning are trans-

formed to the same term,

• Polysemy normalization where the converse is performed. A word that has dif-

ferent meanings, is assigned to different terms.
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Tokenised:
scene ii a bedchamber in the castle desdemona in bed asleep a light burning enter

othello othello it is the cause it is the cause my soul let me not name it to you, you

chaste stars it is the cause yet i ll not shed her blood nor scar that whiter skin of

hers than snow and smooth as monumental alabaster yet she must die else she ll

betray more men put out the light and then put out the light if i quench thee thou

flaming minister i can again thy former light restore

Stopwords Removed:
scene ii bedchamber castle desdemona bed asleep light burning enter othello

othello soul chaste stars shed blood scar whiter skin snow smooth monumental

alabaster die betray men light put light quench thee thou flaming minister thy light

restore

Stemmed:
scene ii bedchamb castl desdemona bed asleep light burn enter othello othello soul

chast star shed blood scar whiter skin snow smooth monument alabast die betrai

men put light put light quench thee thou flame minist thy light restor

Figure 2.4: Transformations: From top to bottom: Tokenised, Stopped, and then

Stemmed. Notice that the final representation does not distinguish between the different

parts within the document and this translates into a loss of information and meaning.
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2.3.3 Term Feature Selection

The selection of appropriate indexing units is an important problem in the representa-

tion process. In considering this problem, Luhn[91] hypothesized that the frequency

data could be used to select sentences that best represent a document[148]. When the

frequency f of a term occurring in the collection is plotted against its rank r, where the

terms are ranked in decreasing order of their term frequency, a hyperbolic distribution

relating f to r is witnessed (See Figure 2.5). This distribution is usually referred to as

Zipf’s law which states that the product of the term frequency by rank is approximately

constant[166]. Luhn’s idea was that the terms that occur most and least frequently in

the collection are not very good features to use when representing documents. He pos-

tulated that the significance of a term was relative to its rank, such that as the frequency

of terms decreased the significance also would increase to some maximum value. Then

as the frequency of terms continued to decrease the significance of the terms would also

decrease (see Figure 2.5, where the dashed curve indicates the importance of a term,

and the solid line the frequency of the term).

The lower cut off defines the point beyond which a term is used so infrequently that the

term will be too specific and not contributing significantly to the content of document,

while the upper cut off defines the point where a term is considered too common and

lacking in discriminative power between documents. Terms that occur in over approx-

imately 80% of the documents tend to be poor discriminators and are ineffective for

IR[148]. Such terms are often referred to as stop words. The two standard approaches

to stop word removal are: (1) discard terms that occur in a predefined stop list (see

[148]). Typical examples of terms on a stop list are ‘the’, ‘of’, ‘a’, ‘there’, ‘then’,

‘though’; and (2) select the most useful terms by employing statistical methods, such

as, a cut off based on frequency, the information gain measure, mutual information, χ

squared statistic, or the strength method[158].
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Terms by Rank Order

Frequency
of 

Terms

Upper
Cut-off

Lower
Cut-off

Significance of Terms

Figure 2.5: The distribution of terms ordered by term frequency (solid line) and the

significance of terms according to Luhn[91] (dashed line).

2.3.4 Document and Query representation

The final stage of the pre-processing task is to use the indexed terms to build a repre-

sentation of the document and query so that it can be used by the IR model’s matching

function. This representation typically consists of an inverted list of the terms that

are present within the document. A weight is often attached to the presence of each

term within the document depending on the representation required. Most representa-

tions do not consider the dependence of terms, this is referred to as the Independence

Assumption. Such a representation is often described as a ‘bag of terms’ because it

suggests that the ordering or sequential nature of the underlying text is ignored.

Given the set of documents D, where document d ∈ D is represented by a |T | dimen-

sional vector (t1, . . . t|T |), where |T | is the number of terms within the collection given

the vocabulary T . For each ti a value is assigned depending on the representation.

Sometimes, it is convenient to also refer to the representation as a set of terms such

that t ∈ d if the value assigned is non zero.
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The index terms that occur within the document are assigned a weight specific to the

representation employed by the IRS. Below are the main types of representation that

are used, along with a brief description.

• Binary Representation The document is represented as either containing the

term or not. We represent this by denoting the presence of a term by ti = 1,

and the absence as ti = 0 within a document d. This is the simplest represen-

tation, storing the least amount of information about the relationship of terms

in documents. The document representation consists of a set of terms and this

representation is typically employed in logic based models, but may also be em-

ployed in the other IR models. For instance, the Binary Independence Model

makes use of the Binary Representation (See Section 2.5.2 for details).

• Weighted Representation Luhn suggested that multiple occurrences of the same

term indicated that the term was emphasized within the document, and this is

representative of how important that term is within the document. So instead of

a binary representation, a weighted representation may be employed to encode

the term frequency information, the simplest of which is to represent the doc-

ument by the term frequency information, such that the weight of a term t in a

document d is equal to the number of times the term t occurs in document d,

that is n(t,d). However, more sophisticated weightings have been employed, the

most popular of which is the Term Frequency (TF) by Inverse Document Fre-

quency (IDF). This is usually referred to as TF.IDF, where the weight w(t,d) is

calculated as shown in Equation 2.1,

w(t,d) = n(t,d).idf (t) (2.1)

where idf (t) is the inverse document frequency weight for the term t. This is

determined by Equation 2.2,

idf (t) = log
|D|

df (t)
(2.2)

where df (t) is the number of documents in which term t occurs and |D| is the
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number of documents in the collection. Such weighted representations are used

predominately within the Vector Space Model.

• Probabilistic Representation A special case of a weighted representation is the

probabilistic representation, where the following constraints are imposed. The

sum of the document’s term vector must equal one and all the term weights

must be positive. This representation of the terms as probability distribution

over the vocabulary and is considered as a multinomial probability distribution.

This representation really exploits the idea that the document is just a ‘bag of

words’. Hence, we can represent the distribution of terms within this bag quite

easily by expressing the occurrence of terms as the probability of a term given

a document, p(t|d). The simplest estimate of p(t|d) is the maximum likelihood

estimate, which is the number of times the term occurs in a document divided by

the total number of terms in the document (See Equation 2.3 ).

p(t|d) =
n(t,d)

∑t ′∈d n(t ′,d)
(2.3)

In the next chapter we introduce the Language Modelling approach to ad hoc

Information Retrieval which represents documents as a probability distribution

over the vocabulary.

2.4 Information Retrieval Models

When discussing different document and query representations, we have already men-

tioned some of the models used in IR. The three classic IR Modelling approaches are

the Boolean, Vector Space and Probabilistic models. Each model is an abstraction of

the retrieval task, which makes assumptions about the retrieval process. These define

how the model should be used or can be used and often lead to inherent limitations of

the approach.
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2.4.1 The Boolean Model

One of the earliest models proposed for Information Retrieval was the Boolean model[6].

It uses logical operators to define the set of documents to be retrieved for a given query.

The Boolean Model represents documents as a binary representation and queries are

expressed as a combination of terms and operators. The three basic Boolean operators

are : (1) the logical product, AND; (2) the logical sum, OR, and; (3) the logical nega-

tion, NOT. Each operator will affect the set of results returned by a Boolean model. For

instance, the query ‘cat AND kitten’ will return the set of documents which contain the

both terms, whereas the query ‘cat OR kitten’ will return the set of documents which

contains either terms.

Many commercial systems employ the Boolean model since it has a clean formalism

and is conceptually simple, so that the query expression has precise semantics. Typ-

ically such precise expressions are not written by the user, who is generally content

to submit a few key terms (where the AND operator is implicitly assumed between

terms), as opposed to expressing specific and precise query expressions, which be-

come difficult and laborious to formulate, since the boolean model will only return

a set of documents, without recourse to the degree of their usefulness/relevance (ie.

no ranking). This is clearly a major drawback of the model, evident when a large set

of documents is returned. Consequently, several developments of the Boolean model

have been proposed. One extension is the Fuzzy Set model[107]. This approach en-

ables ranking through the assigning of a membership value reflecting to what extent

the document satisfies the query. Non-binary term weightings are used to represent

the degree of belief that the document belongs to the set of documents containing that

term. Another such approach is the extended Boolean model[126] which incorporates

term weightings and a distance measure within the Boolean model in order to obtain

a ranked list of documents. These later variants have not been widely adopted nor

thoroughly tested on large scale collections. This is mainly due to the computational

complexity of the approaches and their inability to scale to large document collections.

Other types of logic based models exist such as those based around non-classical

logic[149]. These approaches view the retrieval process as a logical implication, where
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the document implies the query, i.e. d → q. Due to the inherent uncertainty involved

in the retrieval process, non-classical logic is more appropriate than first order logic.

While there have been several implementations using Logical Imaging [24], Informa-

tion Flow [80] and Belief Revision [81] they have had variable success in improving

retrieval performance. The main problem with these models is the computational com-

plexity introduced when moving beyond first order logic. For further details see [25]

for a review of logical and uncertainty models for IR.

2.4.2 Vector Space Models

The Vector Space Model (VSM) represents both the query and document as weighted

vector representations, q and d respectively. A predefined geometric function is used

to compare the two vectors as a measure of their similarity. The degree of similarity

between d and q vectors can be thought of as the correlation between the two vectors.

The most popular function used is the cosine of the angle between d and q, as shown

in Equation 2.4.

sim(d,q) = ∑t∈T w(t,d).w(t,q)√
∑t∈T w(t,d)2

√
∑t∈T w(t,q)2

(2.4)

The smaller the angle between the two vectors the more similar the query is to the

document. A ranked list is produced by ranking the documents in descending order

of similarity. The weighting w(t,d) assigned to a term in a document is usually the

normalized tf.idf weight. However, there are a host of different possible weightings

that could be employed. In fact over 1600 weighting schemes were tested by Salton

and Buckley[125] which were variations of TF.IDF. Others have used genetic algo-

rithms, or some other heuristical approach, to determine the ultimate term weighting

combination[32]. In the absence of any understanding, intuition or rationale of, or

behind, the weighting scheme employed it might be thought to be of limited utility,

because it does not make the retrieval task any clearer. Regardless, the model provides

a substantial improvement over the Boolean model, and remains a very popular and

widely employed approach.
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Various extensions of the VSM model have been proposed, such as the generalized vec-

tor space model[154] and Latent Semantic Indexing (LSI)[28]. The Generalized VSM

assumes that terms are not independent, but that the co-occurrence of terms within doc-

uments induces dependencies amongst terms. However, such a representation has not

been shown to outperform the standard VSM. LSI attempts to model concepts within

the documents by projecting documents and queries into a lower dimensional latent

space, then matching in this latent space instead of the term space. This model has

attracted much attention in the IR community, as it has been shown to provide superior

performance on some test collections, though its application to large scale test collec-

tions still remains a difficult challenge because of the huge computational cost required

to perform LSI. In chapter 4, we describe the probabilistic version of LSI.

2.5 Probabilistic Models

Probability Theory has been applied to ad hoc IR in various ways. However, in this

section, we present an overview of traditional probabilistic models and dedicate the

next chapter to introducing the generative probabilistic approach, known as Language

Modelling. The remainder of this thesis will then focus on Language Modelling for ad

hoc IR.

In the traditional probabilistic model for IR the notion of relevance is the basis of its

claim to be an optimal retrieval model. The most well known example of the traditional

probabilistic model is the Binary Independence Model (BIM) which we shall describe

in Section 2.5.2. First, we outline the basis of traditional probabilistic models.

2.5.1 Relevance, The probability of, and Ranking

In traditional probabilistic models for Information Retrieval the basic underlying con-

cept is the notion of relevance. Such a model will attempt to rank documents in de-

creasing order of their estimated probability of relevance given a user’s information

need, which is represented by a query.
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Relevance is assumed to be a dichotomous variable r which is defined by the rela-

tionship that may or may not hold between a document and a user of an IRS given a

particular information need[25]. If the user believes a particular document is of use,

then the relationship holds and the document is deemed relevant (i.e. r = R. Con-

versely, if the user believes that the particular document is of no use, then it is deemed

not relevant (i.e. r = N). The fundamental question a traditional probabilistic model

asks is:

How probable is it that a document is relevant to a user’s information need
represented by the query?

In order to assign a relevance value to a document with respect to the information need,

it is necessary to define a measure for relevance based on the representation of the doc-

ument and the representation of the information need (query). Not on the document

and information need themselves, as both the original content and need are considered

unobservable. The probability of relevance R is computed given the document d and

a query q, that is p(r = R|d,q). The probability of non-relevance is also computed in

order to separate the two classes. Thus, the probability of non-relevance N is computed

given the document d and a query q, i.e. p(r = N|d,q). These probabilities cannot be

directly estimated, because Relevance can only be determined after the fact. However,

by invoking Bayes’ theorem we can estimate the probability of a document given rele-

vance and the query p(d|r,q). The log Odds of the p(d|r = R,q) versus p(d|r = N,q)

is used to rank the documents. The log5 is taken for mathematical convenience but still

retains the correct ordering as it is a monotonic transformation, while the Odds ratio

is used to ensure theoretically optimal retrieval [10, 115]. Both will be made apparent

when we examine a specific implementation of the model and discuss the Probability

Ranking Principle (PRP) [120]. The underlying idea is that terms within relevant and

non-relevant documents are distributed differently. This is typically referred to as the

Cluster Hypothesis [67]. The use of Odds ratios aims to discriminate relevant from

non relevant based on the two different distributions.

The log Odds ratio of the probability of Relevance given the document and query

p(R|d,q) over the probability of Non-Relevance given the document and query p(N|d,q)

5Also, note that through the course of this thesis we will assume that the log is the natural logarithm.
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can be expressed as being proportional to Equation 2.6

logO(r|d,q) = log
p(R|d,q)
p(N|d,q)

= log
(

p(d|q,R)
p(d|q,N)

× p(q|R)
p(q|N)

× p(R)
p(N)

)
(2.5)

= log
(

p(d|q,R)
p(d|q,N)

× p(R|q)
p(N|q)

)
= log

p(d|q,R)
p(d|q,N)

+ log
p(R|q)
p(N|q)

∝ log
p(d|q,R)
p(d|q,N)

(2.6)

The expression p(R|q)
p(N|q) is the prior log Odds, which is determined before the witnessing

of any document, and as such is independent of the document. This constant can be

ignored for the purposes of ranking. Ranking by the Odds ratio provides the most

powerful statistical test according to the Neyman-Pearson Lemma[85] and in section

2.5.3 we show how this ranking can be shown to be optimal.

2.5.2 The Binary Independence Model

The Binary Independence Model (BIM)[119] provides an implementation of conven-

tional probabilistic model defined in Equation 2.6. In BIM, documents are represented

as a binary representation, such that a document is a vector of terms d = {t1, . . . , tk},

which have a value of one if the term is present (ti = 1) and zero if the term is absent

(ti = 0) from the document. This set of terms is defined by the k query terms. It is

assumed that the presence of terms is independent in the set of relevant documents and

the absence of terms is also independent in the set of non-relevant documents.

Let the probability of a term that is present in a relevant document be pri = p(ti =

1|R,q), and let the probability of a term that is present in a non-relevant document be

pni = p(ti = 1|N,q). Also, let p(ti = 0|R,q) = 1− pri and p(ti = 0|N,q) = 1− pni
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represent the probability of a term that is not present in a relevant and non-relevant

document respectively.

The probability of a document given that it is relevant is defined as:

p(d|q,R) =
k

∏
i=1

prti
i .(1− pri)1−ti (2.7)

Similarly, the probability of a document given that it is not relevant is defined as:

p(d|q,N) =
k

∏
i=1

pnti
i .(1− pni)1−ti (2.8)

Substituting Equation 2.7 and Equation 2.8 into Equation 2.6 we obtain our ranking

function:

logO(r|d,q) ∝ log
p(d|q,R)
p(d|q,N)

= log
∏

k
i=1 prti

i .(1− pri)1−ti

∏
k
i=1 pnti

i .(1− pni)1−ti
(2.9)

And the ranking function in Equation 2.9 can be further reduced through some alge-

braic manipulation[119], such that:

logO(R|d,q) ∝

k

∑
i=1

ti log
pri.(1− pni)
(1− pri).pni

+
k

∑
i=1

log
1− pri

1− pni

∝

k

∑
i=1

ti log
pri.(1− pni)
(1− pri).pni

(2.10)

The latter term in Equation 2.10 is a constant and can also be ignored for ranking

purposes. The term relevance weight (trwi) assigned to each term is determined by
pri.(1−pni)
(1−pri).pni

. The assumption that a term contributes to the relevance of a document

independently is required (The Independence Assumption). While this is not justified

in reality [148], it has three advantages[140]:

1. the formal expression of the model is made easier,

2. it allows the implementation of the model to be tractable, and

3. it provides a strategy for indexing and searching that improves performance over

the simple term matching strategies.
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Number of Relevant Non-Relevant Totals

Documents with term i nri ndi−nri ndi

Documents without term i nR−nri nD−ndi−nR+nri nD−ndi

Totals nR nD−nR nD

Table 2.1: Term incidence contingency table

Since the Odds ratio is employed for ranking purposes, it has been shown that the

assumption of independence is actually weaker, and can be described as linked depen-

dence [21]. Though there have been attempts to relax the assumption further which

consider term co-occurrence [147, 49], they have not be shown to provide significant

improvement over the independence assumption.

The estimation of the term relevance weighting is easily explained with the use of

the term incidence contingency table[119]. In Table 2.1, nri indicates the number of

documents that term i occurs in given that the document is relevant, ndi is the number

of documents containing the term i, nR is the total number of relevant documents,

and nD is the total number of documents. The optimal weighting for the probability

that a term is present and relevant simply the number of times the term occurs in

relevant documents divided by the number of relevant documents i.e. pri = nri
nR . And

similarly, the probability that a term is present but the document is not relevant is

just pni = ndi−nri
nD−nR . In the case where the term is not present, (1− pri) = nR−nri

nR and

1− pni = nD−ndi−nR+nri
nD−nR for relevant and non relevant respectively. The term relevance

weight assigned for a particular term i would then be:

trwi =
pri(1− pni)
(1− pri)pni

=
nri(nD−ndi−nR+nri)

(ndi−nri)(nR−nri)
(2.11)

However, initially we do not have knowledge of the values of the variables nri and nR.

Thus different starting assumptions result in different formulations of the term weight-

ing [119]. For instance, Croft and Harper [26] make the assumption that the number of

relevant documents nR is likely to be relatively small compared to the number of doc-

uments in the collection nD, which results in the approximation of the probability of

the presence of a term in a non-relevant document being pni = ndi
nD . And given that no
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evidence is available to estimate the probability of the presence of a term in a relevant

document, then the simplest assumption is to assume that pri equals some constant, c.

When relevance information does become available then further consideration of the

estimation problem is required. This is because the values from the contingency table

cannot be used directly for estimation purposes as extreme values maybe assigned to

term weightings. For instance, a term that does not appear in a subset of the known

relevant documents would be assigned a term weighting of zero. This of course is a

rather extreme estimation (i.e is it really impossible?). To provision for the inherent

uncertainty in the retrieval of further documents, Robertson and Sparck-Jones[119]

suggest a simple modification of Equation 2.11 by adding a phantom count of 0.5 to

the central cells in Table 2.1. The relevance weighting assigned for a particular term

becomes:

trwi =
(nri +0.5)(nD−ndi−nR+nri +0.5)

(ndi−nri +0.5)(nR−nri +0.5)
(2.12)

2.5.3 Optimal Retrieval

In Maron and Kuhns [95], they argue that a retrieval system should rank documents in

decreasing order of their probability of relevance to a query. This was eventually for-

malized by Robertson [120] who called this criterion the Probability Ranking Principle

(PRP) and this states that:

If a reference retrieval system’s response to each request is a ranking of
the documents in the collections in order of decreasing probability of use-
fulness to the user who submitted the request, where the probabilities are
estimates as accurately as possible on the basis of whatever data has been
made available to the system for this purpose, then the overall effective-
ness of the system to its users will be the best that is obtainable on the
basis of that data.

Robertson showed that the optimality of ranking by the probability of relevance could

be guaranteed under the following conditions: (1) that relevance is a discrete vari-

able, either the document is relevant or is not relevant, and (2) that the relevance of a

document is independent of the other documents in the collection.
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Under these conditions, it can be proved theoretically that optimal retrieval will ensue

[10, 115]. Given that the representation of a document is d and the representation of

the user’s information need as a query q, then from the definition of the PRP we can

proceed as follows: Let C denote the cost of retrieving a relevant document, and C̄

denote the cost of retrieving a non-relevant document, where the cost of retrieving not

relevant documents C̄ is greater than the cost of retrieving relevant document C, that is

C < C̄.

The decision rule for the PRP states that document di should be retrieved in preference

to document d j in response to a query q in the ranking if:

C.p(R|q,di)+C̄.p(N|q,di) ≤ C.p(R|q,d j)+C̄.p(N|q,d j) (2.13)

Substituting p(N|q,d) = 1− p(R|q,d) into Equation 2.13, and performing some alge-

braic manipulation, we arrive at the conclusions that the our decision rule will only

hold if the p(R|q,di) is greater than p(R|q,d j). When this is the case the ranking will

be optimal.

C.p(R|q,di)+C̄.(1− p(R|q,di)) ≤ C.p(R|q,d j)+C̄.(1− p(R|q,d j))

C̄ +(C−C̄).p(R|q,di) ≤ C̄ +(C−C̄).p(R|q,d j)

p(R|q,di) ≥ p(R|q,d j)

The above holds even in the case where relevance is defined over a multi-valued or

continuous relevance scale. In the case of relevance as a continuous variable r ∈ [0,1],

the probability distribution p(R|d,q) will be a probability density function and the

costs C and C′ will be replaced with a cost function c(r) [36].

2.5.4 Other Probabilistic Models

The initial attempts to utilize probability theory for Information Retrieval were made

[95, 97] as an alternative and theoretically sound approach to the similarity based mod-
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els. Since then there has been a steady development in probabilistic models that at-

tempt to estimate the probability of relevance. This initially culminated in the popular

Binary Independence Model [119] which was eventually finalized as a landmark re-

trieval model in 1979 [148]. Further research and development of the probabilistic

model has been mainly directed in four areas: (1) Models that attempt to relax the

independence assumption (2) Models that utilize Bayesian/Causal inference networks

(3) Model free attempts that apply regression analysis, and (4) Non-Classical Logical

based attempts.

Techniques developed to relax the independence assumption have been extensively

investigated [147, 146, 130, 49]. However, relaxing the independence assumption usu-

ally means that more parameters need to be estimated. For instance van Rijsbergern

[147] estimated relevance based on term dependencies, this required four parameters to

be estimated instead of two. And as such it was deemed that the computational expense

involved in capturing such dependencies was too high with respect to performance.

Other attempts to capture the conditional dependencies between terms have used an

explicit network representation through Bayesian inference networks [146, 130]. This

approach generalizes the probabilistic approach to Information Retrieval and allows the

integration of various sources of evidence to be combined within the one framework.

Alternative approaches to probabilistic models applied statistical regression theory in

an attempt to remove the independence assumption altogether, effectively creating a

model which only relies on the underlying assumptions implicit in statistical regres-

sion theory itself. An instantiation of this approach is Darmstadt Indexing approach

[37, 38], though the approach has met limited success because of the need to employ

heuristics in order to optimize the model. A distinctly different approach to probabilis-

tic models stems from using non-classical logic and expressing its semantics using

probability theory [149]. Many attempts have been proposed that use possible worlds

analysis (intentional logic) [150], modal logic [106], situation theory [79] and through

the integration of Natural Language Processing with logic [16]. For a more compre-

hensive overview of the differences between these conventional probabilistic models

see Crestani et al. [25] and Fuhr [36]. Recently, a new era has dawned for probabilistic

models, that of statistical language modelling. However, as we shall examine further
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in the next Chapter, the application of statistical language modelling to Information

Retrieval does not focus on estimating the probability of relevance. Instead, it asks a

different question,

How likely is it that this document generated this query?

Where the problem is to estimate the probability of a query given a document based

on sampling. A meta model based on notion of sampling is the recently proposed

Divergence from Randomness framework (DFR)[1]. That is the DFR can be specified

such that it is equivalent to the LM approach[1].

2.6 Evaluation of an IR System

Evaluating an IRS is an importance aspect of the discipline[148]. The evaluation of an

IRS is to determine how well the IRS satisfies the users, past and future, collectively,

and on average, not just individually[144]. Ideally, we would like to test our system on

real live users, however, this would be a costly exercise. Instead, a simulated testing

methodology is usually undertaken. According to Hull [64], to evaluate an IRS in a

controlled fashion the following three requirements need to be fulfilled:

1. An information retrieval test collection, consisting of documents, queries, and

the relevance judgements associating which documents are relevant for which

query

2. Evaluation measures that provide an indication of the effectiveness of the IRS’s

ability to satisfy the user’s information need, and

3. A means for determining whether the results observed from different systems

are in fact statistically different.

In this thesis, we employ the use of TREC6[47] and some earlier IR test collections

which have been specifically designed for controlled experiments and reasonably ful-

fil the first criteria. In the following subsections, we explain the standard evaluation

6TREC is the Text REtrieval Conference
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measures used to quantify performance and statistical tests used to gauge whether the

performance of one system is better than another.

2.6.1 Evaluation Measures

There are many different measures that can employed to assess the performance of an

IRS. Six measurable quantities for gauging the performance of an IRS were suggested

by Cleverdon [19]. These included; (1) The extent to which a system contains rel-

evant information (coverage); (2) the average length of time between submitting the

query and presentation of the ranked list (time lag); (3) the presentation of results; (4)

the effort expended in finding relevant information; (5) the proportion of relevant in-

formation actually retrieved in response to a query (recall); and (6) the proportion of

retrieved information that is actually relevant (precision). It is the last two that have

been adopted as common measures of the effectiveness of an IRS [18]. Precision and

Recall measure the systems’s ability to retrieve relevant information while at the same

time withholding non relevant information[148].

Precision is the fraction of retrieved documents that are actually relevant; i.e. the

number of relevant documents retrieved nr divided by the total number of documents

retrieved N.

P =
nr
N

(2.14)

Recall is the fraction of relevant documents that have been retrieved; the number of

relevant documents retrieved divided by the total number of relevant documents nR.

R =
nr
nR

Sometimes it is preferable to have one measure instead of two. Precision and Recall

can be combined using the f -measure[67], where an a priori weight 06 δ6 1 can be

assigned to the relative importance of recall versus precision (See Equation 2.15). If
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Figure 2.6: Example Precision Recall Graph. Notice the trade off between precision

and recall.

equal importance is assigned to precision and recall then the f -measure becomes the

harmonic mean of precision and recall.

Fδ =
PR

(1−δ)P+δR
(2.15)

Precision is determined for either a fixed level or fixed number of documents returned,

for a particular query given the relevance judgements.

Precision at fixed recall levels By setting fixed recall levels we are able to compute

the corresponding precision for each request. Typically, 11 points of recall are selected;

0.0,0.1, ...,1, which correspond to the precision at 0,10,..., 100 percent of the relevant

documents.

For overall system performance the precision at each level is averaged over all requests

and is often reported in a precision-recall graph (see Figure 2.6). When the Precision

and Recall are plotted over eleven points of recall (See Figure 2.6) the curve is charac-

terized as a monotonic decreasing function. This is because there is a trade off between
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Precision and Recall, as recall is increased then there will be a decrease in precision,

and vice versa. This results because as we transverse down through the ranked list

documents are less likely to be relevant, hence the precision degrades.

Unfortunately, we cannot usually estimate the precision at a particular fixed recall

level as it may not correspond with the natural recall levels. Hence, interpolation

is employed to estimate the precision at fixed levels of recall. See [148] for further

details.

Precision at fixed number of documents Instead of using fixed levels of recall, we

can specify a cut off point of the number of documents that the user would examine.

The precision can then be computed at that fixed number of documents. Usually, it is

calculated at the following number of documents, 1, 5, 10, 20, 30, up to 1000. The

early values show how well the system performs for applications where high precision

is critical( e.g the average web user), whereas 1000 represents the point where the user

stops searching.

(Non Interpolated) Average Precision The Non-Interpolated Average is computed by

averaging the precision values recorded when each relevant document is encountered

whilst traversing the list in decreasing order of relevance. The mean of the non inter-

polated Average Precision is taken over all queries to give the mean Average Precision

(mAP). This statistic is usually taken as a measure of the system’s overall performance.

2.6.2 Comparison of IR Systems

Each measure is computed with respect to one query or information need, the results

are often aggregated over all queries to obtain the mean performance values. The val-

ues must be compared to determine whether one system outperforms the other system.

A simple comparison of the mean Average Precision values is not enough to conclude

that one system is better than other, especially if there are only very few queries, but it

does provide a reasonable indication. However, when there is a reasonable number of

queries available then significance testing can be employed[64]. The null hypothesis

H0 is that there will be no difference between the two systems. If H0 is rejected then
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there is a significant difference between the two systems. This implies that one system

consistently outperforms the other system. Significance Tests that are applicable in-

clude the paired t-test, the paired Wilcoxon Signed Rank test, and the paired sign
test[85, 134, 118]. However, the latter makes the least assumptions about the data as

it is a non parametric test which only uses the sign of the difference between the two

samples. This makes it the most robust test to apply, as the conditions for the other tests

are seldom met (see [148] for a detailed discussion on significance testing). Through

the course of this thesis, we apply the paired sign test to compare the performance of

retrieval experiments.

2.7 Feedback

Feedback with the IR systems allows the user to refine (or re-define) their information

need. The feedback can be obtained through various means. The common form is

referred to as relevance feedback. This is where the user has judged documents as

relevant or not and informed the IRS of their status. Instead of obtaining explicit

judgements from users, the top documents returned for a query can be used as relevance

feedback, and is referred to as pseudo relevance feedback.

A less clearly defined form of feedback is implicit feedback. Implicit feedback can

be obtained from interactions with the IR systems, such as viewing a document or

document summary, hovering a mouse over a document link, time spent reading a

document, etc[17, 153]. The interactions provide a trail of evidence that may be used

to update the query or refine the model of relevance [153].

The information obtained from the feedback is then used to reformulate or redefine

the user’s information need. For instance, under the BIM model we have already

mentioned, we can re-estimate the term relevance weighting with respect to a set of

relevant documents. This affects the weighting however often extra terms are added to

the query to provide a better description of the information need. This is referred to as

query expansion.
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2.7.1 Query Expansion

Query Expansion involves the addition of terms to the original query and will usually

include re-weighting the query terms as well. One of the earliest methods of query

expansion and re-weighting techniques proposed was the Rocchio formula [121]. The

new query qnew(t) consisted of the original query qold(t) combined with the average

weight assigned to terms in the relevant document, and adjusted by the average weight

assigned to terms from non relevant documents, such that:

qnew(t) = αqold(t)+
β

|d ∈ R| ∑
d∈R

n(t,d)− γ

|d ∈ N| ∑
d∈N

n(t,d) (2.16)

where |d ∈ R| is the number of documents in the relevant set, |d ∈ N| is the number

of documents in the non-relevant set The parameters α,β and γ determine the ratio

between the query, and positive and negative feedback, respectively. Automatic query

expansion is often employed because initial queries tend to be rather short, 2-3 terms

[157]. Other query expansion techniques have been suggested such as Local Context

Analysis[157, 98].

2.8 Summary

In this chapter, we have outlined the main components of an Information Retrieval

System for ad hoc retrieval and introduced the basic models for Information Retrieval.

The remainder of this thesis is concerned with probabilistic models, specifically the

Language Modelling approach to ad hoc retrieval. In the next chapter, we review the

area of statistical language models for ad hoc Information Retrieval.
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Language Models for IR

The adaptation of statistical language modeling techniques to ad hoc retrieval was

proposed in 1998, and is typically referred to as the Language Modeling approach.

Since then a steady stream of research into Language Modeling has been generated,

to the point where it has become widely accepted as an effective and intuitive retrieval

model. However, the approach remains controversial as it does not attempt to address

relevance, but asks a different question, ‘How likely is it that this document would

produce this query?’. The resulting probability is referred to as the query likelihood

and is used to rank documents. In this chapter, we describe in detail the Language

Modeling approach and the subsequent developments of the model, paying particular

attention to the aspects that have not been fully addressed or that could be used to inject

context into the retrieval process.

3.1 Language Modeling Approach

The three main proponents of Language Modeling were Ponte and Croft [113], Hiem-

stra [57] and Miller et al. [96]. Their attempts have defined Language Modeling for

Information Retrieval where the documents are ranked according to the probability of

a query given the document. However, the way in which this is derived differs be-

tween the proponents. In the following section we present some of the background

43
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about Language Modeling, before introducing the different approaches followed by

our formalization of the common assumptions made under these approaches.

Early work on using language models for Information Retrieval was inspired by Statis-

tical Language Modeling (SLM) techniques[93]. The goal in SLM is to predict the next

term given the terms previously uttered. This is achieved by developing a generative

model based on the underlying data (i.e. the counts of terms and their co-occurrence).

This model forms a key component in speech recognition applications[116], where

the probability of a term is used in conjunction with audio evidence to decide what

term shall be recorded next as the uttered term. An initial attempt to adapt the goal of

SLM for IR was in a passage retrieval application[100]. Here the probability of a text

fragment (several new terms) given the query (as the previously uttered terms) were

estimated and used to rank the text fragments[100]. It was not until 1998 that Ponte

and Croft[113] introduced Statistical Language Modeling for document ranking. They

adapted the goal so that it would predict the query (new terms) from the document,

where the document consists of the previously uttered terms. The score of a document

is obtained by estimating how likely the query q would have been produced from the

document d (i.e. the probability of the query given the document, p(q|d)).

The main assumption engaged by Ponte and Croft [113] is that the p(q|d) is correlated

with the probability of document being relevant. They arrive at this conclusion by

first assuming that the p(d|q,R) can be approximated by the probability of a document

given the query, p(d|q). Then by applying Bayes’ rule they obtain the query likelihood

p(q|d). The prior probability of a document p(d) and the p(q) are assumed constants

and can be dropped for ranking as shown in Equation 3.1.

p(d|q) =
p(q|d)p(d)

p(q)
(3.1)

∝ p(q|d)

The transformation, and hence ranking by p(q|d), is contrary to the approach taken

by traditional probabilistic models as this approach ignores relevance. This has led

to some controversy about the validity of the Language Modeling approach which we
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Figure 3.1: Models the corruption of the query.

shall discuss later. However, the intuition that a document is more likely to be relevant

if the document is more likely to produce the query terms is very appealing. Ponte and

Croft [113] claim that the Language modeling approach offers an explanatory model

of retrieval.

This is more obvious when we consider the approach derived by Hiemstra[57], who

derives the Language Modeling approach by considering statistical sampling. Sam-

pling is a concept found in most text books on probability theory[118] and usually

involves examples involving a bag (document) and coloured balls (terms). The anal-

ogy is as follows: Imagine we have a set of documents d ∈D, where each document d

is represented by a bag of terms. First we select a document d with probability p(d).

Then from that d, we select a term ti at random with probability p(ti|d). We record the

term ti and the replace it back into the bag (i.e. sampling with replacement). We repeat

this k times and this becomes our query q = {t1, . . . , tk}.

We now ask the IR system which document was most likely to have produced this

query. Documents are then ranked according to the joint probability of a query and

document, p(q,d) = p(q|d)p(d). Since the probability of a document p(d) is assumed

to be constant, the scoring for each document is approximated by the query-likelihood

p(q|d). This is determined by sampling the query terms from each document. Under

this interpretation the notion of relevance is not pivotal to the scoring, and the query

likelihood is again assumed to be correlated with the relevance of a document.

Miller et al.[96] derive the query likelihood approach from a different point of view

altogether. By viewing the process of retrieval as a Hidden Markov Model (HMM)
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they formulate the language model as follows: the observed data q, is modelled as

being the output produced by passing the document through some noisy channel. The

analogy is as follows: The noisy channel is the mind of the user, who is believed to

have some notion of the ideal document i that they want to retrieve and translates this

notion in the query q. Hence, the probability they attempt to estimate is the probability

that d was the relevant document i, given that q was produced. This was expressed as

shown in Equation 3.2

p(d = i|q) =
p(q|d = i)p(d = i)

p(q)
(3.2)

Up until this proposal, relevance was largely ignored or implicitly assumed within

the Language Modeling framework. While this approach considers relevance, it only

really considers the case when there is only one relevant document and we wish to

find that one. While this is seldom the case, Miller et al.[96] advocate that this is a

hypothesis; ‘Was this the document the user had in mind?’. Hence, documents are

ranked in decreasing order of the query likelihood as a means of quantifying how

probable this was to the user’s ideal document.

So far we have limited discussion about how relevance is represented within the Lan-

guage Modeling approach because the notion of relevance is still an unresolved issue.

It is assumed that the likelihood of generating a query from a document is correlated

with the relevance of that document[113]. However, this removes the focus from rele-

vance and requires model specific assumptions to be made.

3.2 Assumptions of Language Modeling

This section presents the underlying assumptions of the Language Modeling approach.

From the initial approaches advocated[113, 57, 96], we have surmised three specific

assumptions. We state them as follows:

A1 Correlation The probability of a query given a document is correlated with the

probability of a document being relevant[113, 57] . Stated, more firmly, the
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probability of a query given a document is proportional to the probability of the

document being relevant[78].

A2 Unification The data model and the retrieval function are one and the same.

This is because relevance is subsumed by the document modeling process (data

model)[113, 78] and shall become more apparent during the course of our re-

view.

A3 Discrimination The terms that a user submits as a query will be sufficient in

discriminating relevant from non relevant documents[113, 96].

3.2.1 Assumption One - Correlation of Relevance

The assumption that the relevance of a document is correlated with the likelihood of

the query being generated from that document does not appear to be that radical on

the surface. Intuitively, we would expect the query terms to be prevalent in the rele-

vant documents, and not so in non-relevant. i.e a good match on query terms implies1

relevance[139]. In the approaches of Ponte and Croft [113] and Hiemstra [57], rele-

vance was assumed to be correlated with the relevance of a document. Typically, prob-

abilistic models have considered relevance as a central notion, and the presumption

is that it should be explicitly defined and modelled. The implicit nature of relevance

within the Language Modeling approach has therefore attracted some criticism (see

[139] for a full account). Such as; how does the language modeling approach handle

relevance feedback, without the notion of relevance? Or when relevance was consid-

ered in Miller et al.[96] with the guise of the ideal document, the language modeling

approach assumes that there is only one possible relevant document. That is, the doc-

ument that generated the query (ideal document). Therefore, how are further relevant

documents considered[139]? These are interesting issues which have not been fully

addressed and represent just some of the challenges facing Language Modeling for IR.

Such criticisms have been taken seriously and an explicit definition of relevance in the

Language Modeling framework has been offered by Lafferty and Zhai[78]. Instead of

1Implies as opposed to infers.
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assuming a correlation between the relevance of a document and the probability of a

query given the document, they claim that it is actually proportional. We present their

arguments below. As with traditional probabilistic modeling the log odds ratio forms

the basis of the ranking and computed by an approximation. However, Bayes’ Theo-

rem is applied differently than in the traditional approach and they arrived at Equation

3.4. Mathematically the different decompositions are equivalent at the point(i.e Equa-

tion 3.4 is equivalent to Equation 2.5). However, to proceed to the query likelihood

approach from Equation 3.4 two sub assumptions are required.

logO(r|d,q) = log
p(R|d,q)
p(N|d,q)

(3.3)

= log
(

p(q|d,R)p(R|d)
p(q|d,N)p(N|d)

)
(3.4)

= log
p(q|d,R)
p(q|d,N)

+ log
p(R|d)
p(N|d)

(3.5)

∝ log
p(q|d,R)
p(q|N)

+ log
p(R|d)
p(N|d)

(3.6)

∝ log p(q|d,R)+ log
p(R|d)
p(N|d)

(3.7)

∝ log p(q|d,R)+ log
p(R)
p(N)

(3.8)

∝ log p(q|d,R) (3.9)

A1.1 The document and query are assumed to be independent given the event of non-

relevance i.e. p(d,q|N) = p(d|N)p(q|N) (applied in Equation 3.6). Hence, the

p(q|N) can be ignored from the ranking because it is assumed to be constant

(Equation 3.7).

A1.2 The probability of a document and relevance(or non relevance) is independent,

i.e. p(d,R) = p(d)p(R) and p(d,N) = p(d)p(N) (applied in Equation 3.8). The

prior of relevance and non-relevance is also ignored from the ranking because it

is again assumed to be constant.

Ultimately, they claim that the log Odds Ratio is proportional to the query likelihood

of a document and relevance. This is a much stronger claim than just correlation,

one which may not be entirely justifiable. We consider the assumptions they make to
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ascertain why.

Their first assumption A1.1 is based on the belief that query terms are only likely

from relevant documents and not non relevant documents which is fairly believable

and acceptable most of the time. However, when terms have multiple meanings this is

not likely to be the case. For instance, if a term is from a document that uses a different

sense then this premise would be violated.

Lafferty and Zhai’s second assumption A1.2, however is rather more questionable and

presumably was made for convenience 2. Dispensing with the dependence between a

document and relevance (non-relevance) seems to be rather inappropriate. Implicitly,

the notion of relevance is linked to the document, i.e. either it is relevant or not. In the

relevance based language models, this dependency is exactly what is used to score doc-

uments (See Section 3.5.5). However, if we are happy to accept this assumption then

the inclusion of relevance within the language modeling approach becomes implicit

within the document language model3. With relevance on the document modeling

side, there is now a greater reliance on the document language model to be appropri-

ately estimated/modelled. This is made explicit through assumption A2.

Our interpretation of the query likelihood considers a different and simpler explanation

of the correlation in A1. We posit that the joint probability of a query and document can

be expressed by the summation over the binary variable relevance of joint probability

of query, document and relevance (See Equation 3.10). After re-expressing the joint

probability on the right hand side and then dividing both sides in Equation 3.11 by

p(d), we obtain the query likelihood p(q|d).

2Note: Within their paper they do not provide any rationale for this assumption.
3This seems to imply that all the documents are considered relevant, and that the query likelihood

will tell us just how relevant they are. This can be restated as the Orwellian Retrieval Model: All
documents are relevant, but some documents are more relevant than others.
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p(q,d) = ∑
r∈(R,N)

p(q,r,d) (3.10)

= ∑
r∈(R,N)

p(q|r,d)p(r,d)

= p(q|R,d)p(R,d)+ p(q|N,d)p(N,d) (3.11)

p(q|d) = p(q|R,d)p(R|d)+ p(q|N,d)p(N|d) (3.12)

The query likelihood is composed of two parts, the contribution of the query given

the document being relevant and the probability of query given the document being

non-relevant, weighted by the prior probability of relevance given a document.

p(q|d) p(q|R,d) (3.13)

Equation 3.13 depicts the correlation where the strength of this correlation will depend

on how well we can account for the other parts (i.e. the p(q|N,d)).

As mentioned above, the query likelihood approach relies on matching query terms to

imply what is relevant. However, this property can be easily violated. For instance, a

user unwittingly submits a query with terms that do not occur in relevant documents (i.e

the vocabulary problem). This could occur when the user is unsure of language con-

tained in the relevant documents, or it is domain specific. Alternatively, the user may

not know how to formulate their query such that the terms they use in the query match

the terms the author of the document used. Under such circumstances, we would antic-

ipate that the correlation in Assumption One would not hold. This is why Assumption

Three is required.

3.2.2 Assumption Two - Unification

Assumption One places the responsibility of handling relevance with the document

language modeling process (i.e the process generating the data). How the document is

modelled will directly influence how it is scored with respect to a query as there is no
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distinction between the representation of the document (data model) and the matching

function (retrieval model) under the language modeling approach. Restated, the data

model and the retrieval model are one and the same, or unified4. The benefit is that

two separate set of inferences for indexing and retrieval are no longer required[113].

Therefore, it is crucial that the estimation of the document model be taken seriously.

The document models needs to be an accurate representation of the underlying data

but also must consider the user’s understanding of the collection. This is a further

assumption of the model (A2.1). A2.1 assumes that the user has some understanding of

the distribution of terms with in documents. This is also required by Assumption Three

because how the user considers the documents in the collection and will influence the

query terms that they will choose. The documents need to reflect this understanding

and encode this with in the document model. By doing so, it was posited that building

better representations of the underlying document models with respect to the user’s

understanding of the document should obtain better retrieval performance[112].

3.2.3 Assumption Three - Discrimination

This assumption cast according to Ponte and Croft[113] asserts that the user will

choose query terms that will sufficiently distinguish between relevant and non-relevant

documents[112]. A similar assumption is made implicitly by Miller et al. [96] from

their ideal document analogy. If the user can imagine an ideal document and the terms

used within such a document, then they should be able to select query terms which will

be likely to occur in this document. Presumably, these query terms will discriminate

the relevant documents sufficiently to separate them from the non relevant documents.

This assumption can be considered from two points of view:

A3.1 The user will issue query terms that are highly discriminative, i.e will identify

relevant from non-relevant, or

A3.2 The user will issue query terms that are highly likely in relevant documents.

4Throughout the course of this thesis we may interchange between data model and document model
depending on the context, but meaning is the same as in all cases the data are the documents.
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For the user to be able to select terms that would satisfy either sub assumption, then

it is required that A2 and A2.1 hold( i.e the document models reflect the user’s under-

standing of the terms within documents). A3.1 assumes that the user is more intimate

or familiar with the collection and able to select highly discriminative terms, while

A3.2 assumes that the user is able to identify common and general terms but is not so

familiar or intimate with the collection and hence submit terms that would be highly

likely in the relevant document(s).

An implication of A3 is that the query must consist of key terms that are likely to

have come from the relevant document(s) and not a description of the information

need[112]. This is because there may be a mismatch in terms the author uses in de-

scribing the information and the terms used to describe the information need. It is

further assumed that the user will in fact choose terms that are more likely to occur

in relevant documents than non relevant documents[112]. Under this assumption there

should be reasonable discrimination between the query likelihood of relevant docu-

ments and query likelihood of non relevant documents. If the queries are of such qual-

ity then we believe that this will produce a correlation between the query likelihood

and the relevance of the document (i.e uphold A1).

A summary of the assumptions is provided in the Appendix A. In Chapter 5, we pro-

vide an analysis of these underlying assumptions to see if they hold in practice and

to what extent. However, our core contribution focuses on Assumption Two, where

we attempt to develop context based document models which reflect the user’s under-

standing in Chapter 4 and Chapter 6.

3.3 Query Likelihood Approaches

Regardless of the proponent, the scoring is determined through computing the query

likelihood p(q|d). So far we have not discussed how the probability of a query given

a document is actually determined by computing the probability of a query given the

document model p(q|θd). The reasoning for this will be made apparent in Section 3.4.
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The document model θd provides a representation of the underlying data in d and is

defined as a multinomial probability distribution over the discrete sample space over

the vocabulary |T |. The probability for each term given the document model is defined

as p(t|θd). It is assumed, unless stated otherwise, that the query terms are drawn

identically and independently (i.i.d) from the document model. While this is not the

case in reality, as the meaning of a word is dependent on its context, it is a reasonable

starting point and an acceptable approximation[96]. This independence assumption

states that every possible order of the terms has the same probability, regardless of

position[57].

In the sampling example, the query terms were randomly drawn. This implies that

the query generation process is assumed to be a random process[113]. Again this is

not strictly the case: however, from the IRSs perspective, the process appears random

because it has knowledge of the query generation process. Similarly, the document

language generation process is also treated as a random process.

Aside from the differences in interpretations[113, 57, 96], the next main difference

when estimating the query likelihood is the treatment of the query. It is either treated

as a set[112], a sequence[57] or a distribution[96]. Below, we describe each of the

approaches’ specific implementation of the query likelihood approach.

In Ponte and Croft[113], they consider the query as a binary vector of terms, where

term t is either in the query q or not. Treating the query as such leads to a multiple-

Bernoulli view of the document model. The query likelihood is therefore composed

of two parts, the probability of the query terms occurring in the document, and the

probability of the terms not occurring in the query also not occurring in the document.

pset(q|θd) = ∏
t∈q

p(t|θd)∏
t /∈q

(1− p(t|θd)) (3.14)

The idea is that if a document discusses lots of issues that are unrelated to the query

topic then the document is probably less relevant than a document that predominantly

covers the query topic. This provides a normalization component to the ranking, but

is computationally expensive as all terms in the vocabulary require to be scored per
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document, not just the terms that appear in the query.

In the sequence based approaches[55, 96], the query is represented as a sequence of

terms q = {q1, . . . ,qk}. The p(q|θd) is the joint probability of all the query terms

occurring in the document model (See Equation 3.15). It is generally assumed that

the terms are drawn identically and independently from the document model, resulting

in the multiplication of the probability of each query term given the document model

(See Equation 3.16).

pseq(q|θd) = p(q1, . . . ,qk|θd) (3.15)

=
k

∏
i=1

p(qi|θd) (3.16)

Treating the query in this way represents a multinomial view of the document model.

The assumption of independence means that order is not considered, and so the query

can be represented as an empirical distribution n(t,q) which represents the number of

times term t occurs in query q. The probability of a query given the document model

can now be expressed as shown in Equation 3.17, which is equivalent to Equation 3.16.

p(q|θd) = ∏
t∈q

p(t|θd)n(t,q) (3.17)

This representation is the form used throughout the remainder of this thesis, unless oth-

erwise stated. For computational issues and mathematical convenience the log of the

query likelihood is usually taken. This does not affect the ranking as the log function

is a monotonic transformation, but ensures that the multiplication of very small proba-

bilities can be computed, through the summation of the log probability (See Equation

3.18).

log p(q|θd) = ∑
t∈q

n(t,q) log p(t|θd) (3.18)

A similar ranking functions proposed by Ng[105] used the ratio p(q|θd)
p(q) as a measure of

the similarity between document and query. This normalizes the query likelihood and

is referred to as the log likelihood ratio (LLR).



Chapter 3. Language Models for IR 55

In the following section we describe the different document modeling techniques.

3.4 Document Modeling

Recapping, the basis behind the LM approach is that we infer a language model for

each document (in the collection) and rank according to our estimate of generating

the query from that model. An estimate of the probability of a query q given the

language model of document θd , p(q|θd), is therefore required. In order to calculate

this, the usual assumption that terms are independent is made. The calculation of the

ranking for each document is obtained by taking the product over the query terms:

p(q|θd) = ∏t∈q p(t|d)n(t,q) where the p(t|d) is the maximum likelihood estimate of

the term occurring in the document d. i.e. p(t|d) = n(t,d)/n(d) where n(t,d) is the

number of times t occurs in d, and n(d) = ∑t n(t,d).

However, the empirical document model has a severe limitation[113]. If the document

is missing one or more of the query terms then the document will be assigned a zero

probability because of the multiplication of the probabilities. This extreme estimate

is undesirable from a probabilistic viewpoint, because assigning the probability of a

term given a document as zero is quite a radical assumption. Such an assignment

would mean that the event would be impossible. To alleviate this problem it is often

assumed that a term is no more likely to occur than the probability of drawing the

term by chance, though this may introduce other problems. If a term that occurs in

the majority of documents but is not a stop word and does not appear in the document

then it is possible that it will have a significant impact on determining the document’s

relevance[113]. Nonetheless, creating a document model can resolve the Zero Prob-

ability Problem (ZPP) by smoothing the maximum likelihood estimates such that the

p(t|θd) > 0 for all t ∈ T . This represents a departure from the Frequentist view of prob-

ability, and in this case towards a Bayesian persuasion, where the document model is

estimated according to a set of model parameters5.

5However, there are other ways to deviate from the Frequentist view, which are not considered within
this thesis.
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In the following subsections, we review some of the smoothing techniques that have

been applied to LM for IR. One of the aims of this thesis is to investigate smoothing

techniques that use context to generate better representations of the underlying data.

According to A2, building better representations should obtain better performance. We

defer any discussion of these until Chapter 4, where we present a generic framework

for context based document models.

3.4.1 Risk Based Smoothing

Ponte and Croft [113] estimated the p(q|θd) using risk based smoothing. Their ap-

proach attempts to smooth the document models in a robust fashion by minimizing the

risk associated with adjusting the likelihood of a term occurring in a document. A geo-

metric function was used that can be understood intuitively, if thought of as follows: as

the term frequency deviates further from the mean, then the mean probability becomes

riskier to use as an estimate. The risk function L is used as a mixing parameter in the

estimation of the probability of a term given a document model as follows:

p(t|θd) = p(t|d)(1−L(t,d))× pavg(t)L(t,d) if n(t,d) > 0 (3.19)

= p(t|θC) else

Where the probability of a term pavg(t) and the risk function for a term in a document

L(t,d) are defined as follows:

pavg(t) = ∑d p(t|d)
d f (t)

(3.20)

L(t,d) =

{
1

1+ tf avg(t)

}
×

{
tf avg(t)

1+ tf avg(t)

}n(t,d)

(3.21)

Where tf avg(t) = pavg(t)× n(d) is the average term frequency of the term t and the

probability of a term in the collection model is defined by:

p(t|θC) = ∑d n(t,d)
∑d′ ∑t ′ n(t ′,d ′)

(3.22)
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By smoothing in this way the probabilities are not normalized. So Ponte and Croft

calculate the probability of a query given a document as follows:

p(q|θd) = ∏
t∈q

p(t|θd)×∏
t /∈q

(1− p(t|θd)) (3.23)

This is why the query is considered a set of terms as opposed to a sequence of terms.

The second part of the expression determines the probability of not producing the

terms out of the query and restricts the possibility of modeling phrases within the local

context such as those captured by bi-grams or tri-grams.

It was shown on TREC topics 51-100, 202-250 that this approach could outperform

the cosine measure using TF.IDF. This was the first piece of evidence to demonstrate

that the Language Modeling approach was effective in ad hoc IR, though today this

model is generally considered obsolete in terms of both effectiveness and efficiency.

3.4.2 Laplace Smoothing

The simplest method in which to overcome the ZPP is by applying Laplace smoothing

[88]. This approach adds a phantom count to each term in the document. The estimate

for a term given a document model is:

p(t|θd) =
n(t,d)+α

n(d)+ |T |α
(3.24)

where α is the size of the phantom count6 (and thus model smoothing parameter)

and |T | is the total number of terms in the vocabulary. While this avoids ZPP, there

is no reason to believe that each term should be assigned equal additional count(s).

Doing so may actually violate the assumption that a user has an understanding of the

distribution of terms used within documents, especially when document descriptions

are very sparse. An extension of this form of correction is the absolute discounting

method [135], which subtracts a small constant from each count and then redistributes

the total subtracted count to the unseen terms. The performance is usually considered

so poor that it is often not reported as is the case in [160].
6Strictly speaking Laplace Smoothing is when α = 1. The Lidstone correction allows α to be any

real positive number.
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Figure 3.2: Hidden Markov Model for query production. The query is assumed to be

generated from either one of two states; the collection or the document unigram.

3.4.3 Jelinek Mercer Smoothing

The Jelinek-Mercer smoothing method [68] is characterized by a sum of its compo-

nents and is sometimes referred to as linear interpolation or mixture model. This form

of smoothing was derived from a linguistic perspective by Hiemstra[55] and from a for-

mal basis using the Hidden Markov Model (HMM) by Miller et al. [96]. We present

the HMM approach first, and then show the similarity with the former.

In a HMM application the observed or seen data is assumed to be generated as a result

of some unknown key being passed through a noisy channel. Miller et al.[96] assume

the unknown key is the relevant (ideal) document that the user conceives. It passes

through the user’s mind (the noisy channel) and is emitted as the query (observed

data). The HMM is defined by a set of output symbols (terms), a set of state transition

probabilities and a probability distribution for each state. The terms are generated by:

1. Starting the process at some initial state

2. Moving from one state to another given the state transition probabilities

3. Sampling from the output distribution at the new state to produce an output sym-

bol;

4. Steps 2 and 3 are repeated until the desired amount of data is generated.
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Only the terms are seen by the observer and not the underlying sequence of states that

generated them. Hence the name, hidden Markov Model[116].

In Miller et al.[96], they restrict the HMM to two states; (1) sample from the document,

and (2) sample from the collection. The second state represents choosing a term that

is commonly used in natural language but that is unrelated to the document. The

transition to either state is represented by (1−λ) and λ. That is, they assume that the

next choice of where to select the term from is generated independently of the previous

choices.

p(q|θd) = ∏
t∈q

((1−λ)p(t|d)+λp(t|θc))
n(t,q) (3.25)

However, in [57], the document and query are assumed to be a sequence of terms.

The query is defined by a sequence of terms q = (t1, . . . , tk) that are produced from the

document model (where the subscript denotes the position of the term, and refers to a

particular term t in the vocabulary). The document model is produced by interpolation

with the collection model.

p(q|θd) = p(t1, . . . , tk|θd) (3.26)

=
i=k

∏
i=1

(p(t = ti|θd) (3.27)

The p(t|θd) is computed as a mixture model between the empirical probability and the

probability of a term given the collection model p(t|θc), as shown in Equation 3.28.

p(t|θd) = (1−λ)p(t|d)+λp(t|θc) (3.28)

In [105], they estimate p(t|θc) using the Good Turing smoothing[42] as it can account

for query terms that did not occur in the collection. However, since no documents will

contain such terms, it will have little impact on ranking if these terms are excluded

from the query.

Hiemstra[55] ran a pilot study on the benefits of using the collection frequency infor-

mation to smooth the document models on the CRANFIELD Collection and found that
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it was better than using a vector space model using term frequency inverse document

frequency and document length normalization. Subsequent results have confirmed

these findings on TREC collection[96] [162]. Representing the document model as

a mixture between the document and the collection is the most popular type of lan-

guage model, and is usually referred to as the standard language modeling approach.

3.4.3.1 Encoding Term Importance

In [58], Hiemstra argues that users are aware of the terms that they want to see in a

document and that a user should have control over the retrieval system. This implicity

assumes that the user has some understanding of the terms in the documents and that

they can quantify how important they are.

For instance, in the case where the user’s query is ‘IT Magazine’, the retrieval system

will normally remove ‘it’ from the query as it is very common word (and typically a

stop word). However, the user may explicitly request that the term ‘IT’ be present in

the document retrieved and returned. The user is effectively specifying how important

they perceive the term to be and so each query term should be given its own specific

term weighting. This value can also be interpreted as the prior probability that a term

is important, (1−λt) or not important, λt .

p(t|θd) = (1−λt)p(t|d)+λt p(t|θc) (3.29)

If the value of λt for a particular term is equal to zero, then t must exist in the document,

otherwise the document will be assigned zero probability. Conversely, if the value of

λt = 1 then the particular term is akin to a stop word and it does not matter whether it

occurs in the document or not. Under this approach stop words and mandatory terms

can be accommodated and the user has direct influence in the process. It can be shown

that as the λt values approach zero for all terms in the query then coordination level

ranking ensues [58]. When relevance feedback information becomes available then the

importance of a term can be estimated (See Section 3.7).
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3.4.3.2 Probabilistic Justification for TF.IDF

Under certain circumstances the Language Modeling approach can be formulated such

that a relationship with the popular TF.IDF weighting can be obtained[56]. If we as-

sume that the probability of a term given the collection is proportional to the document

frequency of the term such:

p(t|θC) =
df (t)

∑t ′∈T df (t ′)
(3.30)

And substitute Equation 3.30 into Equation 3.28 then the document model can be de-

fined as shown below:

p(t|θd) = (1−λ)
n(t,d)
n(d)

+λ
df (t)

∑t ′∈T df (t ′)
(3.31)

For a particular term in a document, the weighting assigned to it can be transformed

without affecting the final ranking by dividing Equation 3.31 through by λ
df (t)

∑t′ df (t ′)
,

such that we obtain:

p(t|θd) ∝ 1+
n(t,d)
df (t)

.
1

n(d)
.
(1−λ)∑t ′ df (t

′
)

λ

Each component can be interpreted as follows:

• n(t,d)
df (t) is the term frequency inverse document frequency weighting of the term in

the document,

• 1
n(d) is the inverse length of the document, and

•
(1−λ)∑t′ df (t

′
)

λ
is the constant for any term in the document.

It should be noted that by smoothing with the document frequency instead of the col-

lection frequency that two different distributions are being used (term frequency and

document frequency). While similar performance may be obtained using the document

frequency, the information will not be the same as df (t) 6= ∑d n(t,d) unless the docu-

ment is represented as binary vector such that n(t,d) = (0,1). In a similar derivation
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with the frequency based p(t|θC), Zhai and Lafferty show that the term weighting is

proportional to the term frequency and inverse collection frequency[162].

3.4.4 Bayes Smoothing

The Bayes Smoothing method has been hailed as the best smoothing technique for ad

hoc Information Retrieval[163] and is sometimes referred to as Dirichlet Smoothing[92].

Bayes smoothing gives the maximum posterior estimate of the document model, which

is an approximation of the predictive distribution of the full Bayesian inference model

[160]. Simply, the method creates the document model by adding a proportion of the

probability that the term occurs in the collection to the number of times the term oc-

curs in the document, and then normalized as shown in Equation 3.32 where β is the

Dirichlet prior and model parameter.

p(t|θd) =
n(t,d)+βp(t|θc)

n(d)+β
(3.32)

The amount of smoothing applied to each document will be proportional to the docu-

ment length. This intuitively makes sense as longer documents with a richer descrip-

tion, through having more terms to describe it, will require less smoothing. Shorter

documents will attract more smoothing because it is a less reliable sample to base our

estimate on. Bayes smoothing can be expressed as Jelinek Mercer smoothing where

λ = β

n(d)+β
and (1−λ) = n(d)

n(d)+β
. Further, the Laplace smoothing method is a special-

ized case of Bayes Smoothing, where β = |T | and p(t|θC) = 1
|T | .

Results on several TREC collections in [162] showed that Bayesian Smoothing (Equa-

tion 3.32) consistently outperformed Jelinek Mercer Smoothing (Equation 3.25).

In Zaragoza et al.[160], they derive an analytical form for the predictive distribution,

instead of using the maximum posterior estimate. They employ a standard Bayesian

technique of accounting for uncertainty by integrating out unknown model parameters.

So instead of using a single point estimate (i.e β), a distribution over β, θβ, is obtained

by combining a prior distribution over the model parameters p(θβ) with the likelihood
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of observing the document defined by p(d|θβ). Applying Bayes’ theorem, we can

estimate the posterior p(θβ|d) as shown in Equation 3.33.

p(θβ|d) =
p(d|θβ)p(θβ)

p(d)
(3.33)

The uncertainty is reflected in the values of θβ, such that if document d is long then

the posterior should reflect this by being relatively narrow, whereas if document d is

short the the posterior would be broader. The predictive distribution is then defined

by computing the probability of query q by accounting for the uncertainty within the

posterior through the integral defined in Equation 3.34.

p(q|d) =
Z

θβ

p(q|θβ)p(θβ|d)dθβ (3.34)

=
1

p(d)

Z
θβ

p(q|θβ)p(d|θβ)p(θβ)dθβ (3.35)

Hence, the query likelihood is obtained by taking the average probability of q over

all possible parameter values7. The results obtained from using this approach showed

that an improvement over the simple Bayes Smoothing could be achieved, though the

Jelinek-Mercer Smoothing method outperformed the predictive Bayes on TREC-6 and

TREC-8 Collections. These results are contrary to the findings of previous work where

Bayes Smoothing was able to outperform Jelinek Mercer smoothing[162]. Hence, it is

unclear which method should be applied in order to obtain the best performance.

3.4.5 Other Smoothing Methods

The Statistical Language Modeling literature provides many different smoothing tech-

niques that could be applied to the document modeling process. For example, Katz

Smoothing, Absolute Discounting, Leave-one-out discounting, Witten-Bell smoothing

[42, 71, 15]. Further more sophisticated latent variable models such as a aggregate

and mixed Markov chain[129] or aspect models[62]) could also be applied to the doc-

ument modeling process. These models can provide a contextual representation of the

7Full details of the estimation of this integral can be found in [160].
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document. In chapter 4, we employ aspect models in the process of building such

representations.

3.5 Variants and Extensions

A number of variants and extensions to the language modeling approach have been

developed since its conception. These include, but are not limited to: (1) models

which cater for other languages or synonyms in the same language; (2) models which

encode higher order term dependencies; (3) models which estimate the document and

the query within the Risk Minimization Framework and; (4) an alternate approach

which models relevance instead of the document. We provide an overview of these

models in the following subsections.

3.5.1 Translation model

Berger and Lafferty[11] approach the problem of generating a query from a document

in a different manner by harnessing the advances in statistical translation for IR. In-

stead of viewing the document as a ‘bag of words’ and sampling query terms from it,

Berger and Lafferty suggest an information theoretic perspective. They assume that

when a user has an information need, the user has an ideal document in mind as is

the case in [96]. From this ideal document, the user submits key terms as a succinct

query. They posit that the process is akin to a translation or distillation of the user’s

ideal document to a query. As such, it can be viewed that the information need is a sig-

nal which becomes corrupted during the process and this corruption is witnessed as a

query. The retrieval system is given this corrupted information need and must attempt

to retrieve the documents that are most likely to satisfy this need. This is determined by

the probability of a query given a document, the difference is in its inclusion of a trans-

lation construct, i.e the state translation matrix. A state translation matrix is defined

as p(t|w), the probability of term t being translated from term w. For example, in the

problem of cross lingual Information Retrieval where the document is in French and
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the query is in English, the translation matrix will define the probabilities of a French

term w being translated to an English query term t.

When used for the same language, the simplest implementation would be when a term

can only translate to itself (self transition). However, the translation probabilities could

be computed using thesaurus relationships that spread the probability mass among

synonyms. Under the statistical translation model, the query likelihood is obtained by

summing over all possible translations of w to t, such that:

p(q|θd) = ∏
t∈q

∑
w

p(t|w)p(w|d) (3.36)

By using statistical translation methods the model can address the important issues of

synonymy and polysemy (the vocabulary problem) which is not possible by simply

smoothing the document model. By employing this smoothing strategy we are effec-

tively generating a semantically smoothed document representation [77].

However, the method as implemented in Berger and Lafferty[11] suffered from some

drawbacks [163]: (1) The state transition matrix p(t|w) was created by using synthetic

training examples as collections of queries and relevance judgements large enough to

accurately estimate the translation probabilities was not available, and; (2) the trans-

lation probabilities are context independent and are unable to directly utilize the word

sense into the model. These limitations spurred on further research that investigated

query translation models. In [163], Zhai and Laffery proposed a general probabilistic

framework based on risk minimization which was based on Bayesian decision theory

(See Section 3.5.3). Other work by Jin et al. [69] estimated the translation matrix by

creating a training set which paired the title of a document to a document. The title was

assumed to be one possible example query translation, in the sense that it succinctly

represented the information contained in the document (i.e distilled or translated from

document to title).
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Figure 3.3: Hidden Markov Model for query production. In this case, the query is pro-

duced from one of three states; the collection, the document unigram or the document

bigram.

3.5.2 Term Dependence Models

Song and Croft[137] propose a language model that combines a range of data smooth-

ing techniques which can be easily extended to incorporate probabilities of bi-grams

and tri-grams. They view the query as a sequence of terms, where the probability of

a query term is dependent on the past query terms being produced from the document

model. The joint probability of seeing the sequence of query terms is approximated

using n-gram models:

• Unigram: p(t1, . . . , tn|θd) = p(t1|θd)p(t2|θd) . . . p(tn|θd)

• Bigram: p(t1, . . . , tn|θd) = p(t1|θd)p(t2|t1,θd) . . . p(tn|tn−1,θd)

• Trigram: p(t1, . . . , tn|θd)= p(t1|θd)p(t2|t1,θd)p(t3|t2, t1,θd) . . . p(tn|tn−2, tn−1,θd)

The unigram model assumes that terms are drawn identically and independently (i.i.d)

and is the basis of the standard language modeling approach, whereas the bi-gram

and tri-gram models take the local context into consideration. They estimated the

probabilities with the Good Turing estimate [42] and curve fitting to build a smoothed

document model consisting of unigrams, bigrams and trigrams. In the unigram case,



Chapter 3. Language Models for IR 67

using the Good Turing method, the document model is estimated by:

p(t|θd) =
n(t,d)∗

n(d)
(3.37)

The raw term frequency scores n(t,d) within a document are adjusted to n(t,d)∗, where

N(n(t,d)+1) is the number of terms with frequency n(t,d) in a document and E(Nn(t,d))

is the expected value of the N(n(t,d)+1).

n(t,d)∗ = (n(t,d)+1)×
E(N(n(t,d)+1))

E(Nn(t,d))
(3.38)

Another smoothing function then is used to calculate the expectation E(Nn(t,d))8. The

updated term frequency n(t,d)∗ ensures that a non zero probability is assigned.

Evaluation on the Wall Street Journal Collection and TREC4 Collection, showed im-

provements over the original language model [113] and the INQUERY system by us-

ing the combination of uni-gram and bi-gram estimates. Miller et al.[96] also imple-

mented a bi-gram model by extending their Markov model to include bi-grams (see

Figure 3.3 where the bigram is another state that can be visited). They also confirm

that improvements over the baseline unigram model are possible. Other research in-

stead of assuming query dependencies based on query term order, has focused on ex-

tracting the meaningful dependencies and attempting to predict that structure from the

documents[142, 104, 40].

3.5.3 Risk minimization framework

In an empirical study on smoothing techniques Zhai and Lafferty [162] examined the

effect that query length plays in the role of smoothing. Using TREC collections and

a range of different smoothing techniques (including Bayes Smoothing and Jelinek

Mercer Smoothing) they examined the influence of the smoothing parameter given

short and long queries. Short queries consisted of a few terms taken from the title of

the TREC Topics. Long queries consisted of the title and the description of the TREC

8For further details on how to compute this expectation see [137, 42].
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Topics about 50-60 terms in length. They showed that the performance of the system

was very sensitive to smoothing parameter value, and that longer queries required more

smoothing while shorter ones did not.

They suggested that smoothing plays a dual role in the query likelihood method. One

role is to obtain an accurate representation of the document and avoid the zero prob-

ability problem, called document estimation. The other is to account for common or

non-informative terms in the query, and is referred to as query modeling. To account

for the dual role of smoothing they developed a two stage language model[163]. For

the document smoothing role they suggest that the Dirichlet Prior method is the best as

it caters for the document length. whilst for the second stage they use Jelinek-Mercer

smoothing for the query smoothing role where the influence of query model is adjusted

depending on the length of query. The model can be mathematically expressed as:

p(t|θd) = λ

(
n(t,d)+βp(t|θC)

n(d)+β

)
+(1−λ)p(t|θC) (3.39)

Where the parameter β is held constant and the λ parameter is adjusted for differ-

ent queries. The suggested benefits of this model are that for short queries the query

smoothing role is insignificant and best performance is obtained from the document

smoothing role. For long queries and queries containing unimportant terms however

the query smoothing role is required.

The Risk Minimization framework[77], which is based on Bayesian decision theory,

formed the basis of their approach which caters for the query, document and relevance.

Under this approach, documents are ranked on the risk function R shown in Equation

3.40. The query q and documents d are modelled using statistical language models, θq

and θd , respectively. The user’s preferences are encoded through a loss function L and

relevance is denoted as the binary variable r.
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R(d;q) = ∑
r∈(R,N)

Z
θq

Z
θd

L(θq,θd,r)p(θq|q)p(θd|d,S)p(r|θq,θd)dθddθq

≈ −p(θ̂d|q) (3.40)

∝ −p(q|θ̂d)p(θ̂d) (3.41)

A series of assumptions are made to derive Equation 3.40, before Bayes’ Theorem is

applied to obtain the language modeling approach. The probability of a term given

the document language model, p(t|θ̂d) is then equivalent to Equation 3.39. A full

derivation of the two stage model is presented in [164].

In [161], Zhai and Laffery they show how different retrieval models can be derived

using different choices of loss functions. For instance, the Risk Minimization frame-

work can be shown to rank documents according to Kullback-Leibler Divergence. The

Kullback-Leibler Divergence[75] function is a measure of the cross entropy between

two probability density functions, p(x) and p′(x). The KL divergence between p and

p′ is denoted as D(p||p′) and defined as shown in Equation 3.42.

D(p||p′) = ∑
x

p(x)log
p(x)
p′(x)

(3.42)

The Divergence D is non negative and is zero when p = p′. While the measure is not

symmetric, it is still intuitive to think of it as the distance between distributions where

zero means they are the same. As a measure of similarity between the document model

and the query model, it is assumed that the query q is obtained as sampled from the

query model θq and the document is obtained as a sample from the document model

θd . If the document and query language models are estimated then the KL divergence

of d with respect to q can be measured by Equation 3.43.

D(θq||θd) =−∑
t

p(t|θq)logp(t|θd)+∑
t

p(t|θq)logp(t|θq) (3.43)

The query log likelihood function is a special case of the KL divergence model where

the query model is estimated as an empirical distribution, as in Equation 3.17.
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3.5.4 Parameter Estimation

So far we have discussed some of the different smoothing models that have been ap-

plied, but we have not mentioned how the parameters of these models are determined.

This is a significant issue in LM and any other IR model. Typically, empirical tuning of

the free parameters is performed to find the setting which gives the optimal IR perfor-

mance. This requires that a set of queries and the corresponding relevance judgments

are known beforehand. The challenge is to find the optimal model settings in automatic

and unsupervised manner, without recourse to relevance assessments.

One such attempt has been offered by Zhai and Lafferty[164]. Within the risk min-

imization framework, because both the document and the query are modelled, they

can employ statistical estimation techniques to automatically estimate the parameters.

They argue that the document model should be estimated based on its underlying data,

whilst the query model should be estimated with respect to the individual query to cater

for the different types of queries. The parameters for the two stage model shown in

Equation 3.39, β and λ, can be estimated as described in the following subsections.

3.5.4.1 Estimating β

When modeling the document our goal is to obtain the best representation of the under-

lying data possible in accordance with A2. A useful objective function for measuring

the representational capabilities of a document model is the ‘leave one out’ likelihood

function. This is, the sum of the log likelihood of each term in the document computed

from a model that is constructed on the document with the target term excluded (i.e

left out). This process is derived from cross validation and provides a criterion for

selecting the best data model available when we take the parameter β that maximizes

the `−1(β|C). The leave one out likelihood of the model for the collection given β is

shown in Equation 3.44.

`−1(β,C) = ∑
d

∑
t∈d

n(t,d) log
(

n(t,d)−1+βp(t|θC)
n(d)−1+β

)
(3.44)
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The estimate of β is shown in Equation 3.45 and can be computed using Newton’s

method9.

β̂ = argmax
β

`−1(β,C) (3.45)

3.5.4.2 Estimating λ

Estimating the λ parameter is more difficult as what we would like to do is maximize

the probability of the query being drawn from the relevant documents and minimize

the probability of the query being drawn from non relevant documents. This is not

possible as the notion of relevance is not explicitly defined in the query likelihood

approach. Nonetheless, an approximation of the λ parameter can be obtained through

the application of the Expectation Maximization algorithm, where we estimate the

probability of a query given λ.

p(q|λ) = ∑
d

πd

n

∏
1

((1−λ)p(t|θd)+λp(t|θC)) (3.46)

It is assumed that the query is generated from a mixture of document models with

an unknown weight πd . The parameters λ and πd can be estimated using the EM

algorithm:

π
(k+1)
d =

π
(k)
d ∏

n
t=1((1−λ(k))p(t|θd)+λ(k)p(t|θC))

∑
′
d π

(k)
d′ ∏

n
t=1((1−λ(k))p(t|θd′)+λ(k)p(t|θC))

(3.47)

λ
(k+1) =

1
|D|∑d

π
(k+1)
d

n

∑
t=1

λk p(t)
(1−λ(k))p(t|θd)+λk p(t)

(3.48)

The parameter πd is a free parameter introduced because we do not want to maximize

the query being generated from all documents, only those that are relevant. Estimating

the parameters is performed by running the EM algorithm until convergence. However,

this will result in πd = 1 for one document d, and all other documents d′ will have π′d

9See [164] for further details
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assigned zero. This is because one document in the collection will be the most likely

to produced that query (this is the ideal relevant document, so to speak). This leads to

a poor estimate, so it is recommended that only about ten EM steps be performed to

avoid this.

When evaluated on several TREC collections results reported from using this two stage

language model show marginal improvement in terms precision (average, initial, and at

5 documents) over various types of queries (long, short, verbose and keyword). How-

ever, they suggest that better performance could be obtained by adjusting smoothing

parameters, or estimating the query language model from other sources. When pa-

rameter estimation was used on the two stage model it obtained results comparable

to either the Bayes smoothed document model or the Jelinek Mercer document model.

However, the two stage estimated model did not achieve the better performance than an

empirically set two stage model. It is interesting to note that the estimation technique

did not obtain the optimal performance. In Chapter 5, this observation is investigated

through the analysis of the assumptions of the Language Model.

3.5.5 Relevance Model

Instead of using the query likelihood to rank documents, a document likelihood ap-

proach was suggested[82]. This approach is more akin to that of the traditional models.

The probability of a document given the model of relevance is used to rank documents.

The relevance based language modeling approach views relevance as a generative pro-

cess, which can be modelled as a multinomial term unigram distribution. It is assumed

that this model (the relevance model) is where the relevant documents are generated.

Documents are ranked according to how likely they are to have been generated from

the relevance model, p(d|θR) . The Odds Ratio is employed to normalize the score,

and the denominator considers the likelihood of the document being produced from

the non-relevance model p(d|θN).

O(r|d) =
p(d|R)
p(d|N)

=
p(d|θR)
p(d|θN)

(3.49)
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The model was originally proposed by Kalt [70] in the form of a text classifier but

formalized for ad hoc retrieval by Lavrenko and Croft [82]. Under their approach the

PRP is upheld, unlike in the standard language modeling approach.

p(d|θR)
p(d|θN)

≈∏
t∈d

p(t|θR)n(t,d)

p(t|θN)n(t,d) (3.50)

As with the Binary Independence Model[140], the estimation problem exists, rephrased

here, ‘what is the probability of a term occurring given the relevant set of documents?’.

Kalt[70] suggested an IF approach, where the relevance model is developed from a set

of example relevant documents. These provided the training examples to estimate

p(t|θR). However, in ad hoc IR only a sparse query is supplied, and is believed to be

insufficient to reliably estimate a relevance model. Lavrenko and Croft [82] suggested

a novel approach for the estimation of p(t|θR) that applied Statistical Language mod-

eling techniques in a different manner. The approach assumes that the set of relevant

documents and the query have been generated from an underlying relevance model,

where as other language modeling approaches assumes that the query is a sample of

a specific document model. This notion of relevance is therefore different to that of

conventional probabilistic models.

It is assumed that there is a relevance model, described as a uni-gram distribution,

from which the query and the relevant documents are generated. To rank documents,

the likelihood of the document being generated from the relevance model versus the

likelihood of the document being generated from the non-relevance model is computed

(see Equation 3.50). Though the relevance model may not necessarily be restricted to

a unigram, it may actually be more appropriate for it to be described as a bi-gram or

higher order distribution instead. However, since only a small amount of data is avail-

able to estimate the sufficient statistics of the relevance model, the unigram distribution

(i.e no dependencies) is again a reasonable starting point. In the absence of relevance

information regarding the underlying distribution of terms given relevance, Lavrenko

and Croft[82] suggest that the top m documents returned from a query submitted to

a conventional probabilistic retrieval system, can be used to estimate the relevance
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model for that particular query. These top m documents define a set of documents,

d ∈ DR used for pseudo relevance feedback. They then assume that the probability of

a term being generated from the relevance model can be approximated by the condi-

tional probability of observing the term given that the query terms, q1, . . . ,qk, have just

been observed as shown in the following Equation:

p(t|θR) ≈ p(t|q1, . . . ,qk) (3.51)

=
p(t,q1, . . . ,qk)
p(q1, . . . ,qk)

(3.52)

They propose two methods to estimate the joint probability p(t,q1, . . . ,qk) by;

1. assuming that words from relevant documents are identically and independently

sampled from the uni-gram distribution of relevance (Equation 3.53),

p(t,q1, . . . ,qk) = ∑
d∈DR

p(d)p(t|d)
k

∏
i=1

p(qi|d) (3.53)

and;

2. assuming that query terms are independent of each other, but keep their depen-

dence on the term t (Equation 3.54).

p(t,q1, . . . ,qk) = p(t)
k

∏
i=1

{
∑

d∈DR

p(qi|d)p(d|t)

}
(3.54)

Where K is the set of top ranked documents, the probability of the query can be

determined by marginalizing p(q1, . . . ,qk) = ∑t p(t,q1, . . . ,qk), the probability of a

term is p(t) = ∑d∈K p(t|d)p(d) and the probability of a document given a term is

p(d|t) = p(t|d)p(d)/p(t) it is assumed that the probability of document is a uniform

constant.

The ranking function using the relevance model uses the odds-ratio which means that

it satisfies the probability ranking principle. The non-relevance model is estimated as

the probability of a term given the collection i.e. p(t|θN) = p(t|θC).

O(r|d) =
p(d|θR)
p(d|θN)

(3.55)

= ∏t∈d p(t|θR)n(t,d)

∏t∈d p(t|θN)n(t,d) (3.56)
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Over a number of TREC collections, the relevance model approach has out performed

both INQUERY (TF.IDF) and standard language modeling (Jelinek-Mercer smoothing

with collection frequency) significantly and consistently [83]. However the compari-

son is not fair as the relevance model relies upon the first pass of retrieval to provide

it with pseudo relevance feedback information from which to estimate the relevance

model.

Nonetheless, relevance models provide a novel combination of statistical language

modeling techniques whilst still maintaining the principles behind the traditional prob-

abilistic models by ranking according to the log Odds Ratio of relevance given a doc-

ument.

3.6 Document Prior

The document prior may be considered with or without being conditioned on relevance

depending on the approach used. If considered as the unconditional prior probability

of a document p(d), then it represents the probability of sampling the document from

the collection. Typically, the document prior is assumed to be uniform, and so does

not influence the ranking. This is perhaps the most sensible approach, because a priori

no document is more likely than another. If we were to assign the document prior

according to some feature (i.e document popularity score), then we are assuming that

a document is more likely because it is more popular. What we are really assuming

this document will be more likely to fulfil any future information needs, regardless of

the information need. This is quite a generalization. However, under the interpretation

that the prior probability of a document is conditioned on the notion of relevance,

p(d|r). Then we are able to inject contextual evidence directly into the model by

using features which are correlated to some degree with the document being relevant

to determine the prior probability. Under this interpretation it provides an interesting

avenue for contextual information retrieval research[122]. Assigning the document

priors with respect to the information need (relevance), would allow the user to ingrain

their pre-defined bias of what would make a document more likely to be relevant. Such
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a mechanism could be performed automatically or implemented as part of the retrieval

interface, where the query is no longer just a textual sequence of terms, but also uses a

bias component.

Some of the features used to generate document priors have been: (1) document

length[96]; (2) average word length[96]; (3) links[73, 52] and (4) time[87, 31], where

the intuitions behind the prior is that document is more likely because (1) it contains

more terms; (2) has longer words; (3) has attracted more links or (4) is more recent.

Two commonly used approaches are (1) and (3):

• the document length prior where the probability of a document is proportional

to the length of the document[96][73]. Such that: p(d) = n(d)
∑d′ n(d′) . The rationale

for using such a prior is that longer documents tend to contain more information,

and hence are more likely to be relevant. The results from using such are prior

are mixed, increasing and decreasing performance depending on the collection

used.

• link structure analysis techniques have been used to derive document priors, in-

stead of use such internal document based features. The intuition is that more

popular or well cited documents will tend be more relevant. The simplest is

where the document prior is proportional to the number of in links or references

that a web page or document has received, i.e. p(d) = n(l,d)
∑d′ n(l,d′) . More sophis-

ticated approaches have attempted[73] link structure analysis such as pHits[20],

PageRank[109] or Scale Free Network[52]. However, success has been limited

and increases in performance are often gained by simply re-ranking the docu-

ments by the prior, instead of computing the joint probability p(q,d). Where

re-ranking is when the top n documents returned according to the query likeli-

hood are then ranked (i.e. re-ranked) according to the document prior.

The feature chosen to bias the ranking needs to be chosen with respect to the informa-

tion need, reflecting the user’s context. Hence, the document prior provides a novel

means for extending of the language modeling approach to included contextual evi-

dence. However, one major problem with using the document prior is that it usually
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overwhelms the query likelihood which is usually much smaller. This can be to the

point where regardless of how likely the query is form the document, another docu-

ment with a greater document prior will be ranked higher. In practise the document

prior and the query likelihood are often interpolated, or normalized to compensate for

the imbalance.

3.7 Feedback

Using relevance feedback in the LM framework is performed through query expan-

sion and term re-weighting, as oppose to updating a model of relevance. This is be-

cause there is no explicit definition of relevance within the LM[139]. In contrast, the

Relevance Models can directly encode any relevance feedback by re-estimating the

probability of a term given relevance. Also, the BIM can use relevance feedback to

re-estimate the probabilities of relevance as defined by Equation 2.12 or to expand the

query, but usually both allowing control over the definition of relevance and the query

being issued, something neither Language Models or Relevance models can claim.

For the LM approach, several feedback techniques have been proposed [58, 112, 161],

though they are considered as being fundamentally heuristical and at worst ad hoc in

nature because the modification of the query modifies the intent of the need.

• However, Ponte[112] justifies the use of query expansion as a natural progression

within the Language Modeling framework. He argues that because of Assump-

tion Two and Three the user can select query terms that are likely to occur in

documents that are of interest to them. As a consequence, terms for expansion

can be selected from the documents which the user has expressed interest in

(i.e the set of relevant documents dR) , by selecting the terms with the highest

average log-odds ratio. The odds of a term being interesting is determined by

Equation 3.57 and is used to rank terms for the expansion.

O(t) = ∑
d∈dR

log
{

p(t|θd)
p(t|θc)

}
(3.57)
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An additional k query terms are selected and appended to the original query. The

expanded query is then used to re-rank the documents.

• Using the Language Model which encodes term importance in Section 3.4.3.1

then relevance feedback information can be incorporated into the model as de-

scribed in [58]: Given a set of relevant documents, DR the weights λt for each

term in the query can be estimated via the EM algorithm. The algorithm will

iteratively maximize the probability of the query given the relevant documents.

The Expectation (E) step at time p and then Maximization (M) step at time p+1

are defined as follows:

mp
t = ∑

d∈dR

(1−λ
p
t ).p(t|d)

λ
p
t .p(t)+(1−λ

p
t ).p(t|d)

(3.58)

λ
p+1
t =

mt

|d ∈ DR|
(3.59)

where |d ∈ DR| is the number of relevant documents.

• Zhai and Lafferty [161] also proposed a method of feedback. They exploit the

benefit of using the KL Divergence function in Equation 3.43 where there is sep-

arate document and query model. Relevance feedback information is used to up-

date the query model. They suggest a simple interpolation of the original query

model and the average of the relevant documents. The resulting uni-gram dis-

tribution is assumed to better represent the user’s underlying information need.

This method exploits the benefits of two language models, one to represent the

document and one to represent the user’s need.

3.8 Challenges for LM

There are some issues and general challenges that the Language Modeling approach

needs to address. A non exhaustive list of some of these are:

• Relevance The issue of relevance within the language modeling framework re-

quires clarification. The different proponents offer different opinions. However,

the implicit definition of relevance in the standard language modeling approach
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is troublesome because it is unclear whether the approach will uphold the PRP

and how relevance feedback information should be applied.

• Assumptions The assumptions of language modeling have not been validated

to determine whether they actually hold in practice, and to what extent. If the

assumptions hold, then we should be able to use them to extend the model to

deliver improved retrieval performance, or estimate the parameters of the model

in an unsupervised fashion[164] such that the best retrieval performance is ob-

tained. This thesis attempts to validate the assumptions of Language Modeling

in Chapter 5.

• Context Incorporating contextual evidence within the retrieval process is a cur-

rent research challenge amongst the members of the IR community generally.

How to encode and use contextual evidence for the benefit of retrieval is a dif-

ficult problem, often the context works in specific instances only. Contextual

Information Retrieval requires more than just a specific model that caters for

only one situation, but more customizable solutions, which are flexible and can

adapt to the desires and needs of the user. Within the Language Modeling frame-

work there are many avenues for embedding context, in Chapter 6 we outline our

attempt at do so, before providing experimental results of employing different

forms of context in Chapter 6.

• Multimedia In using Language modeling for other forms of data the challenge

lies in the representation of non-textual parts of documents. Of course, tex-

tual descriptions can be attached to such parts, but this avoids the problems as

opposed to directly handling the various media, perhaps as the potential for

integrating multi modal data already exists in speech recognition models as

they combine evidence from a language model and an acoustic model (text and

sound). However the problems of dealing with multi-modal data apply not only

to language modeling but to all IR models.

• User Interaction The integration of user activity and interaction into the frame-

work, and not just in terms of a principled approach to relevance feedback for the

LM approach, is a current challenge for LM. The Language Modeling approach
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provides excellent avenues by which interaction can be incorporated. For exam-

ple, Hiemstra [58] suggests term specific weighting as a simple solution to better

capture user needs, whilst Zhai and Laffery [163] suggest a user language model

to model their query generation procedure. Whether the inclusion of information

such as user profiles, analysis of browsing activity, structured/weighted queries

or relevance feedback information can make a significant improvement in terms

of IR performance still requires further investigation. And such investigation

requires user testing, not just simulated tests on test corpora.

3.9 Other Applications in IR

Over the last seven years, the application of Language Modeling techniques to Infor-

mation Retrieval has been studied and applied to a variety of other tasks besides ad

hoc retrieval. Amongst others, these include: (1) in a distributed retrieval setting the

selection of a resource or database is determined by the probability of a query the

resource or database[155]; (2) the tracking and detection of topics[72] where the like-

lihood ratio[105] is used to determine the odds of the topic being produced from the

new incoming document; (3) the summarization of text, where we wish to produce a

summary of the document, terms are sampled from the document in much the same

way that query terms are drawn[99], sentences with the highest likelihood are selected

as possible summarizations; (4) translation models[11] have facilitated cross lingual

retrieval[156]; (5) structured document retrieval by modeling the structure of a docu-

ment as different weighted components such as title, abstract and paragraph[108] and

(6) more recently a proposal to use language modeling techniques at each stage of the

retrieval process for indexing, retrieval and feedback with parsimonious language mod-

els [59]. The success of the LM approach can be attributed to the explanatory nature

of generative modeling techniques coupled with its simplicity and effectiveness.
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3.10 Historical Notes

The statistical modeling of language began in the early 20th century when Markov

attempted to model letter sequences in Russian literature [94]. The most notable ap-

plication was by Shannon, who modelled sequences of letters and words to illustrate

the implications of coding and information theory [132]. This spurred on attempts

to use statistical language modeling for natural language processing [93]. Areas of

marked success where such techniques have been applied are automatic speech recog-

nition [117], parts of speech tagging [27], named entity identification [14], topic seg-

mentation and event tracking [43, 159]. The emphasis in these models has been on

predicting the next term given the preceding sequence of terms. Information Retrieval

researchers have recently adopted statistical language modeling as a means of ranking

[112, 57]. While they do not necessarily require knowledge of the next term given

a sequence, statistical language modeling provides a mechanism for a smoothed es-

timate of the probability of a term given the document. Since 1998, and drawing on

the wealth of literature from statistical language processing and machine translation,

many models for IR have been proposed [11, 57, 112, 69, 77, 137, 161, 163]. While

the current stream of research has been quite prolific, the idea of modeling language for

IR purposes is not new. An early attempt focused on using the term frequency as the

probability of a word appearing in a document. The renowned implementation of such

a view was the Poisson model by Bookstein and Swanson [13] and Harter [50, 51].

Their conscious treatment of term frequency as the basis of the underlying probability

distribution, as opposed to the normalized term frequency as an estimate of the prob-

ability itself, that is the distinguishing feature between earlier work and the later work

on language modeling [44].

3.11 Summary

In this chapter we have presented the language modeling approach and the major de-

velopments of the model. First, we described the different approaches to Language

Modeling applied to ad hoc Information Retrieval. This included our summary of the
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common assumptions that underpins the Language Modeling approach. The different

document modeling techniques were then described along with some of the further de-

velopments and extensions of the model. The chapter was concluded with an overview

of the history of modeling language, the alternative applications of Language Modeling

and the current research directions and challenges for Language Modeling.

Through the course of the chapter we identified several areas where contextual infor-

mation could be incorporated within the Language Modeling framework. These in-

clude the dependencies between terms modelled as bi-grams or tri-grams, the different

word senses modelled through a translation matrix, the inclusion of external document

knowledge using a document prior, or generating better document representations.

In this thesis, we investigate the latter, and use the context associated with a document

to achieve better representations of the documents. This is motivated by the underlying

assumptions of the LM approach, where it is posited that building a better representa-

tion of the document should lead to improvements in performance. In the next chapter,

we present our framework for ‘context based’ document models.



Chapter 4

Context Based Document Models

In Chapter 1, we proposed the context hypothesis. In this chapter we offer an imple-

mentation of this hypothesis within the Language Modeling approach to ad hoc Infor-

mation Retrieval. We argue that the assumptions of the LM approach justify encoding

context within the document modeling process. This is because document models

should be constructed with respect to the user’s understanding as implied by Assump-

tion Two. We use the semantic associations between documents to quantify the user’s

understanding of the documents in the collection (i.e. their context). This context is

represented as a distribution over the vocabulary and encoded within the document

model to form a context based document model. We provide a generic framework

for building context based document models, which includes the estimation of model

parameters.

4.1 Introduction

Central to this thesis is the notion of context. In Chapter 1, we hypothesized that,

Semantically associated documents tend to be relevant to the same request. To explore

this hypothesis, we need to define what we mean by context, how we are going to

represent this context, and how we can encode this context within the LM approach.

We focus on the latter, where we impose two constraints:

83
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• it must be consistent with probability theory to ensure that the model is sound,

and

• it must be consistent with the underlying assumptions of the LM approach.

As we have already mentioned in this thesis, we restrict our view of context to the se-

mantic associations between documents. We assume that these associations form part

of the user’s understanding of the documents in the collection. i.e how the documents

relate to each other. However, we best qualify what we mean when we refer to the

user’s understanding.

In this chapter, we consider the User’s understanding in a collaborative sense, as a

shared or common understanding of the collection held by the users of that collection.

We feel that this is a reasonable assumption to make as there are many such instances

where a shared view of the collection is held. A classic example is the Dewey classi-

fication scheme used within libraries (See Figure 4.1). Users of a library are ‘forced’

to conform to the particular arrangement of books, etc, according to the hierarchical

topic structure defining the categories and so forth.

Hence associations may be pre-defined ontologies, classification schemes, or if we

consider time and interaction, structures developed through collaborative interactions

with the collection. Alternatively, the associations may arise from some form of struc-

ture within the collection or even document. For example, in passage/element retrieval,

an element is associated with other elements as defined by the structural layout of the

document.

Or associations may be dynamic relationships, changing over time, formed as a result

of interaction with the collection. For example, the detection and tracking of a partic-

ular topic in the Wall Street Journal, web links placed between web pages or citations

between scientific papers. With citations and links, it is important to note that the di-

rection will have an influence on its semantic meaning. For example with web links,

in links (links coming from other pages) and out links (links going to other pages)

will invoke a different context. Hence, the context (or semantic association) should be

chosen appropriately and with respect to the user’s information need.
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00-099 Generalities
004-006 - Computer Science

020-029 - Library and information sciences

070-079 - Journalism and publishing

100-199 Philosophy and related disciplines
150-159 -Psychology

200-299 Religion
220 - Bible

230-289 - Christianity

290 - Other religions

300-399 Social sciences
301-319 - Sociology

310-319 - Statistics of the social sciences

320-329 - Political science

Figure 4.1: Extract of the Dewey Classification obtained from the Birkbeck Library (Uni-

versity of London) website. Quite quickly users of the library learn which section they

are likely to find books containing relevant information (though not the book itself).
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These are just some of the different types of semantic associations available within the

IR domain. There are potentially many other associations that could be used, such as

co-activation, time of publication, location of information, etc, the correct context will

depend on the information need. Implicitly, the context of the document will affect

the user’s understanding of the document (i.e how the document is perceived or under-

stood, that is, in context) and subsequently the model of that document needs to reflect

this. Once we formalize the understanding through such semantic associations, we can

then use it to define a context based document model. This is exactly what is prescribed

by the assumptions of the language modeling approach. The Second assumption of the

LM approach provides an avenue for encoding such contextual evidence within the

LM framework. It implies that document models should be built in accordance with

the user’s understanding. By developing such contextual based document models, we

hope to offer an implementation of the context hypothesis and assess its validity.

As we have already noted in Chapter 3, the assumptions of LM are interrelated. Re-

stated, the user has an understanding of the distribution of the terms within the doc-

uments in the collection (A2.1). When formulating the query they are able to select

terms that would discriminate relevant documents from non-relevant documents, or

at least identify terms that are likely to occur in relevant documents (A3). These as-

sumptions require that the document models are representative of the generating pro-

cess, which consider the user’s understanding of the collection (A2, A2.1). The user’s

perception of the document is important because what they associate with that docu-

ment will affect what terms they will consider useful when issuing a query. Indeed,

Ponte[112] claims that by providing a better representation that considers the user, im-

proved retrieval performance is possible. The Assumptions, A2 and A3, emphasize

the user and their perception of the documents in the collection, which are represented

as the distribution of the terms within documents. The challenge, therefore, lies in

constructing document models that reflect the user’s understanding, yet still remain

statistically accurate representations.
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4.2 Modeling the Context

Before we can construct the document model, the associations, whether they are topical

associations, citations between documents, etc, will reflect how the user views and un-

derstands the particular document. Therefore, we need to model the context associated

with each document. We do so through the content of the associated documents repre-

sented as a multinomial term distribution. This will denote the user’s understanding of

the context for that document. We shall refer to this as the context background model

(XLM) (where this is conditioned on a particular document, however many documents

may share the same XLM depending on the semantic association.) In the previous

chapter the majority of language models proposed relied on the collection background

language model (CLM) to smooth the documents.

Intuitively, we can think of the context as helping to imbue the document with topically

related terms. Consider an article about the latest sports car. The context of the article

is the car magazine. However, this magazine is just one of many in that genre, and

there are also many genres which define the background collection. Intuitively, we

would expect that the context will provide a better indication of the terms that would

be used in the document than just resorting to the background collection. For instance,

we would expect the terms like, ‘hot’, ‘machine’, ‘motor’, ‘fast’, ‘speed’, would occur

more frequently in the car magazine context , than in the collection background model.

The collection background model represents the most naive context background model

where no context or bias is used in the document modeling process. Context, defined

by the similarity of documents is a content based approach, and is an instantiation

of the Cluster Hypothesis[67], whereas context defined by semantic associations is a

context based approach and is an instantiations of the Context Hypothesis.

The following section defines how we formally represent the context of a document

within the language modeling approach by providing a process or framework for build-

ing context based document language models.
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Figure 4.2: Left: The context associated with the document in the collection, where the

context is defined by the set of documents in the collection which are related to d. Right:

Without any context associated with the model.

4.3 Framework

So far we have discussed in general terms the intuition behind generating documents

with respect to the user’s understanding. The framework for incorporating this contex-

tual evidence in the process of retrieval to generate context based document models is

as follows:

1. Select the semantic association X that is appropriate to the user’s information

need.

2. Define the context through a set of parameters ΘX . This set includes the defi-

nition of probability matrices that instantiate the semantic associations amongst

documents.

3. For each document d,

(a) The context for a particular document d given ΘX is defined by the proba-

bility distribution pd(t|ΘX).

(b) Since the context associated with a document may be sparse, further smooth-

ing is required. Therefore, a context background model for each document,



Chapter 4. Context Based Document Models 89

pd(t|θX) is constructed by smoothing the pd(t|ΘX) with the collection

background model p(t|θC). This ensures there are no zero probabilities.

(c) Finally, a context based document model, p(t|θX
d ) is constructed using the

document’s context background model, pd(t|θX).

4.3.1 Semantic Associations

The choice of semantic associations is first limited to what information is available, and

second which is appropriate to the information need. Typically, the semantic associa-

tions that are available in the IR domain include, but are not limited to, the following:

• ontology, structure, classification hierarchy

• citations, links, references

• semantic clustering (clusters formed by some human interaction or user defined

relationship)

The set of context parameters is defined by ΘX = {p(t|x), p(x|d)} where x is a context

from the set of contexts available under X such that x ∈ X , p(t|x) is the probability of a

term given a context x and p(x|d) is the probability of a context x given the document

d. Each document is associated with one or more contexts as defined by the conditional

probability p(x|d). The context for the document is obtained by the marginalizing out

x as shown in Equation 4.1. This is sometimes referred to as an Aspect model[129, 60].

pd(t|ΘX) def
=

∑
x∈X

p(t|x)p(x|d) (4.1)

Using this decomposition allows for different types of associations to be encoded. A

specific case is when the context is defined by a document to document relationship, for

instance when citation information is used to define the context. Using this semantic

association the number of contexts is equal to the number of the documents and there

is a one to one correspondence between a document and a context, in which case the

the context parameters can be defined as ΘX=links = {p(t|l)p(l|d)} where p(l|d) is the

probability of document l given document d. A semantic association between the two
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documents when p(l|d) > 0, otherwise there is no association in which case p(l|d)

will equal zero.

Later, in this thesis, we try several different types of associations on various test col-

lections.

4.3.2 Context Background Model

Once the semantic associations have been defined and an estimate of the context for

each document established, the context may still be relatively sparse, depending on the

type of association. Hence, the ZPP will still may need to be addressed. Inevitably, we

must now rely on the collection background model to resolve this problem.

A document’s context background model pd(t|θX) is defined as a two part mixture

model of its context and the collection model.

pd(t|θX) = (1−π)pd(t|ΘX)+πp(t|θC) (4.2)

If π is set to one, then no contextual information is used. However, when π is less than

one, the user’s understanding as quantified by the semantic association will be included

in the document model.

4.3.3 Context Based Document Model

We propose two variants of context based document models, the standard approach

using Jelinek Mercer Smoothing as shown in Equation 4.3 and the other using Bayes

smoothing as shown in Equation 4.4. The context based document models models are

a mixture between the maximum likelihood estimate of the document and its context

background model.

p(t|θX
d ) = (1−λ)

n(t,d)
n(d)

+λpd(t|θX) (4.3)
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The Bayes smoothing form is obtained by setting λ = β

n(d)+β
as shown in Equation

4.4. This can be considered as a hierarchical Bayes model, because of the levels of

smoothing.

p(t|θX
d ) =

n(t,d)+βpd(t|θX)
n(d)+β

(4.4)

Defining the context based document model as described above has the advantage that

further contextual information may be incorporated into the model at a later stage.

For instance the addition of a second stage of smoothing would allow model based

feedback[161] or encoding query term importance [58].

4.3.4 Parameter Estimation

When building context based document models, there are several free parameters that

need to be estimated. We first outline the measure that we shall use to measure the

quality of the models used, then describe calculations to estimate the context back-

ground model, and then the context based document models.

Under the assumptions of Language Modeling, the data model and the retrieval model

are considered the same and the data model influences the retrieval performance. Since

we are obliged to develop the best possible representation of the documents (data

model) we need to measure the quality of the representations generated. The statistical

measure of goodness of fit is the log likelihood of the document on a held out sample

of data, known as the predictive likelihood[29]. We can use the predictive likelihood

as a measure of the quality of the document models. In speech recognition[123], the

preferred measure is perplexity, which is directly related to the predictive likelihood.

Perplexity is the exponential of the negative normalized predictive likelihood under the

model. This gives an indication of the word error rate, which is used to evaluate such

language models. The use of predictive likelihood in some form has been previously

used in many studies on text retrieval[164, 3, 62, 61], where it has been generally be-

lieved that a better predictive likelihood will achieve better retrieval performance. This

intuition matches the assumptions of Language Modeling already outlined. It should
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be stressed that parameter estimation in this manner is conceptually different from that

performed in the past. Previously, parameter’s of Language Models (and other types

of retrievals) have been tuned against the actual retrieval performance (typically on the

query set for which the performance is reported). Clearly, tuning the model parame-

ters under these circumstances requires a priori knowledge which in not available in

a realistic environment. Hence, past results have tended to show the most optimistic

retrieval performance given set of possible smoothing parameters.

In Section 3.5.4.1, we described the ‘leave one out’ log likelihood method which was

used to measure the quality of the document models. We apply the same method for

estimating the predictive likelihood for estimating π for the context background model,

and estimating λ or β for the context based document model. Under this approach, we

can select the smoothing parameters of the Language models which ‘should’ according

to the second assumption also maximize the retrieval performance, without recourse to

any a priori knowledge of the queries and relevance judgments.

4.3.4.1 Estimating π

When, each context x ∈ X is defined by a set of documents, x = {d1, . . . ,d|x|}, the

predictive likelihood for the context x given π is defined as follows.

`−1(π,x) = ∑
t∈x

n(t,x) log
(

(1−π)
n(t,x)−1

∑
′
t n(t ′,x)−1

+πp(t|θC)
)

(4.5)

where

n(t,x) = ∑
d∈x

n(t,d)

The mean predictive likelihood for the set of contexts `
avg
−1 (π,X) is the average `−1(π,x)

over all contexts, as shown in Equation 4.6, where |X | is the number of contexts in X .

`
avg
−1 (π,X) =

1
|X | ∑

x∈X
`−1(π,x) (4.6)
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An estimate π̂ is then assigned according to the π value which gives the highest mean

predictive likelihood, such that:

π̂ = argmax
π

`
avg
−1 (π,X) (4.7)

The estimated π̂ is then used to instantiate the context background models.

4.3.4.2 Estimating λ and β

Again, we use the same criterion of the predictive likelihood as defined by the leave

one out log likelihood to estimate our context based document model parameters. The

mean predictive likelihood (mPL) is used as an indication of the quality of the docu-

ment models. The predictive likelihood for the context based document models using

Jelinek Mercer smoothing is shown in Equation 4.8, while in Equation 4.9 is the equiv-

alent for Bayes Smoothing.

`−1(λ,d) = ∑
t∈d

n(t,d) log
(

(1−λ)
n(t,d)−1

∑
′
t n(t ′,d)−1

+λpd(t|θX)
)

(4.8)

`−1(β,d) = ∑
t∈d

n(t,d) log
(

n(t,d)−1+βpd(t|θX)
∑
′
t n(t ′,d)−1+β

)
(4.9)

The mean predictive likelihood for the documents in the collection is the average of

the predictive likelihood `
avg
−1 (γ,C), where γ represents the model parameter λ or β.

`
avg
−1 (γ,C) =

1
|D| ∑

d∈C
`−1(γ,d) (4.10)

Again, we select the estimate γ̂ which maximizes the mean predictive likelihood of the

context based document model, as shown in Equation 4.11.

γ̂ = argmax
γ

`
avg
−1 (γ,C) (4.11)
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By maximizing mPL our estimated parameters should be the best representation of

the documents given the data from which they were estimated. With respect to the

assumptions of Language Modeling, this is the objective function for obtaining the best

retrieval performance. So, if a better representation of the underlying data is achieved

using context based document models than better retrieval performance should also be

possible. However, it remains to be seen whether this holds true, and this is examined

in Chapter 5.

4.4 Unsupervised Learning

In this section we present two techniques which can automatically induce associations

between documents. The first is the Naive Bayes mixture model, and the second is

Probabilistic Latent Semantic Analysis. The former is a standard probabilistic clus-

tering algorithm, while the latter induces more semantic based associations through

co-occurrence data.

4.4.1 Naive Bayes

The Naive Bayes mixture model is not strictly context based, however, we include it for

completeness and demonstrate how it can be applied within our framework to obtain

‘cluster based’ document models.

Under a generative Naive Bayes mixture model, each document d is generated from

one (and only one) latent class g, given the set of classes G, such that g ∈G. Given the

latent class g, terms are drawn from that class to build the document of length n(d).

The terms are assumed to be independently and identically sampled from the class.

Under the Naive Bayes Model, the likelihood of a document is defined as follows:

`d = ∑
g

p(g)p(d|g) (4.12)
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where:

p(d|g) = ∏
t∈d

p(t|g)n(t,d) (4.13)

To generate a document the sampling process is as follows:

1. we select the class g with probability p(g)

2. From g sample a term t

3. repeat step two until we have the desired sample

The probability of a document can be calculated by:

p(d) = ∑
g

p(d|g)p(g)

= ∑
g

p(g)∏
t∈d

p(t|g)

The model is estimated using the standard procedure for maximum likelihood estima-

tion of models with latent variables, the Expectation Maximization[30] algorithm. As

mentioned earlier the procedure guarantees that a local maxima of the likelihood of all

documents will be found. The EM algorithm alternates between the two steps: Expec-

tation (E) Step and the Maximization (M) Step and is repeated until convergence (i.e

the change in the likelihood of the model is zero or a very small improvement).

The E-step computes the posterior probabilities.

p(g|d) =
p(g)∏t∈d p(t|g)

∑g′ p(g′)∏t ′∈d p(t ′|g′)
(4.14)

The M-Step updates the parameters given the posterior probabilities.

p(t|g) =
1+∑d n(t,d)p(g|d)

|T |+∑t ′ ∑d′ n(t ′,d ′)p(g|d ′)

p(g) =
1+∑d p(g|d)
|C|+ |D|

(4.15)
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Where |T |, |D| and |C| are the number of terms, documents and classes respectively.

The count n(t,d) is supplemented by Laplace smoothing which adds a count of one to

avoid the assignment of any non-zero probabilities.

The probability of a term given a document can be determined from Equation 4.14. The

estimation process may not converge completely to identify one class for a particular

document. In such cases, the class with the highest probability p(c|d) is selected as the

class the document was drawn from and the appropriate class-specific uni-gram used.

4.4.1.1 Naive Model for ad hoc IR

Using the context based document model described in Equation 4.3, and setting the

context parameters so that ΘX=G = {p(t|g), p(g|d)}, where association matrices are

defined through the Naive Bayes estimation procedure, the final estimation details of

the Naive Bayes context based document model is:

p(t|θG
d ) = (1−λ)p(t|d)+λ((1−π)pd(t|θG)+πp(t|θC)) (4.16)

If the number of classes is one, then the probability of a term given the document

from the naive Bayes mixture will be equivalent to the probability of term given the

collection. i.e. one class, the entire collection. Where further classes are added, and

a class structure exists, the probability of an unseen term in a document will be more

accurate. If the Cluster Hypothesis holds, then by expanding the document model

using class information should increase the retrieval performance as well.

To implement cluster based retrieval given our context based model requires that we

take the Jelinek Mercer variant proposed in Equation 4.3 and enforce certain condi-

tions. First, we must set λ to zero, hence ranking is completely reliant on the cluster

based model. We must also assume that a document may only be drawn from one

cluster g, then the ranking of clusters is ascertained by the likelihood of drawing the

query from the cluster of documents p(q|g).

However, in practice ranking purely by clusters is rarely performed and often the rank-
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ing based on the cluster and the document are combined in some fashion. Recently

within the language modeling framework a similar model has been proposed by Liu

and Croft[89]. They derive their model directly from the Cluster Hypothesis[67]. The

resulting formulation of their cluster based document models, is essentially Equation

4.16. However, they induce clusters using k-means clustering as opposed to the Naive

Bayes mixture model. The clusters formed are converted into probability distributions,

p(t|g) and p(g|d). Using the cluster based document models they show that small

gains in performance are possible on specific TREC collections 1, 2 and 3.

The Naive Bayes model (as the name implies) is rather simplistic and assumes that one

document belongs to one class, hence multi-topic documents can not be adequately

represented. Further, the model has been shown to suffer from over-fitting [12]. How-

ever, one benefit of the model is that it is relatively easy to implement and more efficient

than more sophisticated estimation techniques such as Probabilistic Latent Semantic

Analysis.

4.4.2 Probabilistic Latent Semantic Analysis

The Naive Bayes model makes the assumption that a document is generated from one

and only one class. Under Probabilistic Latent Analysis (PLSA) it is assumed that the

document is drawn from a number of classes. The model was first introduced by Hoff-

mann and Puzicha[63] for clustering, and developed further by Hofmann[62, 61, 60]

for ad hoc Information Retrieval known as Probabilistic Latent Semantic Indexing

(PLSI) or Probabilistic Latent Semantic Analysis (PLSA). The approach is a proba-

bilistic alternative to the linear algebraic approach called Latent Semantic Indexing /

Analysis (LSI/LSA) [28]. However, PLSA has two advantages: (1) PLSA defines a

generative model of the document collection, and (2) instead of the Gaussian densities

used in LSA, PLSA utilisers multinomial densities which are more suited to the term

distribution (see [61] for a detailed discussion on the similarities of PLSA to LSA). In

experiments by Hofmann significant increases in the performance were obtained over

the VSM and LSA.
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Formally, Probabilistic Latent Semantic Analysis is a latent variable model for co-

occurrence data which associates an unobserved class variable z with each occurrence

of a term t in a document d. Hence, the co-occurrence data is the term co-occurring

with the document, through the latent variables. This enables a contextually smoothed

version of the document to be generated through the following generative process:

1. A document is selected with probability p(d)

2. A latent class is selected with probability p(z|d)

3. A term t is generated with probability p(t|z)

4. go to step 2 and repeat sampling until done

The latent class variable z is marginalized and the result is the probability of a term and

a document, i.e. the observed variables. The aspect model is mathematically expressed

as follows:

p(t,d) = p(t|d)p(d)

p(t|d) = ∑
z

p(t|z)p(z|d) (4.17)

Under the aspect model, the same term independence assumption is made. A further

assumption is also asserted; conditional independence, based on the latent class, so

that terms are generated independently of the document. By using an aspect model, a

document can be a combination of a number of latent classes ( unlike the Naive Bayes

Mixture model). This generates a unique document representation for each document,

and is considered to be a contextually smoothed representation of the document.

As with the Naive Bayes model, we can determine the probabilities p(d),p(z|d) and

p(t|z) by maximizing the likelihood function:

`d = ∑
d

∑
t∈d

n(t,d)logp(t,d) (4.18)

Using the EM algorithm[30] the parameters for the model can be estimated to obtain a
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local maximum for `d . The E-step computes the posterior probabilities.

p(z|d, t) =
p(t|z)p(z|d)

∑z′ p(t|z′)p(z′|d)

The M-Step updates the parameters given the posterior probabilities.

p(t|z) = ∑d n(t,d)p(z|d, t)
∑t ′ ∑d′ n(t ′,d ′ )p(z|d ′

, t ′ )

p(z|d) = ∑t n(t,d)p(z|d, t)
p(d)

The trivial estimate of p(d) ∝ n(d) is assumed. In order to estimate a better model of

the underlying data tempering is suggested in [62]. Tempered EM is implemented as

follows:

1. Hold out a portion of the documents contents (for instance 10% of the terms that

occur in the document).

2. Set γ = 1 and perform EM until the performance on the held out data deteriorates.

3. Decrease γ by a small factor, such that γnew = ν× γold , where ν < 1.

4. Repeat TEM iterations at this new value of γnew as long as the `d continues to

improve.

5. Stop when decreasing the value of γ does not yield any further improvements to

`d , otherwise goto to step 2.

6. Perform some final iterations using both training and held out data

However, the PLSA model has been criticized for not being a truly generative model

and consequently a theoretically underpinned approach was proposed by Blei et al.[12].

They proposed Latent Dirichlet Allocation (LDA) as a fully generative alternative.

Under such a model, the parameters are estimated using a variational approximation.

However, it has been shown that PLSA is in fact the maximum a posteriori estimate of

the LDA model [41]. The LDA model has not yet been used for ad hoc Information
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Retrieval, though experiments on clustering tasks have shown it to outperform both the

Naive Bayes and PLSA models. The PLSA model, however, has been applied to the

text retrieval task but incorporated within a VSM.

The advantage of using PLSA is that each document is composed of a combination

of latent classes in various proportions. This has a natural interpretation in that a

document may be composed of several different latent variables. Sometimes the latent

variables will be referred to as topics, but this is not strictly the case. We need to

infer some kind of topicality from the distribution p(t|z) such that it means something

semantically before referring to it as a topic[12]. From the analysis performed this

appears to be possible[12, 61, 60].

4.4.2.1 PLSI

Retrieval using PLSA is called Probabilistic Latent Semantic Indexing (PLSI)[60].

Hofmann presents two algorithms for ranking; one that used the conditional probability

of a term given a document p(t|d) and the other used the posterior probability of a

latent class given a document p(z|d). The former represents matching in the term

space whilst the later attempts to match in the latent space (see [28, 60] for further

details about matching in the latent space).

First, we describe the term space matching using PLSA and the VSM and then we

compare this approach to our fully probabilsitic framework. The model proposed by

Hofmann to match in the term space is PLSI-U [60]. PLSI-U uses a contextually

smoothed representation of the document formed by linear combination of the empir-

ical probability estimates of a term in a document with the PLSA estimates of a term

in a document. This is then weighted by the Inverse Document Frequency to produce

the document representation shown in Equation 4.19, where 0 ≤ λ ≤ 1 and pplsa(t|d)

is defined by Equation 4.17.

r̂(t|d) =

(
λp(t|d)+(1−λ)

{
∑
z

p(t|z)p(z|d)

})
.idf (t) (4.19)
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s(d,q) = ∑t r̂(t|d)r(t|q)√
∑t r̂(t|d)2

√
∑t r(t|q)2

(4.20)

Equation 4.20 is derived from the Vector Space Model[127] where the angle between

the document vector and query vector is computed to determine the similarity between

them (Section 2.4.2). The combination is a fairly intuitive way of encoding the con-

text within the document. It is unclear how to determine the combination parameter in

such a way that would obtain the best performance, hence it needs to be empirically

set. That is, the model parameters needed to be manipulated until the best retrieval

performance was found. The inverse document frequency is also used. Essentially, the

process is ad-hoc in nature, pieced together to give the best results. At this time Lan-

guage Modeling for ad hoc retrieval had just been proposed accounting for such piece-

meal combination strategy. On the other hand, the context based document modeling

approach seamlessly integrates PLSA within a principled framework. The context pa-

rameters ΘX=Z = {p(t|z), p(z|d)}, where p(t|z) and p(z|d) are estimated using PLSA.

Under this approach, indexing can be viewed as a principled alternative to the indexing

performed in [60, 62], which is consistent with the Langauge Modeling paradigm.

Another related approach which uses an aspect model was proposed in [76]. To score

documents they use a linear combination of the p(q|θd) based on the standard language

model approach and p(q|θZ
d ) based on an aspect model. This is conceptually differ-

ent from our model because the we attempt to develop a more accurate representation

of the underlying data, whilst this method relies upon a combination of evidence to

manipulate the ranking of documents. Further, their method is similarity based, docu-

ments are associated with other documents using the KL divergence, where the closest

m documents (those with the smallest KL divergence) are assumed to be related, i.e.

p(d′|d) = 1/m for m closest documents and p(d′|d) = 0 for the rest in the simplest

case.
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4.5 Summary

We have presented our framework for developing context based document models.

Building such document models, should result in a more accurate representation of

the underlying data, therefore abiding by the second assumption of language model-

ing. The context based document models that we have proposed are consistent with

the probability theory that they are derived. This allows the incorporation of further

forms of context (such as document prior, second stage of smoothing, etc) without

compromising the integrity of the theory. In essence, this should result in an extensible

approach for incorporating context that should, under the assumptions of Language

Modeling deliver superior IR performance. Of course, this still relies on how well

we can estimate the context based document models and to the extent to which the

assumptions hold. In Chapter 6, we implement some context based models, with the

following questions in mind:

• Can a better representation be obtained under context based document models?

• Will this translate in significantly better retrieval performance?

• Alternatively, does Assumption Two hold?



Chapter 5

Assumptions of Language Modeling

In this chapter, we undertake an analysis of the underlying assumptions of the Lan-

guage Modeling approach for ad hoc text Retrieval. The assumptions are recast as hy-

potheses so that we can evaluate their validity through empirically based experiments.

The experiments conducted within this chapter seek to deepen our understanding of

the Language Modeling approach and provide a novel insight into the behavior, per-

formance and utility of the approach.

5.1 Introduction

As we have previously mentioned in Chapter 3, the Assumptions of the Language

Modeling approach can be stated as follows:

A1 Correlation The probability of a query given a document is correlated with the

probability of a document being relevant[112, 57]. Or stated more firmly, that

the probability of a query given a document is proportional to the probability of

the document being relevant[78].

A2 Unification Relevance is subsumed by the document modeling process as shown

in Equation 3.8, which is approximated with the p(q|θd). By ranking accord-

ing to p(q|θd), the data model and retrieval function are one and the same. i.e

103
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Unification[113].

A3 Discrimination The query terms that a user poses to the system are good at

discriminating relevant documents from non relevant documents[113].

These assumptions have not been fully tested, nor empirically verified. Indeed, the

considerable empirical success (in terms of IR performance) of the Language Mod-

eling approach has to some extent been justification enough (resulting in widespread

adoption). However, it is imperative that assumptions be tested for a number of rea-

sons:

• to validate the approach,

• to develop a deeper understanding of the model,

• to revise/extend the assumptions/model accordingly

• and to determine its current limitations.

Each assumption has different effects on the application, usage and invariably its suc-

cess of the Language Modeling approach; some examples of which are discussed be-

low.

Assumption One is theoretically oriented with the implication that if it is not upheld

then the ranking can not be guaranteed as optimal under the PRP. This is because the

LM approach ignores relevance, which leads to further problems. When relevance

feedback becomes available, then without relevance explicitly define it is unclear how

to re-estimate the parameters. This implies that multiple relevant documents are to

be retrieved. However, under the ideal document analogy, it may not be sensible to

consider the retrieval of multiple relevant documents under the LM approach[139].

On the other hand, it is claimed that the query likelihood is actually proportional to

the Odds Ratio[78]. It remains to be seen whether this, or the correlation do hold in

practice.

The second assumption implies that a better representation of the document model

should achieve better retrieval performance[112]. This is because the retrieval perfor-

mance is inextricably linked to the document language models p(t|θd) as determining
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the likelihood of the query terms being produced from the document model is pre-

cisely the mechanism by which documents are ranked. Ponte and Croft [113] claimed

that this unified the data model with the retrieval model 1 because separate sets of in-

ferences for indexing and for retrieval are not required. Hence the estimation of the

document language model is not only vital to overcome the Zero Probability Problem

but is paramount in obtaining better IR performance. Under this interpretation, our ob-

jective is clear. We should generate a better representation of the data (data model) to

achieve better retrieval performance (retrieval model). We can use this principle then

to guide in the unsupervised estimation of the model parameters by optimizing the data

model, which should result in the optimal retrieval performance.

The third assumption posits that a user will submit a query consisting of keywords as

opposed to a description of their information need. Therefore, issuing an entire TREC

TOPIC, which includes a narrative and description of the information need, as a query

may be construed as a misuse or even abuse of the model given the underlying assump-

tions. This is because the terms used to describe what is wanted may not neccessarily

be the same as the terms in the document (vocabulary effect). Also, when users issue

queries they need to imagine an ideal document and select terms from this document

that would be likely to occur, requiring that the user must have some knowledge of the

distribution of terms within documents and an ability to distinguish relevant documents

from non relevant documents.

The validity of each of the three assumptions remains largely unexplored. In this chap-

ter, we provide empirically based hypotheses to determine whether the assumptions

hold or not, and to what extent. The remainder of this chapter is as follows: Section

5.2 restates the assumptions as hypotheses and Section 5.3 details the experimental

methodology employed to test these hypotheses. In Section 5.4 we report the results

of the experiments conducted along with a discussion of these findings.

1Our emphasis not the original authors.
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5.2 Hypotheses

To test the assumptions of Language Modeling for text retrieval we have restated the

assumptions as the following set of corresponding hypotheses:

HA1 The probability of a query being generated from a document p(q|θd) is corre-

lated with the odds of a document being relevant O(d|R,q).

HA2 The document language models which gives the ‘best’ representation of the un-

derlying data will achieve the ‘best’ IR performance (and thus unification).

HA3 The query likelihood of relevant documents is greater than the query likelihood

of non-relevant documents.

The transformation of each hypothesis to its assumptions required some interpreta-

tion which we explain. In (HA1) instead of comparing the query likelihood2 directly

against the relevance of a document p(d|R,q) we have substituted the Odds Ratio in-

stead. The Odds Ratio provides a measure of the relevance of a document which is

comparable between documents as the probability of document given relevance is nor-

malized by the probability of a document given non-relevance. Otherwise document’s

of different lengths would not be comparable, if we used p(d|R,q) alone. Stating the

assumption like this is exactly the decomposition offered by Lafferty and Zhai[78],

(see Equation 3.9), who claim that the two measures are actually proportional, not just

correlated.

In HA2, we restate the assumption in terms of its implication i.e. that the best data

model will achieve the best IR performance and hence allows us to empirically deter-

mine whether this assumption holds. However, we need to quantify what we mean by

‘best’ with respect to the representation of data (data model) and ‘best’ with respect to

the retrieval performance (retrieval model).

• The standard measures for IR were detailed in Chapter 2. We shall use the

measures of mean Average Precision and Precision at 30 documents to quantify

2Note that the query likelihood measure does not need normalizing because the length of the query
is fixed, and so the query likelihoods are comparable between documents.
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Figure 5.1: Left: An example of when the BRM and the BDM are unified, i.e both ob-

taining optimal performance given the parameter value. Right: An example of when

the BRM and the BDM are not unified, and over fitting the data model results in ob-

taining the optimal retrieval performance. The performance of the data model (mPL) is

denoted by the squares, and performance of the retrieval model (mAP) is denoted by

the diamonds.

the retrieval performance. The ‘best’ retrieval model (BRM) is the one which

obtains the highest precision values given the model parameters.

• For the data model, the statistical measure for the goodness of fit of the data

model is measured by the log likelihood of the data model on a held out sample

of data. We shall refer to this as the predictive likelihood of the document model.

The mean predictive likelihood (mPL) is computed taking the mean of the pre-

dictive likelihood over all document models. Therefore, the ‘best’ data model

(BDM) is the one which achieves the maximum mean predictive likelihood.

The hypothesis is tested by comparing the performance of the BDM against the per-

formance of BRM, if they are equivalent (i.e. no significant difference) then we shall

claim that the models are unified. See Figure 5.1 for a graphical representation of

unification between the two models occurs and when it does not.

In HA3 we test to determine whether their is sufficient discrimination, or not, between

relevant and non relevant documents given the respective query likelihood scores. To
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quantify what is sufficient discrimination, we shall employ an appropriate statistical

test, which allows us to quantify the discrimination at varying levels of significance

5.3 Experiments

This section details the experimental methodology employed for testing the stated hy-

potheses. We first outline both the data collections and document language models

that we use through the course of the analysis. Then we describe the methodology

undertaken to test each of the hypotheses.

5.3.1 Test Collections

Three distinct data collections were selected consisting of three Abstract collections,

two full text collections and a Web collection. Each type has different characteristics

providing a guide of the robustness of the model assumptions to differing conditions.

The specific data collections used were: MedLine Abstracts (MED), Computer Ab-

stracts from the ACM (CACM) , and CISI Abstracts(CISI); The full text document

collections were taken from the TIPSTER/TREC Disks, Wall Street Journal Collec-

tion 1986-1992 (WSJ) and Applied Press Collection 1988-1989 (AP); and the web

collection used was Web Track 2 Gigabytes collection (WT2g).

The standard query set associated with each abstract collection was used. On the full

text collection, the TREC TOPICS 101-200 were used, where the title of the topic was

treated as the query and on the web collection we used the TREC TOPICS 401-450,

where the title of the topic was also used as the query.

The data preparation was standard and applied to both collections and queries; terms

were stemmed using the Porter Stemming Algorithm[114], and standard stop words

were removed. See Table 5.1 for an overview of the collection statistics, n̂(d) is the

average document length, ∑d n(d) is the total number of term occurrences in the collec-

tion, |Q| is the number of queries and finally the the total number of relevant documents

aggregated over all queries is given.
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Collection |D| n̂(d) |T | ∑d n(d) |Q| Total Rels

MED 1033 83 9380 86021 30 696

CACM 3204 91 13817 294478 52 796

CISI 1460 230 8418 336040 76 3114

AP 164597 243 196931 40111694 100 9738

WSJ 173252 247 175106 42862057 100 8469

WT2G 247491 611 1243186 151356491 50 2279

Table 5.1: Data Collection Statistics

Model Param Values

LP α 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1,10,100,1000

JM λ 0.01,0.1,0.2,...,0.9,0.99

BS β 1,10,50,100,200,300,500,1000,2000,3000,5000

Table 5.2: Document Language models and the Parameter values

5.3.2 Document Language Models and Parameter Space

We selected three different document language modeling approaches, detailed in Chap-

ter 3, they were: Laplace Smoothing (LP) see Equation 3.24 , Jelinek-Mercer smooth-

ing (JM) see Equation 3.25 and Bayes Smoothing (BS) see Equation 3.32. Table 5.2

shows their model parameter and the range of values that the model parameter was

assigned. We selected these three models as opposed to any other aforementioned

document modeling approaches for a couple of reasons. The LP model is the sim-

plest approach which avoids the ZPP. From a statistical point of view it also makes

the naivest assumption of prior knowledge of the term distribution (assumes terms are

from a uniform distribution). The JM and BS are the more predominantly used LM

with demonstrated empirical success. This is because JM and BS rely upon the back-

ground collection probabilities which provides a better estimate of the term occurring

in the document and this gives a better representation of the document. The distin-

guishing feature between JM and BS methods is that the latter has an implicit length

normalization component (see Section 3.4.4).
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The experiments conducted were performed on all data collections and document lan-

guage models. For each combination, the Assumptions were tested according to the

procedures described in the following subsections.

5.3.3 Testing Assumption One

To test the first assumption we require the two measurements O(d|r,q) and p(q|θd) for

each document d, given the query q. To avoid computation problems where the multi-

plication of small probabilities results in zero instead of an extremely low probability

value, because it is too small to be represented under the standard numerical types.

Hence, we use the log of both measures, which simplifies the calculations to summa-

tions and the log transformation is monotonic so that the rank order is preserved. For

each query, the log query likelihood log p(q|θd) was computed for each document.

The top 1000 documents were then selected and the corresponding log Odds ratio

computed3.

To estimate the Odds ratio, we used the generative relevance Modeling approach (de-

scribed in Chapter 3.) An empirical relevance model was constructed from the set

of documents that were relevant to the query, such that p(t|R) = ∑d∈R
n(t,d)
n(d) . The

empirical relevance model was smoothed with the background model p(t|θC), such

that the relevance model p(t|θR) = 1
2 p(t|R) + 1

2 p(t|θC)4. The non relevance model

p(t|θN) was set to p(t|θC). The log Odds Ratio was then computed for each document

logO(d|r,q) = log p(d|θR)
p(d|θN) .

To measure whether a correlation existed between the two measures, the set of points

( log p(q|θd),logO(d|r,q)) for a given query were analyzed using the Spearman’s rank

test (ρ). The Spearman’s rank test is a non-parametric test which we have opted for

because the data points were not distributed normally. Had they been normally dis-

3We also considered the converse - ranking according to the log Odds Ratio and then computing the
log query likelihood of the top 1000 documents, however the results were sufficiently similar that we
only considered this point of view.

4The suggested amount of smoothing between the empirical estimate and the background collection
model was between 0.4 and 0.8 in [82]. We conducted several experiments were we changed the amount
of smoothing, however the rankings were rather invariant to the parameter change in the specified range.
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Figure 5.2: Top: Plot of the log query likelihood versus the log odds ratio. Middle: Plot

of the log query likelihood versus log odds ratio using the ranks. Bottom: An example

of when the correlation of the ranks between the query likelihood and odds ratio is one.
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tributed we could have employed parametric tests such as Pearson’s r co-efficient

or considered linear regression. From Figure 5.2, we can see the actual values of

(log p(q|θd), logO(d|r,q)) plotted against each other in the top graph. The Spearman’s

rank test accounts for non normally distributed data, by resorting to the ranks of the

scores, as shown in the middle graph. A positive correlation suggests that when one

measure is high so is the other, whereas a negative correlation suggests that when one

measure is high the other is low. In Figure 5.2, the bottom graph shows the former

case of a perfect correlation. If the correlation co-efficient was statistically significant

at 5% significance level for a particular query, then it was counted as being significantly

correlated, the direction of the correlation was also noted.

The correlations were measured at three cut off points; at 30 documents, at 100 docu-

ments and at 1000 documents. The three points we examined provide different snap-

shots of the correlation, and also match up with standard evaluation metrics. i.e 1000

documents is the prescribed number of documents retrieved in the TREC evaluations;

30 documents represents the set of documents that are generally the only documents

viewed or examined by the user for that query (Conveniently, it also provides a suffi-

cient sample size for measuring the correlation).

It is worth pointing out that we are testing to determine whether there is a correlation

between the two measures, with out considering whether those documents are relevant

or not. This is considered by Assumption Three.

5.3.4 Testing Assumption Two

To test the second hypothesis, given the model parameters, we measured the corre-

sponding data model and retrieval model. As previously mentioned the IR performance

was measured by recording the mean Average Precision (mAP) and the precision at 30

documents (p@30docs). The data model was measured by recording the mean Predic-

tive Likelihood. The mean Predictive Likelihood was computed using cross validation

of the document model, to do so: One term from the document is held out, and then

the document model is created given the model parameters. Then the term which was



Chapter 5. Assumptions of Language Modeling 113

held out is predicted by the model. This is repeated for every term in the document and

the likelihood of the model is the product over each of the left out terms. This process

is known as the ‘leave one out likelihood’. This process is preformed for every docu-

ment and the average taken to obtain the mean predictive likelihood. Maximizing the

mean predictive likelihood will result in the best representation of the underlying data

given the document language model. This is akin to the process described in Chapter

3 Section 3.5.4.

The predictive likelihood for each document language model, LP, JM and BS, can be

computed as shown in the Equations 5.1, 5.2 and 5.3, respectively.

`−1(α,d) = ∑
t∈d

n(t,d) log
(

n(t,d)−1+α

n(d)−1+ |T |α

)
(5.1)

`−1(λ,d) = ∑
t∈d

n(t,d) log
(

(1−λ)
n(t,d)−1
n(d)−1

+λp(t|θC)
)

(5.2)

`−1(β,d) = ∑
t∈d

n(t,d) log
(

n(t,d)−1+βp(t|θC)
n(d)−1+β

)
(5.3)

The mean predictive likelihood is calculated as shown in Equation 4.10, where γ repre-

sents the model parameter either α, β or λ. The parameter value which gave the highest

mean predictive likelihood according to Equation 4.10 was noted and will be referred

to as the Best Data Model (BDM) given the fixed set of parameter values (see Table

5.2).

To obtain a better estimate of the data model given the set of parameters used, we took

the average of the set of parameter values that maximized each document’s predictive

likelihood. See Figure 5.7, for a graphical representation of the distribution over the

parameter values that obtained the maximum predictive likelihood. The distribution

was then estimated by the mean of this distribution. Note, that the LP and BS document

models used a parameter space that was not linear and simply taking the mean would

have heavily biased the statistic towards the larger values. Instead, the parameters were

first transformed in log space, took the mean, and reconstructed the actual parameter
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value by raising the mean to the exponent. The models with the estimated parameter

values will be referred to as the estimated Best Data Model ˆBDM. Whilst this does

not ensure that the optimal estimate of the parameter is selected, it provides reasonable

estimate.

We then selected the Best Retrieval Model (BRM), according to the model parameter

that gave the highest mean Average Precision or Precision at 30 documents.

The hypothesis that the IR performance of the Best Data Model (BDM)/( ˆBDM) would

be equal to the IR performance of the Best Retrieval Model(BRM) was then tested on

each collection, using the Sign Test at 5% significance level.

5.3.5 Testing Assumption Three

Under Assumption Three, we aim to determine whether there is a sufficient amount of

discrimination between relevant and non relevant documents given the query likelihood

scores. This presents an interesting challenge as the standard statistical tests are gen-

erally inappropriate. The use of a parametric test such as the point bi-serial correlation

test, which is equivalent to the χ-Squared test, but for a continuous variable, in this case

(q|θd) versus a discrete binary variable (which denotes R or N) would be inappropri-

ate because the distribution of query likelihoods are not normally distributed for (non)

relevant documents. This is similar to the approach taken by Swets[143] who assumed

normal distributions for the scores of relevant and non relevant documents. Others have

modelled the score of non-relevant documents using other distributions such as an ex-

ponential distribution[2, 165] or an empirical distribution[90], however, the scores of

relevant documents has generally been assumed to be normally distributed[143, 90] or

taking the form of a gamma distribution[2]. Such an assumption about the relevant

documents is difficult to accept, because generally the number of points from which to

estimate this distribution is limited (and usually not enough to form a reliable estimate

of the parameters of a normal distribution).

Inspired by this idea of modeling the distribution of scores, we developed a non-

parametric approach. Instead of comparing whether there was a difference between
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the distributions of scores from relevant and non relevant documents, we first mod-

elled the scores from non-relevant documents through an empirical distribution as in

[90] (because we have numerous examples from which to estimate the form, we ex-

pect that we will obtain a reasonably good model of the distribution of non-relevant

documents). Once we have approximated the distribution of non relevant documents,

then we tested each relevant document to determine if the score of that document was

significantly higher than non-relevant documents at various levels of significance using

a one tailed test.

To quantify the meaning of ‘sufficiently discriminative’ we need to set two criteria:

1. the significance level (or rejection threshold), and

2. the proportion of relevant documents desired.

The first defines the level at which we reject the null hypothesis that the relevant doc-

ument came from the non relevant distribution. Alternatively, this can be thought of

as the proportion of non relevant documents willing to be seen during the course of

a search session. The second defines the proportion of relevant documents that need

to be returned given the significance level from (1) which would be deemed sufficient

discrimination between relevant and non-relevant. For example, if one user is willing

to see only 1% of the non relevant documents, but wants at least half of all the relevant

documents, then this would quantify what they would term sufficient discrimination.

However, others may disagree and be willing to see more non-relevant documents or

are happy with a smaller proportion of relevant documents.

For these experiments we set the second criterion to half (as that seems to be a reason-

able expectation), whilst the first criterion was varied, ranging from 0.1% up to 25%

significance. The number of queries which exceeded the second criterion at each sig-

nificance level was counted, and the overall proportion of relevant documents retrieved

at each significance level was also recorded.
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5.4 Results and Discussion

This section provides a summary of the pertinent results from our experimental anal-

ysis along with relevant discussion. We report the number of correlations in A1 and

number of discriminations in A3, as proportions. This was to enable some comparison

between data sets since they have differing numbers of queries.

5.4.1 Assumption One

Table 5.3 shows the results of the proportion of correlations (positive and negative)

that were significant for each of the data collections at recall of thirty documents, one

hundred documents and 1000 documents. (i.e the total number of queries that had

a significant (positive/negative) correlation at 30/100/1000 documents divided by the

total number of queries.)

Figure 5.3, the top graph shows each pair (log p(q|θd), logO(d|R,q)) plotted for one

of the queries on the AP collection using BS. The bottom graph shows the distribution

of the query likelihoods for the non relevant documents. In the graphs the dashed lines

indicate the different significance thresholds.

The results indicate that the correlation between the Odds of document being relevant

and the query likelihood is infrequent/low when considering the top thirty document,

but occurs often when considering the top 1000 documents.

At 1000 documents, the correlation between the Odds and the query likelihood was

typically significant, and statistically so for a high proportion of queries. However, this

may be an artifact of phenomena and the large sample size. Taking a correlation at

1000 documents swaps the comparison; the main bulk of documents are non-relevant

which attract a low Odds Ratio and low query likelihood (hence, both are assigned low

ranks). The swapping can be seen by examining the empirical distribution of the query

likelihoods of non-relevant documents as shown in Figure 5.3, where the majority

of documents attract a very low score and rank. Hence, the correlation appears to

exist, because of these non-relevant documents, contributing to the correlation. This
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Collection Model Pos Pos Pos Neg Neg Neg

@30 @100 @1000 @30 @100 @1000

MED LP 0.5 0.7 0.9 0 0 0

JM 0.567 0.867 0 0 0 0.033

BS 0.567 0.867 1 0 0 0

CACM LP 0.288 0 0 0 0.269 0.576
JM 0.25 0.538 0.442 0 0 0

BS 0 0 0 0.25 0.346 0.692

CISI LP 0.118 0.342 0.973 0 0 0

JM 0.145 0.368 0.894 0 0 0

BS 0.105 0.368 1 0 0 0

AP LP 0 0.58 0.88 0.25 0 0

JM 0.16 0.55 0.98 0 0 0

BS 0.25 0.64 0.93 0 0 0

WSJ LP 0.36 0.67 0.83 0 0 0

JM 0.07 0.45 0.93 0 0 0

BS 0.31 0.63 0.91 0 0 0

WT2g LP 0 0.42 0.52 0.22 0 0

JM 0.22 0.46 0.92 0 0 0

BS 0.32 0.52 0.84 0 0 0

Table 5.3: The proportion of positive and negative correlations between the Odds Ratio

and the Query Likelihood at Recall of 30, 100 and 1000 documents, for each of the

Document Models and Collections. The values in bold are when over half of the queries

were significantly correlated, which generally is the case for 1000 documents.
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Figure 5.3: Positive Correlation on the AP Collection at 1000 documents using BS. Top:

Odds Ratio vs Query Likelihood, Bottom: Distribution over the Query Likelihood. From

the examples above, at 1% significance a relevant document would have need a log

query likelihood greater than -7.9 to be rejected from the non-relevant distribution. At

10% a score greater than -9.2 will be enough to reject it, and so forth.
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is not particularly useful, and indeed we can think of many measures that would have

a similar correlation with the odds ratio, for instance the number of query terms a

document has, or the size of a document.

Hence, we place more emphasis on the correlation at thirty documents instead. This

is an appealing point to test A1 because it is typically the only part of the list that is

actually inspected or examined by the user and it is sufficiently sized for statistical

testing.

At thirty documents, the MED collection had the highest percentage of positive corre-

lations where HA1 was successfully upheld approximately 50% of the time. However,

on the other collections the proportion of queries where HA1 was upheld was approx-

imately 20%. In some cases, negative correlations were witness on the CACM and

WT2g collections. This suggests that the query likelihood measure may actually be

giving a completely different ranking from the Odds Ratio.

At this early level of recall the evidence for the A1 hypothesis appears contradictory.

However, when we examined the correlation at 100 documents, then the correlations

were generally all positive for the majority of queries. The proportion of queries for

which the two measures correlated is about 50% at 100 documents. Assuming that this

is a reasonable point to capture whether Assumption One holds, then is difficult to as-

certain whether the correlation of Assumption One actually holds or not. The intuition

of the assumed correlation is certainly appealing, because of the model’s empirical

success (i.e the model returns lots of relevant documents at the top of the ranked list

- hence there must be a correlation). However, saying that there is a correlation with

relevance may just be a convenient way of ignoring any focus on relevance, whilst still

obtaining operational effectiveness. For instance, the documents may not be ordered

in decreasing likelihood of relevance, but by similarity (or some other relationship) to

the query.

The times that A1 failed to hold, may be because A3 is violated. For instance, if the

user submits poor query terms that do not appear in, or discriminate relevant documents

from non relevant documents, then we would not expect that the measures would be

correlated. We explore this further when analyzing Assumption Three in Subsection
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5.4.3.

5.4.2 Assumption Two

Figures 5.4, 5.5 and 5.6 show the changes in the mean predictive likelihood and re-

trieval performance with respect to the parameter values. In each of these graphs, the

square indicate the mean predictive likelihood of the document models with the cor-

responding value on the left axis, while the diamonds indicate the precision measures

(either mAP or p@30docs) with the values shown on the right axis. The horizontal

axis denotes the value of the smoothing parameter (shown in log scale for LP and BS

document models).

The most striking result from these Figures is that each of the smoothing methods tend

to produce a distinctive curve for their mean predictive likelihood. The LP method

peaks at low values of α then steadily decreases (as α increases). The JM method

tends to produce a dome shape that peaks around the λ = 0.5 (the standard value used

in many papers), and the BS method increases dramatically before reaching a turning

point and steadily subsides. On the other hand, in the somewhat erratic retrieval perfor-

mance for each method, there were signs, of a systematic relationship with the mean

predictive likelihood. This recurring pattern of behavior meant that the best retrieval

performance was often obtained when more smoothing was applied, despite the fact

that this degraded the mean predictive likelihood (this degradation in the data model is

often referred to as over fitting. In Chapter 6 we provide an example of extreme over

fitting in Section 6.1.3.1).

These findings appear to be quite consistent regardless of the retrieval performance

measure, mAP and p@30docs. Since the graphs tended to be very similar between

collections, we only show those for the different types of data collections instead of all

of them. However, these are representative of the results that we obtained throughout

the course of this study.

Tables 5.4, 5.5 and 5.6 show the statistics for the BRM and the BDMs and report

any significant differences between the IR performance (mAP and p@30docs). In
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Figure 5.4: The change in measures for Laplace Smoothed Document Models. Top to

Bottom: CACM, AP, WSJ and WT2g. Right: mPL vs mAP Left: mPL vs p@30docs.

In most graphs there is a mismatch between the maximum mPL and maximum mAP,

though for the AP collection measured with p@30docs exhibits unification of the BRM

and BDM.
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Collection Point α mPL mAP (p@30 Docs)

BRM 0.05 -7.5908 48.69c (39.00)

MED BDM 0.01 (0.05) -7.2956 (-7.5908) 48.63 (39.00)
ˆBDM 0.0087 -7.2613 48.44 (39.66ab)

BRM 0.5 -8.2385 23.58bc (15.51bc)

CACM BDM 0.001 -6.8446 21.18 (14.17)
ˆBDM 0.0051 -6.6281 22.44b (15.06b)

BRM 0.5 (1) -7.0211(-7.3527) 13.80bc (18.25bc)

CISI BDM 0.05 -6.0988 12.57c (16.62c)
ˆBDM 0.0148 5.9521 11.04 (14.96)

BRM 0.1 -10.6103 23.47bc (34.07bc)

AP BDM 0.001 -9.1046 22.26c (32.90c)
ˆBDM 0.0011 -9.0986 22.30 (32.93)

BRM 0.01 -9.4434 22.13bc (33.20bc)

WSJ BDM 0.001 -8.916 21.20c (31.5c)
ˆBDM 0.00099 -8.8905 15.28 (25.13)

BRM 0.001(0.0001) -9.9212 (-9.5734) 14.90 (19.73)

WT2g BDM 0.0001 -9.5734 14.1539 (19.73)
ˆBDM 0.00020662 -9.5431 14.62(20.13)

Table 5.4: The statistics for the best data models and best retrieval models for each

collection when employing the LP document models. The BRM gives significantly better

retrieval performance on all collections except WT2g, where the a, b and c denotes the

setting was significantly different to the BRM, BDM and ˆBDM, respectively.
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Figure 5.5: The change in measures for Jelinek Mercer Smoothed Document Mod-

els. Top to Bottom: CACM, AP, WSJ and WT2g. Right: mPL vs mAP Left: mPL vs

p@30docs.
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Collection Point λ mPL mAP (p@30 Docs )

BRM 0.6 (0.8) -6.7196 (-6.8354 ) 52.10 (42.44)

MED BDM 0.6 -6.7196 52.14 (41.89)
ˆBDM 0.5654 -6.6765 52.06 (41.78)

BRM 0.9 (0.8) -5.926 (-5.7448) 29.44 (19.04)

CACM BDM 0.6 -5.6302 28.45 (18.53)
ˆBDM 0.5529 -5.5973 28.32 (18.53)

BRM 0.1 (0.01) -5.9927 (-6.93) 14.38 (17.85)

CISI BDM 0.5 -5.519 14.08 (17.76)
ˆBDM 0.54199 -5.5094 14.06 (17.85)

BRM 0.7 (0.6) -7.3252 (-7.288) 24.9533 (34.00)

AP BDM 0.5 -7.288 24.6993 (34.00)
ˆBDM 0.54924 -7.2658 24.8302 (34.03)

BRM 0.5 (0.3) -6.9408 (-7.0595) 24.00 (32.20)

WSJ BDM 0.6 -6.9372 23.92 (32.10)
ˆBDM 0.556 -6.9065 24.02 (32.00)

BRM 0.4 (0.5) -7.3643(-7.3481) 21.22 (25.27)

WT2g BDM 0.5 -7.3481 21.03 (25.27)
ˆBDM 0.48907 -7.286 21.07 (25.27)

Table 5.5: The statistics for the best data models and best retrieval models for each

collection when employing the JM document models. Notice that the estimated BDMs

are not significantly different from the corresponding BRMs in terms of retrieval perfor-

mance.
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these Tables the values for p@30 docs are shown in brackets, with the corresponding

parameter values if different from the those for the mean Average Precision. The letters

after the mAP (and p@30docs) values indicate whether the value was significantly

different from the other values (using the sign test at 5% significance), a denotes that

it was better than BRM, b better than BDM and c better than ˆBDM.

The standard error of the predictive likelihood is not shown in the Tables, but for the

smaller collections it varied from 0.01 to 0.02 and the larger TREC collections, from

0.001 to 0.002. This was regardless of the document language model, but proportion

to the document collection size, as more samples (documents) will decrease the stan-

dard error. When we compared the mean predictive likelihood of each model, using

a Wilcoxon Ranksum Test, we found that they were significantly different at 5% sig-

nificance level, unless the model parameter was the same. Hence, the mean predictive

likelihood of the BDMs were consistently and significantly different to mean predictive

likelihood of the BRMs, for each collection and document model.

The results from our experiments, analyzing the relationship between the mean predic-

tive Likelihood and the mean Average Precision (and p@30docs) indicate that for the

LP and BS models that a mismatch between the the BDM and BRM existed. This mis-

match translated into a significant difference in mean Average Precision and p@30docs

between the BDM and BRM on most of the collections.

For JM the mismatch between the BRM and the BDM was not significant with the best

parameter value λ≈ 0.5 obtaining the best performance. Figure 5.7 shows some exam-

ples of the empirical distribution of the λd parameter, where the distribution is clearly

centred around the 0.5 value. This is a typical value suggested by previous research.

However, the difference being we arrived at this conclusion from the assumptions of

the Language Model, instead of requiring queries and corresponding relevance judge-

ments.

So far only the JM model has performed as expected given the second assumption. The

LP and BS models require over fitting of data model to obtain the best IR performance

and hence a mismatch between the data and retrieval models. This suggests that the

JM is a better document model to employ for ad hoc text retrieval.
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Figure 5.6: The change in measures for Bayes Smoothed document models. Top to

Bottom: CACM, AP, WSJ and WT2g. Right: mPL vs mAP Left: mPL vs p@30docs.

Notice the pronounced divergence between the best BRM and best BDM indicating a

lack of unification.



Chapter 5. Assumptions of Language Modeling 127

Collection Point β Log Likelihood mAP(p@30 Docs)

BRM 300 (200) -6.8426 (-6.7766) 51.21 (41.89)

MED BDM 100 -6.7235 49.81 (40.67)
ˆBDM 103.38 -6.6844 49.95b (41.33b)

BRM 1000 -6.0363 30.98bc (19.30bc)

CACM BDM 100 -5.6208 24.02c (17.37c)
ˆBDM 82.03 -5.6001 23.5164 (16.99)

BRM 3000 (2000) -5.96 (-5.8609) 12.83bc (17.50bc)

CISI BDM 200 -5.5398 10.69 (15.00)
ˆBDM 228.54 -5.5108 10.87b (15.16b)

BRM 2000 (500) -7.46 (-7.34) 27.06 (36.4c)

AP BDM 500 -7.3436 26.44c (36.4c)
ˆBDM 279.02 -7.29 25.85 (35.67)

BRM 2000 -7.2923 27.51bc (37.73bc)

WSJ BDM 100 -7.0244 23.77 (33.17)
ˆBDM 371.6 -6.9245 26.37b (35.47b))

BRM 5000 (3000) -8.0093 (-7.8719) 26.24bc (29.00bc)

WT2g BDM 100 -7.4301 17.71 (23.73)
ˆBDM 219.55 -7.3111 20.70b(25.47b )

Table 5.6: The statistics for the best data models and best retrieval models for each col-

lection when employing the BS document models. Notice the pronounced divergence

between the BRM and BDM, and consequently lack of unification.
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Figure 5.7: The distribution of model parameters values that maximized each document

model’s predictive likelihood. Left: AP Right: WSJ Top to Bottom: LP, JM and BS.
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When we compared the BDMs of each document model against each other (See Table

5.7) the results show that the JM document models consistently outperform LP and BS

in terms of model likelihood (and this was significantly different). But in terms of mAP

the JM model was the best for the abstract collections and the web collection. The BS

model, despite having a lower mean predictive likelihood than JM, outperformed the

JM in terms of mAP. This is a very interesting result, and somewhat contrary to popular

belief (i.e it is typically thought that Bayes Smoothing is a better estimator), and indeed

the assumptions of the Language Modeling approach. Typically, it has been assumed

that if a generative probabilistic model can increase the predictive likelihood of the data

then the performance will improve. For instance, it is claimed that LDA increases the

predictive likelihood over Naive Bayes and PLSA, but does that necessarily translate

into better clustering or retrieval performance? Similar anomalies have appeared in

speech recognition literature where the a higher model likelihood has not translated

into lower word error rates[123]. This illustrates the problem with using a surrogate

measure as an indicate of the actual performance.

Zhai and Lafferty[162] suggest that BS document model is the best document modeling

technique. From a retrieval standpoint the BS model appears to be able to offer more

in terms of IR performance as it contains an implicit document length normalization

component. However, according to the model likelihood, this does not appear to be

the case. Also, the best IR performance can only be obtained when the parameters are

empirically set (i.e performing an exhaustive search over the parameter space, search-

ing for the β value that gives the best mAP). From the graphs in Figure 5.6 we can

see that over fitting the data model for the BS tends to achieve the best performance.

These discrepancies could be a results of several factors, the need for document length

normalization on the larger collections (with documents of varying sizes), variations

in the query (length of query and importance of terms), or some other factor.

The two stage model was empirically motivated from discrepancies in performance

when queries of different length were used[163]. To examine whether the mismatch

was a result of not accounting for the query variations we performed some further

experiments. First, we selected the collections where there was a significant difference

in mAP between the BRM and ˆBDM for the BS models. These were CACM, CISI,
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Collection Method mPL mAP Recall

JM -6.6765* 52.06* 695/696

MED BS -6.6844 49.95 695/696

LP -7.2613 48.44 695/696

JM -5.5973* 28.32* 720*/796

CACM BS -5.6001 23.52 603/796

LP -6.6281 22.44 647/796

JM -5.5094* 14.06* 2834*/3114

CISI BS -5.5108 10.87 2536/3114

LP -5.9521 11.04 2635/3114

JM -7.2658* 24.83 6329/9738

AP8889 BS -7.2872 25.85* 6319/9738

LP -9.0986 22.30 5887/9738

JM -6.9065* 24.02 5367/8469

WSJ BS -6.9245 26.37* 5420*/8469

LP -8.8905 15.28 4578/8469

JM -7.2860* 21.42* 1789*/2279

WT2g BS -7.3111 20.70 1709/2279

LP -9.5431 14.62 1361/2279

Table 5.7: The performance statistics for Assumption Two given the BDM of each doc-

ument model, and for each data collection. The best result is denoted as significantly

different to the others by an Asterisk after the value.
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Stage mAP p@30docs

CACM BRM 27.78c 18.85c

BRM+SS 30.72cd 18.78

BDM 23.52 16.99

BDM+SS 27.36c 18.78c

CISI BRM 12.83cd 15.48

BRM+SS 12.93cd 17.81

BDM 10.87 15.18

BDM+SS 12.13c 16.23ca

WSJ BRM 27.51cd 37.03c

BRM+SS 27.48cd 37.73cd

BDM 26.37 35.50

BDM+SS 26.35c 35.47

WT2g BRM 26.24cd 29.00cd

BRM+SS 26.34cd 28.07d

BDM 20.70 25.47

BDM+SS 21.66c 25.60

Table 5.8: Results of the Addition of the Second Stage to BS document models. Within

each data collection a, b, c and d denotes whether this run was statistically significance

over the first, second, third and fourth run, respectively.

WSJ and WT2g. The second stage of smoothing was applied (See Equation 3.39). The

query model parameter was estimated using the EM algorithm defined in Chapter 3

Section 3.5.4 and the number of EM steps was set to the recommended 10 steps[163].

To denote the use of the second stage (+SS) is added to the base models (BRM and
ˆBDM). Table 5.8 shows the results from applying the second stage.

While the second stage of smoothing appears to ameliorate the mAP of the ˆBDM, it

still does not out perform the BRM+SS, or BRM. Interestingly, the influence of the

second stage does not significantly increase performance for the BRM but does so

consistently and significantly for the ˆBDM. It appears that over fitting the data model

for BS (and so applying a greater amount document length normalization) is more
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effective than trying to account for the query variation. However, a significant increase

in mAP only occurs when the second stage is applied to the ˆBDM. If we consider that

the ˆBDM requires more smoothing to achieve the same results as the BRM, then the

second stage accounts for some of this difference. The BRM, however, is smoothed

sufficiently, and this second stage is not really that appropriate anymore as the extra

stage smoothing may even begin to degrade the IR performance (as is the case with

CACM and WT2g).

5.4.3 Assumption Three

Table 5.9 reports the proportion of relevant documents which are significantly different

to the distribution of query likelihoods given non relevant documents. The different

significance levels are 0.001 0.01 0.5 0.1 and 0.25 corresponding to 0.1%, 1%, 5%,

10% and 25% of the non-relevant documents in the top 1000, respectively. The values

reported in brackets at each significance level is the number of queries where the pro-

portion of relevant documents was greater than a half. Note that this proportion was

calculated based on the total number of relevant documents with the top 1000 for each

query and not on the total number of relevant documents for that query.

The number of queries which returned over half the proportion of relevant documents

was generally very small at the lowest significance levels (0.1% and 1%). It is not until

we are willing to see approximately 10% to 25% of the non relevant documents before

we obtain half the relevant documents (in this case about 100 to 250 non relevant

documents will be amongst the relevant documents. If we are willing to accept that the

query is sufficiently discriminative if it returns more than half the relevant documents

in the top 10 percent of non relevant documents, then Assumption Three holds for 30

to 40 percent of all queries. However, on many data collections this can be somewhat

lower. For instance on the CISI collection it is not until we are willing to accept

about 25% of the non relevant document that we obtain half the number of relevant

documents.

As we have previously mentioned Assumption One and Assumption Three appear to
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Collection Model 0.001 (0.1%) 0.01 (1%) 0.05 (5%) 0.1 (10%) 0.25 (25%)

LP 0.17 (1) 0.31 (5) 0.48 (14) 0.59 (20) 0.77 (26)

MED JM 0.21 (3) 0.31 (9) 0.51 (15) 0.62 (20) 0.74 (26)

BS 0.19 (2) 0.34 (10) 0.57 (18) 0.67 (23) 0.79 (28)

LP 0.11 (2) 0.19 (3) 0.35 (11) 0.49 (18) 0.67 (34)

CACM JM 0.10 (2) 0.23 (6) 0.46 (20) 0.59 (35) 0.75 (45)

BS 0.13 (2) 0.25 (4) 0.44 (18) 0.54 (27) 0.69 (43)

LP 0.02 (0) 0.07 (0) 0.19 (3) 0.28 (9) 0.47 (28)

CISI JM 0.02 (0) 0.08 (0) 0.21 (3) 0.31 (12) 0.53 (47)

BS 0.03 (0) 0.08 (1) 0.19 (4) 0.27 (6) 0.43 (22)

LP 0.07 (2) 0.16 (8) 0.32 (24) 0.44 (36) 0.64 (72)

AP JM 0.06 (2) 0.15 (7) 0.30 (27) 0.42 (44) 0.64 (82)

BS 0.07 (3) 0.17 (8) 0.34 (31) 0.46 (47) 0.67 (79)

LP 0.05 (0) 0.09 (0) 0.22 (8) 0.31 (16) 0.49 (44)

WSJ JM 0.05 (0) 0.15 (4) 0.34 (25) 0.46 (40) 0.66 (78)

BS 0.08 (0) 0.18 (7) 0.38 (30) 0.51 (52) 0.69 (82)

LP 0.07 (0) 0.16 (3) 0.33 (9) 0.43 (13) 0.65 (39)

WT2g JM 0.06 (0) 0.16 (2) 0.36 (11) 0.50 (27) 0.69 (41)

BS 0.08 (0) 0.20 (5) 0.41 (19) 0.55 (30) 0.73 (45)

Table 5.9: A3: The proportion of queries which showed sufficient discrimination at the

various levels of significance. As the level of significance decreases, the proportion of

queries that sufficiently discriminate increases.
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be dependent. (i.e, if the query terms used are good at discriminating relevant from

non-relevant, then we would expect a strong correlation between the Odds Ratio and

the query likelihood, and possibly vice versa.) To investigate this dependency we

believed that issuing queries which were consistent with the Third Assumption, would

illuminate the dependency with Assumption One.

5.4.3.1 Ideal Queries

To test the dependency, follow up experiments were undertaken where we used ‘ideal’

queries. ‘Ideal’ queries are queries which have been generated in accordance with

the third assumption of the Language Modeling approach. Hence, the ideal query is

generated from the ideal documents (the relevant documents). ‘Ideal’ queries were

generated by taking all the relevant documents associated with the original query and

assuming that this was the ‘ideal’ document (or set of) which the user has envisioned.

We then employed two different methods for generating queries from the set of rele-

vant documents, with respect to A3.2 (i.e. general terms) and A3.1 (i.e discriminative

terms):

Q1 We selected the top ten most frequent terms in the set of relevant documents,

and;

Q2 We selected the top ten terms which were the most discriminative terms (as de-

fined by Equation 3.57). Terms that appeared less then 5 times in the set of

relevant documents were excluded, so not to include terms that were too specific

(and occurring in too few relevant documents).

Table 5.10 gives some examples of the ideal queries. The first method (Q1) does not

account for how discriminative the terms are, just how popular they are. Remember, we

have excluded stop words from our data collections, so we are not just issuing a set of

stop words as a query, just very frequently occurring terms in relevant documents. The

queries generated by Q1 bear much resemblance to the original queries (Q0) posed.

The second method, assumes that the user has more knowledge of the collection and

can select terms which can discriminate relevant from non relevant. These queries
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appear less intuitive and more specific than Q1, as they contain specific entities (names

of people, components, companies, places, and even part numbers) which were directly

related to the information need (i.e the missiles, the terrorists, and the hackers.)

We generated queries for the AP, WSJ and WT2g collections and then re-assessed

Assumption One and Three using the JM and BS document models. The parameter

values for JM and BS were set to that which obtained the ˆBDM.

Table 5.12, Table 5.13 and Table 5.11 contain the results for Assumption One, As-

sumption Three and the corresponding performance scores, for each of the different

query types (Q0, Q1 and Q2).

The most striking result is that the mAP and p@30 for Q1 queries is significantly

higher than the original Q0 and ideal Q2 queries on the AP and WSJ. This was quite

a surprising result because we would have expected that Q2 queries would have per-

formed the best as they were generated in a manner consistent with the Third Assump-

tion using more information about the terms to select. The Q1 queries seem more

reasonable in that a user could possibly formulate such queries. Here less specific

and intimate information about the relevant documents and the terms within them is

assumed. Issuing such queries improves the correlation in Assumption One, but still

only holding about half the time (and this is despite the sizable increase in IR perfor-

mance).

On the other hand, for Q2 queries the early precision p@0% was the highest (almost

100 percent) suggesting that relevant documents were almost always returned at the

top. From Table 5.13, we can see that Q2 has a lower recall of relevant documents,

suggesting that the query terms were perhaps too specific, only in a few of the relevant

documents. This meant that the terms used gave too much discrimination to return the

majority of relevant documents, only those specific documents which contained those

query terms. Nonetheless, issuing Q2 queries increases the correlation of Assumption

One at 30 and 100 documents, holding for about three out of every four queries. It

would appear that issuing queries which contain the query terms that discriminate rel-

evant from non relevant tended to produce a ranking more correlated with the Odds

Ratio. However, since the terms are very specific the recall is adversely affected and



Chapter 5. Assumptions of Language Modeling 136

Topic Type Query/Query Terms

101 Title Design of the ‘Star Wars’ Anti-missile Defence System

Q0 design star war anti missil defens system

Q1 year war star defens missil billion

test program space base

Q2 pbfa npb r2p2 sbi schriber otten

rocketdyn interceptor monahan abrahamson

119 Title Action Against International Terrorists

Q0 action intern terrorist

Q1 state unit year terrorist offici

nation report govern attack peopl

Q2 vigneron khaidir overholt zehdi khadar

zozad terwillig terzi sidra kikumura

190 Title Instances of Fraud Involving the Use of a Computer

Q0 instanc fraud involv comput

Q1 comput year hacker charg govern

state system compani million code

Q2 dicicco mitnick landreth pfaelzer zinn

doucett ingraham newsham huse flori

Table 5.10: Some examples of ‘ideal’ queries executed on the AP collection. Query

terms are shown as their stemmed form. The Q1 queries appear more intuitive than the

Q3 queries which would seem to require much more intimate knowledge of the terms

in the collection.
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Collection Model Query mAP p@0% p@30docs Recall

AP BS Q0 25.85 68.33 35.67 6271

Q1 39.49 85.39 48.60 7499

Q2 29.60 97.51 46.67 2830

JM Q0 24.84 67.68 34.03 6284

Q1 38.41 80.06 46.60 7509

Q2 32.85 98.23 50.07 3524

WSJ JM Q0 24.06 64.54 32.00 5330

Q1 29.94 66.67 35.33 5363

Q2 29.21 95.89 42.6 2468

BS Q0 26.37 68.90 35.47 6367

Q1 31.59 74.50 38.00 6377

Q2 25.16 93.18 37.23 1907

WT2g JM Q0 21.41 63.5 25.47 1789

Q1 25.582 91.25 30.27 1426

Q2 24.06 98.79 27.27 523

BS Q0 20.70 68.84 25.47 1709

Q1 18.44 81.86 22.26 1054

Q2 9.03 83.5 11.07 176

Table 5.11: The IR performance when using the different query types on AP8889 and

WSJ for JM and BS document models. Notice that for Q1 queries high mAP and Recall

is obtained, whilst for the Q3 queries a high p@0% is obtained but the very poor recall

lowers the mAP.



Chapter 5. Assumptions of Language Modeling 138

Collection Model Type Pos Pos Pos Neg Neg Neg

@30 @100 @1000 @30 @100 @1000

AP JM Q0 0.16 0.55 0.98 0 0 0

Q1 0.21 0.68 0.98 0 0 0

Q2 0.63 0.79 0.46 0 0 0

BS Q0 0.25 0.64 0.93 0 0 0

Q1 0.46 0.86 0.99 0 0 0

Q2 0.61 0.89 0.97 0 0 0

WSJ JM Q0 0.07 0.45 0.93 0 0 0

Q1 0.16 0.50 0.96 0 0 0

Q2 0.62 0.77 0.38 0 0 0

BS Q0 0.31 0.63 0.91 0 0 0

Q1 0.28 0.79 0.98 0 0 0

Q2 0.53 0.92 0.91 0 0 0

WT2g JM Q0 0.22 0.46 0.92 0 0 0

Q1 0.56 0.88 0.98 0 0 0

Q2 0.34 0.22 0.02 0 0 0

BS Q0 0.32 0.52 0.84 0 0 0

Q1 0.60 0.92 0.98 0 0 0

Q2 0.16 0.08 0 0 0 0

Table 5.12: The proportion of positive and negative correlations between the Odds

Ratio and the Query Likelihood at Recall of 30, 100 and 1000 documents, for each

TREC collection using original and ideal queries. Notice the increasing proportion of

correlations as the number of documents increased, except for the Q2 queries which

degrades.
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Col. Model Type 0.001 (0.1%) 0.01(1%) 0.05 (5%) 0.1 (10%) 0.25 (25%)

AP JM Q0 0.06 (2) 0.15 (7) 0.30 (27) 0.42 (44) 0.64 (82)

Q1 0.08 (3) 0.19 (22) 0.41 (50) 0.54 (65) 0.72 (94)

Q2 0.23 (22) 0.28 (29) 0.41 (44) 0.47 (59) 0.63 (84)

BS Q0 0.07 (3) 0.17 (8) 0.34 (31) 0.46 (47) 0.67 (79)

Q1 0.09 (5) 0.21 (22) 0.43 (51) 0.56 (68) 0.74 (94)

Q2 0.25 (21) 0.30 (28) 0.43 (47) 0.52 (61) 0.70 (85)

WSJ JM Q0 0.05 (0) 0.15 (4) 0.34 (25) 0.46 (40) 0.66 (78)

Q1 0.07 (3) 0.19 (16) 0.40 (41) 0.52 (62) 0.70 (82)

Q2 0.26 (24) 0.32 (31) 0.46 (52) 0.52 (65) 0.65 (84)

BS Q0 0.08 (0) 0.18 (7) 0.38 (30) 0.51 (52) 0.69 (82)

Q1 0.09 (3) 0.21 (16) 0.42 (41) 0.55 (67) 0.72 (85)

Q2 0.25 (16) 0.30 (22) 0.44 (48) 0.52 (57) 0.68 (83)

WT2g JM Q0 0.06 (0) 0.16 (2) 0.36 (11) 0.50 (27) 0.69 (41)

Q1 0.10 (2) 0.24 (10) 0.42 (21) 0.53 (30) 0.66 (38)

Q2 0.62 (33) 0.63 (34) 0.69 (36) 0.73 (42) 0.81 (46)

BS Q0 0.08 (0) 0.20 (5) 0.41 (19) 0.55 (30) 0.73 (45)

Q1 0.11 (10) 0.24 (16) 0.42 (22) 0.53 (29) 0.63 (36)

Q2 0.68 (38) 0.68 (38) 0.71 (39) 0.72 (40) 0.81 (42)

Table 5.13: A3 for perfect queries: The proportion of relevant documents and number of

queries shown in brackets which showed sufficient discrimination at the various levels

of significance.
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the correlation at 1000 documents deteriorated.

These results suggest that there are two distinct querying approaches, a recall oriented

strategy and a precision oriented strategy. The former requires that the user issue key

terms that would frequently occur in the set of relevant documents. The latter requires

the user to issue key terms which are distinct and highly discriminative, which will

bring back a specific subset of relevant documents. This leads to an interesting insight;

if the query terms are highly discriminative then the early documents are very likely to

be relevant (and would make an ideal source for pseudo relevance feedback). However,

to improve recall, the more frequent terms of pseudo relevant documents should be

issued.

Another possibility is that ranking by the query likelihood actually provides a different

ranking of documents than the Odds Ratio. While it still returns relevant document

at early levels of recall, the ranking is not consistent with the Odds Ratio, hence the

ordering is not going to adhere to the PRP. There are occasions (for specific queries)

when a query biased view of the collection is presented, which does not correlate with

the Odds Ratio, but still provides sufficient discrimination.

Table 5.14 shows the number of queries which uphold Assumption One and Assump-

tion Three (or not). The correlation in Assumption One was computed at 100 doc-

uments and the sufficient discrimination in Assumption Three was quantified at sig-

nificance level of 10% where at least half the relevant documents need to have been

retrieved. The last four columns in the Table 5.14 represent when both assumptions

hold (A1* and A3*), when only either assumptions holds, or when neither assumption

holds.

When Q1 and Q2 were used the number of times both assumptions succeeded in-

creased, Q2 type queries increasing more, while the number of complete failures (i.e

both assumption One and Two failing) decreased. Interestingly, there were hardly any

occasions when Assumption Three held, and Assumption One did not. This suggests

that when Assumption Three holds, then the ranking is more likely to be equivalent to

the Odds Ratio.
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Collection Model Type A1* A3* A1* Only A3* Only Neither

AP LP Q0 18 40 6 36

JM Q0 17 38 10 35

Q1 46 (+29) 22 (-16) 4 (-6) 28 (-7)

Q2 35 (+18) 44 (+6) 9 (-1) 12 (-23)

BS Q0 24 40 7 29

Q1 50 (+26) 36 (-4) 1 (-6) 13 (-16)

Q2 46 (+22) 43 (+3) 1 (-6) 10 (-19)

WSJ LP Q0 8 59 0 33

JM Q0 20 25 5 50

Q1 33 (+13) 17 (-8) 8 (+3) 42 (-8)

Q2 37 (+17) 40 (+15) 15 (+10) 8 (-42)

BS Q0 23 40 7 30

Q1 39 (+16) 40 (+0) 2 (-5) 19 (-11)

Q2 47 (+24) 45 (+5) 1 (-6) 7 (-23)

WT2g LP Q0 7 14 2 27

JM Q0 6 17 5 22

Q1 19 (+11) 3 (-14) 3 (-4) 25 (+3)

Q2 3 (-3) 8 (-9) 33 (+28) 6 (-8)

BS Q0 12 14 7 17

Q1 18 (+6) 8 (-6) 2 (-5) 22 (+5)

Q2 2 (-10) 2 (-12) 37 (+30) 9 (-8)

Table 5.14: The relationship between A1 and A3. The ideal queries tend to increase the

number of times when A1 holds and A3 hold and decrease the number of times when

the neither A1 or A3 holds.
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Overall the number of times Assumption One held for the ideal queries increased,

regardless of whether Assumption Three held (i.e the addition of columns 4 and 5 in

Table 5.14) over the initial queries. Hence, the ideal queries produced rankings that

were more inline with the Odd’s Ratio, however the discrimination between relevant

and non-relevant was not as high as expected. This would depend on how the sufficient

discrimination in A3 is quantified, though.

To a large extent the quality and style of the query affected whether the Assumptions

hold. The impoverished initial queries (Q0) resulted in many more complete failures

of A1 and A3 than the ideal queries. Suggesting that if better queries are formed, then

better retrieval performance should follow.

5.5 Summary of Findings

Whilst our analysis of the underlying assumptions of Language Modeling raises more

questions than it answers, it nonetheless provides some interesting and valuable in-

sights into the retrieval model (and its basis).

A1 The Correlation between the query likelihood and relevance of a document ap-

pears to hold when the queries are well formed. That is, when consistent with the

Third Assumption. Otherwise the query likelihood will not be correlated with

the relevance of a document. The correlation tends to strengthen as the number

of documents seen increases. However, this is of limited utility because the cor-

relation is strengthened by the influx of non relevant documents with low query

likelihoods and low relevance scores.

A2 The unification of the data and retrieval models holds reasonably well for JM,

but breaks down for LP and BS. When the breakdown occurs on the LP and

BS document models it usually results in a significant difference in terms of IR

performance. Whilst the mean predictive likelihood provides an unsupervised

and principled means to estimate the parameters of the document models, it may

result in sub optimal retrieval. Possibly, if we used more sophisticated docu-
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ment modeling techniques[160, 61, 12] or techniques that use context[5] are

employed then perhaps better representations of the underlying data could be

obtained which deliver better IR performance.

A3 The quality and type of queries issued will dictate the success of the language

model. If a user issues terms that commonly occur in relevant documents then

recall can be dramatically improved. However, if the terms are too common then

the precision and recall will be seriously degraded. Conversely, if the terms is-

sued are very discriminative then this will invariably lead to high early precision

but substantially lower recall. This may be useful when performing pseudo-

relevance feedback.

To summarize, the Language Modeling approach represents an appealing paradigm

for Information Retrieval because of its intuitive behavior; that is, ranking documents

according to how likely the query came from a document. However, this requires

assumptions to be made about the notion of relevance, (because it is not explicitly

modeled). The extent to which these assumptions hold appears to be dependent on the

query and the data model.

In the next chapter, we implement our context based document models, which attempt

to improve the representation of the underlying data, with respect to the user’s un-

derstanding. This extends our work investigating Assumption Two. Does a better

representation of a document model based on the user’s context actually deliver better

IR performance?
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Context Experiments

In this chapter, we present our empirical analysis of context based document models.

The chapter is divided into three sections; In each section we employ a different type

of semantic association to define a document’s context according to the user’s under-

standing of the documents in the collection. First, we use PLSA to build context based

document models on the three abstract collections. Second, we use the topics that

users have been following to define the context and compare this against cluster based

document models on the two news collections. Third, we use the web links associated

with a web document as the context of the document on the WT2g collection. The

evaluations performed within this Chapter are presented with respect to the Second

Assumption and its implication for retrieval performance, that is, a better generative

document model will entail better retrieval performance.

6.1 Induced Associations

In this section, we present our work on context based document models that are defined

by inducing a topical structure from the corpus of documents. This was achieved by

using Probabilistic Latent Semantic Analysis[61] as defined in Chapter 4.4.2. While

PLSA is actually a machine learning algorithm, it has been hailed for its ability to

induce latent factors which are interpretable by humans. That is, the terms that are

144
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highly associated with a particular latent factor are topically related; and resemble the

terms that a user would associate with that topic. Each document is then described

as a combination of these latent factors. We believe it is reasonable to accept that

these latent factor can be substituted for topics that capture the user’s understanding

of the collection. Further, that these can be used to define the semantic association

between documents, through their topical associations. As we have already mentioned

PLSA has already been used for ad hoc Information Retrieval making similar such

assumptions. Our evaluation is essentially a replication of this past work, but with

several key differences which we shall detail later in this section.

Given the PLSA model defined in Equation 4.17 where a topic is represented as the

latent variable z, then the context parameters for the context model can be defined as

ΘZ = {p(t|z), p(z|d)}. Therefore, the context for a particular document is defined as:

pd(t|ΘZ) = ∑
z

p(t|z)p(z|d) (6.1)

A context background model pd(t|θZ) is constructed by substituting pd(t|ΘZ) into

Equation 4.2 for pd(t|ΘZ), which applies a proportion π of smoothing with the back-

ground collection model.

The context based document model is then created by using the general form (Jelinek-

Mercer) and Bayes smoothed document models shown in Equation 4.3 and Equation

4.4, respectively. Where the former shall be referred to as JM-PLSA and the later BS-

PLSA. For the general form (Jelinek Mercer), the complete estimation of the document

model is:

pd(t|θZ
d ) = (1−λ)

n(t,d)
n(d)

+λ

(
(1−π)

(
∑
z

p(t|z)p(z|d)

)
+πp(t|θC)

)
(6.2)

The parameters that are required to be estimated are λ,π, p(t|z) and p(z|d). The later

two are estimated given the outlined procedure in Section 4.4.2, where the former are

estimated according to the average Leave One Out Log Likelihood. To obtain the

Bayes Smoothed form, λ is replaced by β

n(d)+β
. The following subsections detail our
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empirical analysis of the context based document models using the induced associa-

tions derived from the PLSA model.

6.1.1 Experimental Settings

Due to the computation expense involved in applying the estimation procedure for

PLSA we restricted our analysis to the three smaller abstract collections (MED, CACM,

CISI)1. The details of these collections can be found in Section 5.3.1 and collection

statistics in Table 5.1.

The baseline document models used were Jelinek Mercer (JM) Smoothing (see Equa-

tion 3.25) and Bayes Smoothing (BS) (see Equation 3.32). These were then compared

against the PLSA-JM and PLSA-BS document models. The set of parameter values

for the corresponding parameters used are given in Table 5.2. For the PLSA document

models, the set of parameter values used for π were { 0.1, 0.2, 0.3, . . . , 0.9}, and the

number of topics |Z| were { 16, 32, 64, 128}. Whilst, the number of topics could be

any positive integer value greater than or equal to one, these values were selected based

on the prior research in [61]. In fact, it is still an open problem as to how to select the

optimal number of topics that maximizes the retrieval performance. However, accord-

ing to Assumption Two, the data model that provides the best representation of the

underlying data should also provide the best retrieval performance. Hence, under our

approach to context based document modeling, we should be able to select the number

of latent topics according to mPL of the document models when generated using dif-

ferent numbers of latent topics (i.e select the number of latent topics that maximized

the mPL).

6.1.1.1 Estimation Details

The procedure for estimating the PLSA context based document models is slightly

different to that prescribed in our earlier chapter. We have used the PENN-ASPECT

1These data sets were used in the original studies[61, 60].
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Implementation within the LEMUR Toolkit2. This implementation of PLSA estimates

the p(t|z) and p(z|d) by maximizing the log likelihood of the PLSA model on a held

out sample of data (see Section 4.4.2). This is not particularly different from the leave-

one-out log likelihood (i.e. mPL) except instead of only leaving one out at a time, a

percentage of the document is extracted and used as the held out sample. This approach

drastically reduces the amount of computational expense required (i.e one PLSA model

is estimated given the training data, and then tested, as opposed to one PLSA model is

estimated per term in the document, and then each model is tested). However, it is gen-

erally considered more thorough to use the leave one out method, but computationally

expensive.

The PLSA model was estimated using the Tempered EM algorithm defined in Section

4.4.2 where γ = 0.95, the maximum number of EM steps was step to 100, and the held

out sample was ten percent of the document’s contents. Since PLSA is a non-linear

optimization up to ten different initializations were performed and the model which

reported the highest average log likelihood was selected to build the context based

document model for each |Z|.

The context obtained under PLSA is expressed as a multinomial probability distribu-

tion as a opposed to a distribution over the vocabulary of term frequencies which are

then normalized to obtain a multinomial probability distribution for a topic. Hence,

the π and λ or β parameters were then estimated by performing a two way exploration

of the parameter space |π|× |λ| or |π|× |β| and computing the average leave one out

log likelihood. The parameter values that gave the highest average leave one out log

likelihood were selected. It was a concern that several local maxima may exist in the

parameter space, however this did not appear to be the case. The contour plots, shown

in Figure 6.1, suggest that there is only one maxima in the search space. For the PLSA-

JM models this was when π = 0.9 and λ = 0.5−0.6, and for the PLSA-BS models this

was approximately π = 0.9 and β = 300− 1000. Interestingly, this was regardless of

the given collections and the various number of topics used.

With respect to Assumption Two, these points should provide the best representation

2LEMUR: Language Modeling and Retrieval Toolkit available from www.lemurproject.org.
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Left Side: PLSA-JM Right Side: PLSA-BS Top: MED Middle: CACM: Bottom: CISI. The

small plateau indicates the region of highest mPL.
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of the underlying data which takes into consideration the user’s understanding. Hence,

we first tested whether a better representation over the standard language models were

obtained, and then compared the IR performance. Then we considered whether better

retrieval performance could be obtained elsewhere in the parameter space.

6.1.2 Results

In Tables 6.1, 6.2 and 6.3 we report the results comparing the standard versus the

context based models by providing statistics on the mPL, mAP, Precision at ten percent

Recall (p@10%), the p@30 docs and the total number of relevant documents retrieved.

The standard models (JM and BS) were selected according to the best data model.

Whilst we report for the PLSA models, we show the performance for each number of

topics, and when the context parameter π is set to 0.5 (i.e half from the document’s

context and half from the collection background model) or when the context parameter

π = 0.9 (i.e gave the best data model). The Sign Rank test was again employed to

determine whether there was any significant difference between the baseline and the

PLSA models. Asterisks denote whether the values were statistically significant at

95% confidence.

From the Tables 6.1, 6.2 and 6.3, it can be seen that the mPL for each of the context

based document models is higher than the corresponding standard model. The differ-

ences in mPL on each occasion was significantly different using a Sign rank test (at

5% significance). Hence, by encoding the user’s understanding we were able to pro-

duce a significantly better representation of the underlying data according to the mPL.

This was for all the PLSA models over the baseline models. However, the retrieval

performance varied between collections and models.

On the MED collection a significant increase in performance was obtained by the es-

timated set of parameters using either PLSA-JM for all |Z| and PLSA-BS for |Z|= 64

and |Z| = 128. However, the best overall IR performance in terms of mAP was ob-

tained when we manually set the parameters for PLSA-JM (|Z|= 32,λ = 0.6 π = 0.5)

and PLSA-BS (|Z|= 64,β = π = 0.5) which obtained mAP of 61.75% and 61.82% re-
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Model Parameters mPL mAP p@10% p@30 Docs Recall

JM λ = 0.565 -6.6765 52.06 94.36 41.78 695/696

PLSA-JM π = 0.5 λ = 0.5 -6.4791 58.52* 93.73 47.22* 695/696

z = 16 π = 0.1 λ = 0.6 -6.3686 57.52* 84.59 45.78* 695/696

PLSA-JM π = 0.5 λ = 0.6 -6.3742 61.75* 84.73 50.00* 695/696

z = 32 π = 0.1 λ = 0.6 -6.2354 59.41* 84.23 46.89* 695/696

PLSA-JM π = 0.5 λ = 0.7 -6.3361 61.61* 90.24 50.78* 695/696

z = 64 π = 0.1 λ = 0.6 -6.1945 58.56* 84.13 46.56* 695/696

PLSA-JM π = 0.5 λ = 0.6 -6.2285 58.98* 82.39 47.89* 695/696

z = 128 π = 0.1 λ = 0.7 -6.0628 57.16* 82.11 46.33* 695/696

BS β = 100 -6.7235 49.95 94.35 41.33 695/696

PLSA-BS π = 0.5 β = 200 -6.4868 56.73* 92.29 46.22 695/696

z = 16 π = 0.1 β = 100 -6.3779 53.30 79.75 44.00 695/696

PLSA-BS π = 0.5 β = 200 -6.2852 61.06* 89.94 50.11* 695/696

z = 32 π = 0.1 β = 100 -6.1508 57.25 81.94 48.00 695/696

PLSA-BS π = 0.5 β = 300 -6.2478 61.82* 91.55 50.00* 695/696

z = 64 π = 0.1 β = 100 -6.1106 59.55* 84.85 48.89* 695/696

PLSA-BS π = 0.5 β = 100 -6.2381 58.03* 91.02 47.78* 695/696

z = 128 π = 0.1 β = 100 -6.0781 55.20* 80.97 47.44* 695/696

Table 6.1: The results for using PLSA-JM and PLSA-BS on MED. The asterisk indicates

whether there was there was a significance different between the baseline and PLSA

model.
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Model Parameters mPL mAP p@10% p@30 Docs Recall

JM λ = 0.55 -5.6302 28.315 66.6076 18.5256 720/796

PLSA-JM π = 0.1 λ = 0.8 -5.4573 29.04 69.89 18.65 718/796

z = 16 π = 0.1 λ = 0.6 -5.3546 28.21 55.21 18.59 721/796

PLSA-JM π = 0.5 λ = 0.9 -5.5105 30.26 71.66 18.97 699/796

z = 32 π = 0.1 λ = 0.6 -5.4301 28.96 54.74 18.85 723/796

PLSA-JM π = 0.1 λ = 0.9 -5.4662 29.91 70.82 18.85 727/796

z = 64 π = 0.1 λ = 0.6 -5.3845 28.72 55.30 18.65 723/796

PLSA-JM π = 0.5 λ = 0.9 -5.3953 29.83 68.28 18.78 681*/796

z = 128 π = 0.1 λ = 0.6 -5.3069 28.77 55.29 18.91 722/796

BS β = 82.03 -5.6208 23.52 64.42 16.99 603/796

PLSA-BS π = 0.5 β = 300 -5.4516 26.43* 68.33 17.56 664*/796

z = 16 π = 0.1 β = 100 -5.3498 23.81 63.92 16.22 648*/796

PLSA-BS π = 0.5 β = 1000 -5.5063 31.65* 74.75 20.00* 678*/796

z = 32 π = 0.1 β = 100 -5.4274 27.24* 68.17 18.27* 643*/796

PLSA-BS π = 0.5 β = 500 -5.4628 31.00* 73.40 19.55* 676*/796

z = 64 π = 0.1 β = 100 -5.3827 26.86* 68.02 18.01* 638*/796

PLSA-BS π = 0.5 β = 500 -5.3919 30.29* 71.61 19.55* 660*/796

z = 128 π = 0.1 β = 100 -5.3047 27.16 67.11 17.76 635*/796

Table 6.2: The performance statistics for the PLSA context based document models on

CACM collection.

spectively. Corresponding to an 18.6% and 23.8% percent increase over the respective

baselines.

On the CACM collection significantly better mAP was obtained only when using the

PLSA-BS document models. However, the estimated PLSA-BS document models

only obtained significantly better mAP over the baseline BS performance, when |Z|=
32 or 64. Though when we compared these results to the baseline JM performance

they were not significantly different. Only by manually setting the parameters could

the best mAP be obtained.

On the CISI Collection, the estimated parameter settings failed to deliver superior IR
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Model Parameters mPL mAP p@10% p@30 Docs Recall

JM λ = 0.5 -5.519 14.06 49.41 17.85 2834/3114

PLSA-JM π = 0.1 λ = 0.1 -5.309 14.51* 51.57 17.72 2871*/3114

z = 16 π = 0.1 λ = 0.6 -5.223 14.09 29.33 17.85 2830/3114

PLSA-JM π = 0.1 λ = 0.1 -5.2377 14.50* 51.72 17.81 2881*/3114

z = 32 π = 0.1 λ = 0.5 -5.1962 14.18 30.07 17.85 2865/3114

PLSA-JM π = 0.1 λ = 0.1 -5.0613 14.47* 52.33 17.81 2880*/3114

z = 64 π = 0.1 λ = 0.5 -5.0418 14.13 29.96 17.94 2854/3114

PLSA-JM π = 0.1 λ = 0.1 -5.1228 14.49* 52.30 17.85 2877*/3114

z = 128 π = 0.1 λ = 0.6 -5.0777 14.05 29.72 17.68 2843/3114

BS β = 200 -5.5398 10.87 44.87 15.16 2536/3114

PLSA-BS π = 0.1 β = 500 -5.3302 12.99 49.76* 15.53 2573/3114

z = 16 π = 0.1 β = 200 -5.245 11.50 44.96 14.91 2544/3114

PLSA-BS π = 0.5 β = 1000 -5.2586 13.17* 50.16* 17.24* 2602*/3114

z = 32 π = 0.1 β = 200 -5.2169 11.78* 46.22* 15.53 2561/3114

PLSA-BS π = 0.5 β = 1000 -5.182 12.59* 49.47* 16.80 2546/3114

z = 64 π = 0.1 β = 200 -5.0421 10.54 23.80 15.22 2521/3114

PLSA-BS π = 0.5 β = 1000 -5.1431 12.19* 48.11* 16.45 2565*/3114

z = 128 π = 0.1 β = 200 -5.0977 10.41 23.65 14.74 2527/3114

Table 6.3: The performance statistics for the PLSA context based document models on

CISI collection.
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performance (only obtaining up to 14.18% mAP when |Z|= 32, λ = 0.1 and π = 0.5).

However, manually setting the parameters obtained a statistically significant increases

given any |Z| and regardless of document model type (PLSA-JM or PLSA-BS). The

best overall performance was obtained by setting the parameter of PLSA-JM to π =

0.1, λ = 0.1 resulted in a mAP of 14.51%, and setting the parameters of PLSA-BS to

π = 0.5 β = 1000 obtained a mAP of 13.17%.

In the Figures 6.2 and 6.3, the graphs show the change in mAP and mPL given the

smoothing parameter λ or β for different values of |Z| on the MED and CACM col-

lections. The divergence between the parameter value which obtained the BDM and

BRM models using PLSA based document models was noticeably larger than for the

baseline models examined earlier (See Figures 5.5 and 5.6 for comparison).

From a different point of view, the graphs in Figure 6.4 show the change in mPL vs

mAP across the number of latent factors, |Z|. As the |Z| increased, the mPL increased

which tended to convergence. On the CACM and CISI collection there is a small drop

at |Z|= 128 though we attribute this to not performing enough randomizations or tun-

ing of the tempering parameters to enable a small increase in mPL. On the other hand

the mAP reached a maximum around |Z| = 16− 32, after which the mAP dropped.

From the mPL we would select the higher order models, however this will not en-

sure the best retrieval model is actually selected. However, there does appear to be a

systematic relationship between the mPL and mAP across the collections3.

6.1.3 Discussion

Whilst we have been able to consistently generate context based document models that

provide a better representation of the underlying than the base line document models,

according to the mPL, we have met limited success in terms of retrieval performance.

When we used the mPL criteria for model selection, the corresponding estimated pa-

rameter values, did not always deliver significantly better retrieval performance. It

was only when we manually assessed the different parameter value combinations that

3We report similar findings in [3].
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Figure 6.2: mPL vs mAP: MED Left: PLSA-JM given |Z| = 32 Right: PLSA-BS given

|Z|= 64. Notice the divergence between the BRM and BDM under the PLSA models.
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Figure 6.3: mPL vs mAP: CACM Left: PLSA-JM given |Z|= 32 Right: PLSA-BS given

|Z|= 128. The divergence is even more pronounced.
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Figure 6.4: mPL vs mAP across the |Z| space(shown in log scale). Top to Bottom: MED,

CACM and CISI. Despite the increasing mPL, the mAP appears to reach a maximum

point before decreasing.
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we where able to find the parameter settings which gave significantly better retrieval

performance. Success under such conditions is of limited utility in an operational en-

vironment because there is no way to identify these conditions, other than a brute force

search. Whilst, it should be possible according to the assumptions of the Language

Modeling framework, in practice this clearly is not the case, when using the PLSA

context based document models. When we analyzed the change in mAP versus mPL

over the range of latent variables, the selection of the best data model according to the

mPL did not necessarily result in the selection of the best retrieval model. Again, using

this criterion for identifying the number of latent variables did not provide a clear indi-

cation as to the model which will be optimal for retrieval performance. This evidence

tends to suggest that Assumption Two does not appear to hold when we generated

context based document models using PLSA on these collections.

6.1.3.1 Previous Work

In previous work, using PLSA[60, 61] for ad hoc retrieval, quite substantial and sig-

nificant increases over the baseline (TF and TF.IDF using the VSM) performance was

achieved on these collections. Indeed, this substantial increase in performance ini-

tially drew our attention to the possibility that using contextual evidence (i.e PLSA)

is beneficial in the retrieval process. However, our results suggest that this form of

contextual evidence can be beneficial in the retrieval process, but only under certain

circumstances.

There are several key differences between our study and the former studies, these are:

• We have used PLSA within a wholly consistent language modeling framework

and not within the Vector Space model.

• We did not employ any ad hoc weighting schemes such as idf, and

• We have reported the performance of the model which we could select through

estimation, as opposed to selecting the model according to the one which gave

the best retrieval performance, whether that be the parameter settings or PLSA
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decompositions4.

We believe the former two points while qualitatively different are not the main causes

of the difference in performance. The LM approach is akin to the vector space ap-

proach in many respects, it makes similar assumptions (i.e that the similarity of a doc-

ument and a query is correlated to relevance). They both match on query terms but

essentially employ different weighting schemes. The VSM relies on ad hoc weight-

ings such as idf to improve performance, whereas in the LM the weighting is implicit

with in the document representation. The main difference here is that within the LM

framework, under the assumptions, there is a clear objective as to how to maximise

the retrieval performance, whereas in the VSM there is no such objective. This is an

example of the benefits of performing such analysis within a principled framework.

The latter point presents an obvious problem. Selecting the ‘best’ run according to the

retrieval performance runs the risk that the PLSA model is tuned specifically to the

set of queries. Given the sheer volume of parameters |D|× |Z|× |T | then conceivably

many local optima will exist within this parameter space, with respect to the retrieval

performance. Some more generalizable to future queries than others. To illustrate,

consider the following constructed example, we have taken the MED and CISI col-

lection and taken the first half of the queries with which to used as a ‘training’ set.

To find the ‘best’ settings we used this set of queries to evaluate the model’s retrieval

performance, select the parameters according to those that achieve the best retrieval

performance. We then used the other half of the queries to validate the model’s re-

trieval performance. Instead of a random initialization, we seeded the p(z|d) matrix

such that all the relevant documents associated with one of the initial queries in the

first set were ten times more likely to be generated from a corresponding latent vari-

able. (i.e. one latent variable for each query) The remaining documents were assigned

such that they were ten times more likely to be generated from an addition latent factor.

The p(t|z) was randomly initialized, as before. Then the PLSA model was estimated

according to the EM algorithm with Tempering. We selected the PLSA model and the

parameters that gave the best retrieval performance for this initial set of queries, then

4In [4], we conducted a study which replicated this work we took the average of the retrieval per-
formance over all the randomizations performed. Within the randomisations existed models that signif-
icantly out performed the baseline, but on average there was no significant difference.
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computed the retrieval performance for the second set of queries. In Figure 6.5, the PR

curve for the initial set of queries is denoted by boxes and the second set is denoted by

diamonds. From these graphs it is clearly evident that the model is severely over fitted

to the initial query set. Whilst this example has been quite contrived, it demonstrates

the tailoring of the retrieval performance to the query set. Hence, selection of such

models needs to be through a non-discriminative approach such as the mPL criterion.

However, the mPL criterion failed to identify the optimal parameter settings, which

questions the utility of applying PLSA to ad hoc retrieval (whether it be within the

Language Modeling approach as done here, or within the VSM).

In summary, the context based document models which we derived from PLSA may

provide significantly better retrieval performance when given the appropriate set of

parameters. However, given the method of estimation and selection used, we were not

able to consistently and reliably identify this set of parameters, such that significantly

better retrieval performance was obtained. Furthermore, our analysis indicated that

using PLSA based document models on these data collections that there was a break

down in Assumption Two. Whist we were able to generate better representations,

unification of the data and retrieval model did not transpire.

6.2 Topic Tracking Associations

In this section, we present a different form of semantic association as the context of

the document based on the past interactions of the user. We employ Topic Tracking to

define the semantic associations between documents, in a unsupervised manner given

initial user input of the definition of a topic. Topic Tracking is essentially Information

Filtering generalized to cater for multiple topics. For each topic, a number of initial

example documents are provided as the definition of a topic that a user is interested in.

Topic Tracking uses this information to decide whether the incoming (or remaining)

documents are related to this topic or not[72]. Hence, the user is able to define their

context through building topics. These topics represent areas of interest to the users

and define their understanding of the documents in the collection. Unlike in the first
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Figure 6.5: Top: The performance of PLSA models tuned on the initial set of queries

shown by the diamonds and the performance of a baseline shown by the squares.

Bottom: The performance of the PLSA and baselines models on the remaining queries.

Left: MED Right: CISI. Notice the excellent performance by PLSA in the top graphs

whilst in the bottom graphs their performance is very poor due to the over tuned PLSA

model.
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set of experiments where the context we used assumed that a document is composed of

several topics, in this set of experiments we assume that a document may only belong

to one topic. This assumption has made for two reasons; (1) to ease the computational

burden such that it could be computed in a reasonable amount of time given the size

of the collections, and; (2) to maintain a fair comparison between performance when

using semantically defined topics against similarity based clusters.

The topic and cluster models that we employed in this section are defined as follows:

The context parameters for topics are: Θtop = {p(t|k), p(k|d)} and clusters: Θclu =

{p(t|g), p(g|d)} where the k represents the topics and g represents the clusters.

The context for a particular document under the topic tracking semantic association is

defined as:

pd(t|Θtop) = ∑
k

p(t|k)p(k|d) (6.3)

where there exists a value of i such that p(k = i|d) = 1 and p(k 6= i|d) = 0. i.e. a

document is drawn from one topic.

A context background model pd(t|θtop) is constructed by substituting pd(t|Θtop) into

Equation 4.2 for pd(t|ΘX), which applies a proportion π of smoothing with the back-

ground collection model.

The context based document model is then generated by using the general form (Je-

linek Mercer) and Bayes smoothed document models shown in Equation 4.3 and Equa-

tion 4.4, respectively. Where the former shall be referred to as TOP-JM and the latter

TOP-BS. For the general form (Jelinek Mercer), the complete estimation of the docu-

ment model is:

p(t|θtop
d ) = (1−λ)

n(t,d)
n(d)

+λ

(
(1−π)

(
∑
k

p(t|k)p(k|d)

)
+πp(t|θC)

)
(6.4)

In a similar fashion, the cluster based document model is generated using Θclu. The

general form is referred to as CLU-JM and the Bayes smoothed approach CLU-BS,

where the λ, π, p(t|g) and p(g|d). For the cluster based document model the pa-

rameters p(t|g) and p(g|d) are estimated according to a similar based clustering of the
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collection as opposed to a semantic based association. This effectively defines the clus-

ter based approach in [89] and serves another baseline for comparing the performance

of the context based model (see Section 6.2.1). The following section details the ac-

tual process of topic assignment employed along with all other pertinent experimental

details.

6.2.1 Experimental Settings

The empirical evaluation was performed on the Wall Street Journal (WSJ) and the As-

sociated Press(AP) Collections. The details of these collections can be found in Sec-

tion 5.3.1 and collection statistics in Table 5.1. The queries used were the titles of the

TREC TOPICS 101-200 which were stemmed and stopped as was the collection. The

baseline document models used were Jelinek Mercer (JM) Smoothing see Equation

3.25 and Bayes Smoothing (BS) see Equation 3.32. These were then compared against

the context based document models (TOP-JM and TOP-BS) and against the cluster

based document models (CLU-JM and CLU-BS). The number of topics and clusters

used was one hundred, and another topic/cluster was added, such that |K| = 101 and

|G|= 101. The additional topic/cluster was required to assign any documents that were

not assigned to the first one hundred topics.

6.2.1.1 Context Estimation

As we have argued, we can impose the user’s understanding of the collection through

the previous interactions that the user has had with the collection. For this we use the

TREC TOPICS 1-100 from the topic tracking task, to define such previous interaction

with the collection. The set of relevant documents associated with each TREC TOPIC

was used to form the definition of the topic and then the remainder of the collection

was classified as being in a particular topic or not. We used the relevance modeling

approach defined in Section 3.5.5 to score and classify documents. The procedure for

constructing the context based on the topical associations was performed as follows:

• For each TREC TOPIC i a relevance model was construct for that topic from the
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set of relevant documents associated with that topic. The relevance model for

this topic p(t|θRi) was smoothed with background collection model at λ = 0.5.

The non-relevance model was the background collection model (regardless of

topic). If a document document appeared in several topics it was placed in the

more recent topic.

• For each unassigned document d,

– The document was scored against each of the topics i using the relevance

models constructed from above, where the score was computed using the

following formula (adapted from Equation 3.50):

O(d,Ri) = ∏
t∈d

p(t|θRi)
n(t,d)

p(t|θC)n(t,d) (6.5)

– The document was assigned to the topic i with the highest odds ratio O(d,Ri).

However, if O(d,Ri) was less than one, i.e less likely to be generated from

the topic i than the collection, the document was assigned to the topic 101.

– The probability of a topic given a document is then defined p(k|d), where

p(k = i|d) = 1 when the document was assigned to i.

• The probability of a term given the topic ki can then be estimated, such that:

p(t|k = i) = ∑d∈i n(t,d)
∑t′ ∑d∈i n(t ′,d)

On the other hand, we defined the cluster matrixes p(t|c) and p(c|d) using the trec4-

kmeans-xu99 data set5. This data set contains clusters of TREC documents. The doc-

uments were clustered according to the cosine similarity metric with the k-means clus-

tering algorithm[155]. This data set was previously used in a distributed retrieval set-

ting, where the clusters represented different resources containing similar documents

[155]. The cluster associations for the WSJ and AP collections were extracted from

this data set and used to form the clusters used to build cluster based document mod-

els. Any document that was not assigned to a cluster from this data was classified in

a process akin to that for the topics, this was required because in this data set only

5This data set is available on line from http://hartford.lti.cs.cmu.edu/callan/Data/.
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the Associated Press documents for 1988 were clustered. Hence, the documents from

1989 needed to be assigned to a cluster. Similarly, for WSJ documents 1986-1989.

6.2.2 Results

Tables 6.4 and 6.5 contain the performance statistics of the baseline versus the topic

based document models and cluster based document models on the WSJ and AP col-

lections, respectively. Only the performance statistics giving the best estimated param-

eters are shown for comparison.

On the WSJ collection application of either the topic or cluster based document models

failed to yield better retrieval performance in terms of mAP, p@10% and p@30 docs.

However, the cluster based document models achieved significantly higher recall. The

topic based models actually achieved a substantially larger total recall than both the

baseline and the cluster based document models, however this was not significantly

different. When using the topic based document model under Bayes Smoothing (TOP-

BS) the mAP and p@10% were significantly worse, despite the large increase in total

recall.

On the AP collection significantly better mAP was obtained using the topic models

(TOP-JM) and (TOP-BS) over the respective baselines, while this was only the case

for the cluster based document models when using Bayes Smoothing (CLU-BS). Again

a substantial increase in recall was witnessed but this was not significantly different.

Nor was the difference between the cluster based models and the topic based models.

In Figure 6.6, the graphs show the behavior of mAP and mPL as we manipulated the

smoothing parameter for the topic and cluster based document models on the WSJ

and AP collection, unlike the corresponding graphs for the baseline model BS shown

in Figure 5.6 where there was a divergence between the data model and the retrieval

performance. In these graphs using the context/cluster based document models the

mAP and mPL are unified.

From the results reported in the above tables and graphs the performance of the top-

ics and the cluster based document models appeared to be very similar. Significance
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Model Parameters mPL mAP p@10% p@30docs Recall

JM λ = 0.556 -6.9065 24.06 64.54 32.00 5420/8469

CLU-JM π = 0.1423 -6.7949 23.85 61.18 31.53 5588*/8469

λ = 0.555

TOP-JM π = 0.139 -6.7988 23.36 62.75 31.67 5618/8469

λ = 0.55

BS β = 371.6 -6.9245 26.37 68.90 35.47 5420/8469

CLU-BS π = 0.1423 -6.8438 25.42 67.19 34.30 5505*/8469

β = 251.41

TOP-BS π = 0.139 -6.8469 25.40* 69.19* 34.67 5572/8469

β = 257.16

Table 6.4: The performance statistics for the CLU and TOP document models on WSJ

collection.

Model Parameters mPL mAP p@10% p@30docs Recall

JM λ = 0.549 -7.265 24.84 67.68 34.03 6329/9738

CLU-JM π = 0.1041 -7.3316 25.26 68.26* 33.57 6575/9738

λ = 0.5489

TOP-JM π = 0.1319 -7.1156 25.49* 69.33* 33.4 6716/9738

λ = 0.5575

BS β = 279.02 -7.290 25.85 68.32 36.4 6319/9738

CLU-BS π = 0.1041 -7.3889 25.96* 67.35 35.17 6546/9738

β = 276.86

TOP-BS π = 0.1319 -7.1346 26.43* 68.11 35.4 6682/9738

β = 341.88

Table 6.5: The performance statistics for the CLU and TOP document models on AP

collection.
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Figure 6.6: Change in mAp and mPL given the smoothing parameters for the cluster

and context based document models. Top: WSJ Collection Bottom: AP Collection Left:

CLU-BS Right: TOP-BS
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testing revealed that these models were not significantly different from each other. We

posited that the different types of evidence used (topics and clusters) would only be

useful for certain queries. If the evidence contained within the topics and the clusters

was similar (because of a similar mapping of documents to topics and document to

clusters, or all the relevant documents for a particular query residing in one very dis-

tinguishable topic/cluster) then the benefits to a particular query would also be similar.

On the other hand, if the mappings were quite disparate then the different forms of

evidences may be useful for different queries. To discover whether this was case, or

not, we plotted the difference in mAP between the topic and baseline model and the

cluster and baseline model for each query (See Figure 6.7). From these graphs, we can

see that when the topic based document model provides an increase in mAP, so too

does the cluster based document model, and similarly for a decrease. We performed

Pearson’s correlation test6 on this set of points and found that there was a significant

correlation between the differences of each type of document model. The correlation

coefficient r was around 0.7 and statistically significant for all collections at 95% con-

fidence. So when the cluster model outperformed the baseline so too did the topic

model, and when the cluster model did not outperform the baseline nor did the topic

model. This suggests that the evidence used in either document model is quite simi-

lar in nature and effect. However, the topic based document model appears to show a

greater variation, either obtaining a larger gain or larger loss in mAP over the baseline

than the cluster based document models.

6.2.3 Discussion

In this study, we have considered both cluster based document models and topic based

document models. Generally, the topic based document models tend to provide better

retrieval performance than the cluster based document models. However, this differ-

ence was not significant. Against the baseline methods, improvements were only ob-

tained on one of the collections (i.e. AP). The number of topics or clusters was limited

6We opted for Pearson’s correlation test in this instance as the differences appeared to be normally
distributed.
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Figure 6.7: The difference in performance of the baseline against the topic and against

the cluster models on WSJ and AP. The topics are shown by the circles and the clusters

are shown by the squares. Notice the similar affect of the topics and clusters.
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to one hundred plus one, because of the access to such clusters and a corresponding

number of predefined topics. Had more or different forms of contextual associations

been available we may have been able to consider the affects of varying the number of

topics/clusters, as we did in the previous study by manipulating the number of latent

variables.

The selection of the number of topics/clusters is an open problem because it is un-

known as to how many topics represent the user’s interests or how many documents

sufficiently similar to each other define a cluster. We posit that an insufficient amount

of topic-relevant document associations was available to define the context of the user’s

interactions within this collections. However, in an operational setting where access to

query logs and interaction is available then it is possible to mine these logs to extract

usage based associations. By selecting the most informative or interesting associations

we could produce better context based document models. Further research could be

directed in exploring this possibility.

The topics we used in our study to define the user’s context may have been too specific

to generalize to all users and further information needs. For instance some of the topics

referred to particular government affairs or topical events. For example, ‘the strategic

defense initiative’ or ‘Black Monday the Stock Market Crash’. However, the context

of these to the user may be somewhat different. For instance, the news web sites

(and even news papers) organize content according to pre-existing categories (Current

Affairs, Finance, Sport, Travel, etc ). These categories represent paths of interaction

that are so commonly associated that they represent a very strong semantic association.

This association forms the context the user considers, so when thinking more generally

about the two example topics, we would consider them to be in the ‘military’ and

‘finance’ sections respectively. In a related study[5], we defined domains according to

such high level categories (domain) by grouping the topics according to their domain.

We used them to define the domains and consequently the user’s understanding of the

collection at this higher level. i.e. documents about military, science, politics, and so

forth. However, the results were generally no better than the baseline methods either

(even when a search of the parameter space was undertaken to find the best retrieval

performance).
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In Chapter 4, we noted that the type of contextual evidence should be selected with

respect to the query and the user’s information need. From the difference plots in Fig-

ure 6.7, we noted that for some particular queries the context/cluster based document

models were successful in surpassing the baseline models. Ideally, we would like to

be able to select when the context/cluster based document models when they will be

successful and when they will not, instead of just applying the model and assuming

that it will work better in all circumstances. Contextual information retrieval requires

that the IRSs tailor retrieval to the user and their information needs. Model selection

is just one area where this could be achieved, where already research has shown that

some improvements are possible[54].

A selection mechanism could be derived from the assumptions of Language Modeling.

From A2, the goal is to obtain the best representation of the underlying data with

respect to the user. This could be taken to imply that given different document models

M ( i.e. LP, JM, BS ) which model is most likely to generate the query. Such that the

probability of a query given M and the collection is determined by the sum over all

documents in the query of the query likelihood (the average log query likelihood).

p(q|M ,C) = ∑
d

p(d)∏
t∈q

p(t|θd,M ) (6.6)

In this case, the question is, from which model M is the query most likely to be gener-

ated? The model M which maximizes the query likelihood is presumed to provide the

better performance. The intuition is that if the representation is more likely to produce

the query then the data models are more reflective of how the user views the collec-

tion. That is, they think these are good terms to use a query, and believe they are more

probable in the desired documents. Whether such a criterion would work in practice

remains undetermined, and is left to future research.

In work by Liu and Croft[89] they proposed and tested cluster based document models

within the language modeling framework. Their, ‘cluster based document model’ are

equivalent to our CLU-BS approach. In their study they found that the retrieval perfor-

mance was sensitive to the clusters created. They used various types of clustering algo-
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rithms, thresholds for such clustering algorithms, and smoothing parameters to empiri-

cally determine whether better retrieval performance could be obtained. They of course

only report the combination which resulted in the best performance. Our approach dif-

fers in that we have automatically determined the smoothing parameters which resulted

in the best data model. Even though they performed an exhaustive search of the param-

eter space, they only report small increases over the baseline method on the WSJ and

AP 88-90 collections. Under our approach the optimal number of clusters would be

set according to the number of clusters that maximized the mPL for the cluster based

document models. Instead, they found through an extension search of the possible pa-

rameters that the best retrieval performance was attained when the number of clusters

was set to 2000 for the AP and WSJ collection. It would have be interesting to try

different sized clusters and topics to see the change in mPL. Unfortunately, we were

not able to obtain access to the clustering software, nor clusters-document associations

from their previous work. However, our results using just one hundred clusters shows

that the cluster based document models can be estimated such that it gives comparable

or significantly better mAP, whilst consistently returning more relevant documents.

In this section, we compared the baseline models against the topic based models which

were defined according to the user’s past interactions with the document collection.

The use of these semantic associations provided significantly better retrieval perfor-

mance on the AP collection, but this was not the case on the WSJ. Against the cluster

based document models, the performance of the topic based document models was

not significantly different. Both types of document models consistently retrieved more

documents than the baseline models, but this was not always significantly different.

These results provide some evidence towards the Context Hypothesis, and limited ev-

idence towards the Cluster Hypothesis, respectively. The context/cluster based doc-

ument models created better representations of the underlying data than the baseline

models, however, this did not necessarily translate into (significantly) better retrieval

performance. However, under the context or cluster based document models the A2

assumption appeared to be upheld, when examined over the change in smoothing pa-

rameter.
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6.3 Web Link Associations

In this section, we use the links between web documents as the semantic association for

defining the document’s context. The user’s understanding of the collection is partly

expressed though the links they create, as these links represent a semantic association

between two documents. The direction of these links will affect the meaning of the

semantic association and how the document is understood and perceived. The two

types of links we consider are out links and in links.

Out links are usually produced by a single user and represent that user’s understanding

of how this document relates to other documents within the collection. By using the out

linked documents as context for a document d, we are assuming that d is about these

out linked documents (in some way, or to some extent). Essentially, by generating

the document model with out linked documents, we are creating a representation of

a ‘super’ document. This super document is represented by itself and the context

documents which are only one link away. This may not be entirely suitable for ad

hoc IR, because we are after the references to the relevant documents, not references

to references. However, it would seem more suited to the task of finding the best

entry point, where the goal is to find documents which contain references to relevant

documents.

In links are usually produced by many different users and so are probably more rep-

resentative of the understanding amongst users of the collection. Each in linked doc-

ument provides another way of referring to the document, and this contributes to the

context of the document (i.e. the context in which the document is discussed, de-

scribed and or referred). This could bridge the vocabulary effect, because the in linked

documents may provide terms which are representative of document but not in that

document. However, not all of the in linked document may actually be related, some

parts of the in linked document maybe off topics. This will introduce some noise into

the document model which could be detrimental to the performance of the system.

Consequently, efforts of this nature, (i.e. using the in links to make a better represen-

tations of the documents), have usually focused on using the anchor text of the links,

not the entire document[53, 111, 23].This makes sense, for the reason above, however
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is not entirely consistent with the document modeling process. When anchor text is

generated, the distribution of terms used changes significantly from normal text, with

terms like ‘home’ and ‘page’ akin to stop words. Using the anchor text would need to

be considered in some other way to remain consistent with the underlying approach.

For this reason and to remain consistent in developing context based document models

throughout the thesis, we use the in linked documents and not the anchor text.

The link based document models that we employ are defined as follows: The context

parameters are: Θout/in = {p(t|d′), p(d′|d)}, where p(d′|d), the probability of a doc-

ument d′ given document d represents the distribution of links (in or out) associated

with document d. The context for a particular document under the link based semantic

association is defined as:

pd(t|Θout/in) = ∑
d′∈D

p(t|d′)p(d′|d) (6.7)

where:

p(d′|d) =
n(d′,d)

∑d′′ n(d ′′
,d

(6.8)

and n(d′,d) is the number of times d′ links to d for in links, and is the number of

times d′ is linked to by d for out links. Potentially, other distributions could be devel-

oped to quantify the relationship between the documents more precisely, such as using

PageRank[109] or pHITS[20].

The link based context background model pd(t|θout/in) is constructed by substituting

pd(t|Θout/in) into Equation 4.2 for pd(t|Θx), which applies a proportion π of smooth-

ing with the background collection model. The link based context based document

model is then generated by using the Jelinek Mercer and Bayes smoothed document

models shown in Equation 4.3 and Equation 4.4, respectively. When using the in link

associations the model shall be referred to as IN-JM and IN-BS, and for the models

using out link associations, they shall be referred to as OUT-JM and IN-JM. For the

general form (JM), the complete estimation of the document model is:

p(t|θout/in
d ) = (1−λ)

n(t,d)
n(d)

+λ

(
(1−π)

{
∑

d∈D
p(t|d′)p(d′|d)

}
+πp(t|θC)

)
(6.9)
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Type Total Links Docs with Links Avg Links Max Links

IN 1041262 186912/247491 4.21 3201

OUT 1041262 212085/247491 4.21 1283

Table 6.6: Link statistics

6.3.1 Experimental Settings

The empirical evaluation was performed on Web Track 2 Gigabyte collection (WT2g)

and the titles of the TREC TOPICS 401-450 were used as queries (see Table 5.1 for col-

lection details) The baseline document models used were Jelinek Mercer (JM) Smooth-

ing see Equation 3.25 and Bayes Smoothing (BS) see Equation 3.32. These were then

compared against the context based document models which used in links (IN-JM and

IN-BS) and out links (OUT-JM and OUT-BS).

The links for each document were extracted from the collection and used to define the

context based models. The link statistics are shown in Table 6.6 where on average

a document had 4.21 links. However, there were many documents without links. In

these cases, the context background model was equivalent to the collection background

model. For linked documents, the context based models were estimated as outlined in

Section 4.3.4 where the parameter values that maximized the in and out links context

based documents were π = 0.353 and π = 0.372, respectively.

6.3.2 Results

In Table 6.7 the performance statistics of the baselines (LP, JM and BS) versus the in

link and out link context models is reported. The performance of the best data model

and best retrieval model is reported. Note, however, that for the BS linked based

models the best data model and retrieval model were one and the same. Consequently,

we only report this once in the table. As before, the statistical significance of results is

denoted by an asterisk and was obtained using the Sign Rank test at 5% significance

level.
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Model Parameters mPL mAP p@10% p@30 Docs Recall

LP α = 0.0002 -9.5431 14.62 59.13 20.13 1361/2279

JM λ = 0.489 -7.286 21.07 63.50 25.27 1789/2279

OUT-JM λ = 0.557 -7.1508 15.05* 54.46* 18.87* 1644*/2279

π = 0.372

OUT-JM λ = 0.1 -7.2508 19.29 63.32 21.60* 1650/2279

π = 0.372

IN-JM λ = 0.552 -7.1440 16.46* 58.39* 20.27* 1658*/2279

π = 0.353

IN-JM λ = 0.1 -7.3965 19.41* 64.14* 21.93* 1615*/2279

π = 0.353

BS β = 219 -7.3111 20.70 68.84 25.47 1709/2279

OUT-BS β = 258 -7.2167 17.86 62.26 21.06* 1708/2279

π = 0.372

IN-BS β = 323 -7.2747 17.49* 60.52* 21.80* 1650/2279

π = 0.353

Table 6.7: The results for using context based smoothing on using in links and out links

as the context.

From Table 6.7, we can see that most of the results from the link based document

models performed significantly worse than the baseline models (JM and BS). However,

the link based document models still provided a better representation of the underlying

data.

6.3.3 Discussion

From the results reported it is clear that using the in and out links as context for a

document does not provide any benefit to retrieval performance, despite the fact that

better document representations were generated. In these graphs the best retrieval

performance was obtained when λ was 0.1. This is quite a small amount of smoothing

(comparatively), where the main contribution to the query likelihood was from the
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Figure 6.8: WT2g. Top: IN-JM Middle: OUT-JM Bottom: IN-BS Left: mPL vs mAP

Right: mPL vs p@30docs. Notice how the best performance for the JM models perform

the best when the least amount of context is used (i.e. λ = 0.1)
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empirical term probabilities. Interestingly, the best performance of the IN-JM and

OUT-JM was when the λ was set to 0.1. This small λ value means that the scoring

was relying mainly on the empirical term probabilities within the document p(t|d)

suggesting that the context was very poor for retrieval. We suspect this disappointing

performance was due to a few factors:

• The link sparsity meant that the context background models were only built with

approximately 4-5 documents. Also, the link structure in the document collec-

tion has been criticized for being a poor representation of the web[45].

• The linked documents were probably too coarse adding more noise than infor-

mation. A more appropiate solution would use the anchor text instead of the

entire document. However, instead of trying to embed the anchor text directly

into the document model it would be more appropiate to use it as external ev-

idence, such that the document provides evidence of relevance (i.e p(q|d)) and

the anchor text provides evidence of relevance ( i.e. p(q|a), the probability of a

query given the anchor text for the document d). Further, the generation of the

anchor text a would be conditioned on the document d, because the author of

the anchor text will presumably have read document d, and then linked to the

document by generating an anchor (i.e. link and text).

• The ad hoc task was inappropriate for the contexts used. As we previously men-

tioned, the out links would provide a good source of contextual evidence when

searching for the best entry document (though we were unable to the test whether

this was the case, because the WT2g collection did not have such queries.)

Further testing is required to determine whether these are the actual causes or whether

there are some other reasons for this failure in performance. Nonetheless, this shows

that despite being unable to build a better representation of the document models, that

this will not neccessarily translate into better retrieval performance. Perhaps, there is

too much bias introduced when we are applying other context based document models,

and this needs to be addressed. Alternatively, maybe by focusing solely on generating

a better representaiton of the underlying data we have not considered other factors

which will affect the performance.
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6.4 Chapter Conclusions

This section provides an overview of the results found in general across each of the

different studies that we performed on evaluating the context based document models.

The overall findings suggest:

• We have shown that different forms of contextual evidence can be used to benefit

the retrieval performance, and hence some support towards the Context Hypothe-

sis, while performance increases can be obtained when employing context based

document models. However, selecting the parameters that obtain such increases

is not always guaranteed by the mPL criterion.

• The context based document models always offered a better representation of the

underlying data than the baseline models. With regards to A2, the PLSA models

were variable in achieving unification. The topic and cluster based document

models displayed unifications between the data model and the retrieval perfor-

mance. Whilst the LINK based models were unified under (IN/OUT)-BS, but

there was a complete mismatch under (IN/OUT)-JM. In both cases, though the

context severely degraded retrieval performance. Overall, even though the con-

text document models achieved a better representation this did not necessarily

translate into better IR performance.

• Through query analysis, we found there are often particular queries when the

type of document model used is more beneficial for retrieval performance than

others. Some form of selection would be required to exploit these benefits. This

provides an interesting avenue for future work, the prediction of the representa-

tion based on the query.

6.4.1 Summary

In this chapter we attempted to create better representations of the document mod-

els with respect to the second assumption of Language Modeling. We did this on three

different types of collections and using different methods for building the context asso-
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ciated with the documents. While it was possible to increase the retrieval performance,

this was subject to accurate parameter selection.



Chapter 7

Discussion

In this chapter, we present an overview of the different facets of the research under-

taken in this thesis and discuss the implications of this work. We consider the assump-

tions of the Language Modeling approach and our efforts in attempting to capitalize

on these assumptions. In particular we offer our interpretation of the query likelihood

to aid in the explanation of the mismatch between the data model and retrieval model.

This motivates a different two stage approach. Also, we critically re-examine our use

of context on the document modeling side, and consider other ways of incorporating

context from the user side. Finally, we propose a context based retrieval model which

uses the context of the user to bias the ranking in an integrated Language Modeling

Approach.

7.1 The Assumptions of Language Modeling

The Assumptions of Language Modeling were studied in Chapter 5 to deepen our

understanding of the retrieval approach. In this section we discuss our general findings

as to the validity of these assumptions and their implications.

180
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7.1.1 A1 Correlation

The correlation between the probability of a query given a document and the probabil-

ity of a document being relevant varied according to the point at which the correlation

was measured. We found that as we increased the size of the document cut off, the

correlation between the two measures increased. As we previously discussed, this was

because of the influx of numbers of non-relevant documents. These non relevant doc-

uments had low query likelihoods and low probability of relevance which skewed the

results of the correlation. We argued that measuring the correlation at a cut off of thirty

documents was the most appropriate point, because that is often the only part of the

ranked list examined by a typical user. At this point, the correlation between the two

measures was relatively weak and held for about 20% of queries.

Is the query likelihood measure really proportional to the document’s relevance? Per-

haps, the query likelihood is better correlated to the document’s similarity to the query?

If so, then when the query is made more like the relevant documents then the correla-

tion will be stronger, because for a document to be relevant it must be similar to the

query. This is only the case when relevance is considered as similarity. This would

then be a condition or restriction of the Language Modeling approach. It would be

interesting to examine how well a similarity based model (such as the VSM) holds up

with respect to A1, and whether there was a greater/stronger correlation between the

VSM and the Language Modeling approach. Further experimentation found that there

was a dependency between A1 and A3. When queries were formulated according to

A3 then the proportion of queries where A1 was upheld increased. We discuss this

further in A3 below.

7.1.2 A2 Unification

The unification of the data model and the retrieval model was only ascertained for par-

ticular types of document models. The JM, CLU-BS, TOP-BS, CLU-JM and TOP-JM

all exhibited the expected behavior, such that the performance of the BRM was not

significantly different from the performance of the BDMs. These types of document
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models would appear to be good candidate document models to apply as they are con-

sistent with the second assumption (i.e unified). However, the other types of document

models were not as well behaved, performing erratically and sensitive to parameter

change. Hence, maximizing the mPL for the LP, BS, PLSA-JM and PLSA-BS docu-

ment model would typically result in sub optimal retrieval performance. This gap in

retrieval performance represents the mismatch between the assumption and reality.

When we considered improving the representations of the documents through context

based document models, we posited that improved retrieval performance should be

obtained, because we will have developed a better data model. Whilst the context

based document models that we applied provided a significantly better representation,

a corresponding increase in performance was not always obtained.

This calls into question whether obtaining a better statistical representation will actu-

ally benefit retrieval performance. Perhaps, the model is taking a much too simplistic

view of the retrieval process and not considering other factors which are known to af-

fect retrieval (such as document length normalization). This is because the Language

Modeling approach is limited to representing the relevance of a document through the

document models. It is only through changes to the document model, that the retrieval

function is changed. While this property is appealing, it may be more appropriate to

consider the representation separately from the retrieval function.

This mismatch could have been due to factors; such as the query term importance

or document length normalization. In Section 5.4.2, we explored the possibility that

the query variability contributed to the gap between the BDM and BRM. However,

when we applied the second stage of smoothing to compensate for the query terms, the

performance of both the BDM and BRM increased. This seemed to indicate that the

gap was not a result of the query variation but of some other factor(s). Later in Section

7.1.5 we provide a possible explanation of the phenomena which implicates document

length normalization as the cause.

Alternatively, if we consider the magnitude of the change in mPL obtained by the

context based document models over the BS and JM models, then the difference is

really marginal about 0.1-0.3 in terms of mPL (See Tables 6.1, 6.2 and 6.3). On the
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other hand, if we consider the difference between the BS and JM models versus the

LP model shown in Table 5.7, then the difference was approximately 1-2, (an order

of magnitude higher). The difference in mPL between the BS/JM models over the LP

models translates into a substantial difference in mAP of around 5%-9%. If we were

to extrapolate this to estimate the performance of the context models performance over

the BS/JM models then we would only expect a very small change. Indeed, this is what

we witnessed in most cases. We would then have to increase the mPL substantially

more to secure a larger increase in mAP. However, there is a limit to how good the

representation will be, as there is an upper bound on the mPL. This solution usually

does not generalize well because it is the maximum likelihood estimate, which suffers

from the ZPP. Hence it is necessary to rely on smoothing to obtain an estimate of the

document model. The quality of these representations are limited to the amount of data

which is available to estimate the model parameters and improving the quality through

context does not provide any substantial improvements.

7.1.3 A3 Discrimination

Whether the query terms used were able to discriminate between relevant and non-

relevant documents sufficiently was shown to be affected by type of query issued. We

examined three types of queries; (Q0) standard queries consisting of the title of the

topic; (Q1) ideal queries consisting of common terms from the relevant documents

and (Q2) ideal queries consisting of highly discriminative terms. Whilst the standard

queries issued managed to identify a fair proportion of relevant documents at early lev-

els of recall, the ideal queries obtained a much higher proportion of relevant documents

for each query. The difference in ideal queries was pronounced; the first was able to

identify substantially more relevant documents, while the second identified with high

accuracy a smaller subset of relevant documents. In other words the first type of query

provided a recall oriented querying strategy and the second type provided a precision

oriented strategy. This is actually rather intuitive because we would expect that the

more general terms would identify a wider range of documents, whereas more dis-

criminative (and less frequent) terms would identify very specific documents. This
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outcome could be useful when considering pseudo relevance feedback. If the query

terms are general then pseudo relevance feedback may not be particularly useful. If

the query terms were very specific, then performing pseudo relevance feedback would,

we anticipate, imporve retrieval performance. The terms used for query expansion can

be selected such that a precision or recall oriented search is undertaken. From a usage

point of view, a user can submit these kinds of query terms so that their search will be

geared towards precision or recall.

The third assumption requires that (1) the user understands how they should query

the IRS, and; (2) that they can successfully apply this knowledge when formulating

and submitting queries. An open research question (thrown up by this assumption)

is, what impact does querying have on the final accuracy of the search results if these

conditions are met? For example, will educating the user on how to query an IRS

based on the Language Modeling approach affect the quality of their search results?

From our results, we would expect that retrieval performance would improve, if users

could execute ideal queries. However, these were of course generated with respect

to the actual set of relevant documents. So, would the queries of a ‘trained’ user be

significantly different to those of an ‘untrained’ user? And, this would translate into

queries which would be more discriminative of relevant and non relevant documents,

contain more information to discern relevant from non relevant, and ultimately deliver

superior retrieval performance? It is imperative that any tool be used both efficiently

and effectively. An IRS is no different, hence the user must have a reasonable under-

standing of the basic intuition of the system such that it can be used efficiently and

effectively. From A3, there are clear guidelines as to the kind of terms (i.e Q1 or Q2)

that a user should pose to the system as a query. If the query is not consistent with A3

then the user only has themselves to blame for the poor search results. If a user/system

could recognize this problem, then switching to an alternative approach such as the

Translation Language Model[11] (described in Section 3.5.1) could be beneficial if,

for instance, the poor query was due to the vocabulary effect. It would be insightful

to see whether the Translation Model could address this and whether this would also

improve the correlation of A1 and discrimination of A3.

Harper et al.[48] consider the ‘ideal’ queries from a different perspective. Given the
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context of the user, as either unfamiliar or familiar with the topic of the search, they

hypothesized that:

Users unfamiliar with a topic will prefer documents in which highly rep-
resentative terms occur, and users familiar with a topic will prefer docu-
ments in which highly discriminating terms occur.

In their experiments, the terms extracted for the particular user context were used to

re-rank the top 1000 documents. Queries consisting of highly representative terms

and queries consisting of the highly discriminative terms, correspond to the ideal

queries Q1 and Q2 respectively. Their results indicated that the former queries did

not yield better results, whilst the latter gave significantly better retrieval (in terms of

R-Precision1). They suggest that in the latter case, initial queries by familiar users

obtained better initial results from which to improve the re-ranking.

However, our study seems to suggest different reasons for this behavior. In the first

instance, where Q1 queries were issued this will be of little benefit as they tend to

improve recall, and this is not possible when re-ranking the top 1000 (i.e. we can

not find any more relevant documents, only change their ranks to increase precision).

In the second instance, the discriminative query (Q2) approach dramatically improves

the ranking at early levels of precision. This accounts for the improvements in R-

Precision witnessed, as opposed to actually receiving better initial queries by familiar

users. This raises some interesting issues. How can we measure the quality of a query?

With respect to the ‘ideal’ queries? How does this affect the evaluation? And further,

is it possible to create queries that are ‘perfect’ queries, ideal queries which provide

optimal retrieval performance? Whilst these are interesting questions, they are beyond

the scope of the thesis and is left for further work.

1R-precision is the precision at R where R is the number of relevant documents in the collection for
the query. An R-precision of 1.0 is equivalent to perfect relevance ranking and perfect recall. However,
a typical value of R-precision which is far below 1.0, does not indicate the actual value of recall (since
some of the relevant documents may be present in the hitlist beyond point R).
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7.1.4 Assumptions of Retrieval Models

It is worth noting that the assumptions of Language Modeling (in part) are also appli-

cable to other retrieval models. Consider the VSM, we could recast assumptions A1

and A3 as:

VA1 The similarity of a document and a query is correlated with the document being

relevant, and

VA3 The user must select terms so that the query would be similar to the relevant

documents.

For VA1 to hold, it is reasonable to expect that the query terms used need to be con-

tained within the relevant documents (i.e VA3). However, there is no corresponding

assumption for A2 because under the VSM the data model and retrieval model are sep-

arate. For instance, we could use the document models from LM with some similarity

metric to define a specific VSM.

Each retrieval model makes its own assumptions about the retrieval process (implicitly,

or otherwise). Explicitly stating these assumptions may prove useful in identifying

other strengths/weaknesses of the model and provide a better understanding of the

process to extend and develop the model. For example, under the Language Modeling

Framework the user is a direct participant responsible for meeting certain criteria. A

further research question this motivates is - how do we go about supporting the user

in upholding or meeting such criteria? According to A2.1, the user needs to form

an understanding of the distribution of terms within the documents in the collection.

Providing this information to the user in some form or another should enable them to

formulate queries of better quality.

7.1.5 Interpretation of Smoothing

In Section 3.2.1, we posited that the query likelihood does not distinguish between its

contribution to the relevance of a document or its contribution to the non relevance of

a document. Under this interpretation of the query likelihood, the probability of a term
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being generated from a document model marginalizes relevance in the process, and is

expressed in Equation 3.12 (shown below):

p(t|θd) = p(t|R,d)p(R|d)+ p(t|N,d)p(N|d)

If we consider each of the components, we can express the standard Language Model-

ing approach by defining the components as follows:

1. The p(t|N,D) is approximated by the probability of a term occurring at random

in the collection, (i.e. p(t|θC)),

2. The p(t|R,d) is approximated by the probability of a query term occurring in the

document d, (i.e. the maximum likelihood estimate, p(t|d)), and

3. The priors are substituted, where p(R|d) = 1−λ and p(N|d) = λ

Then, we obtain the standard document model, expressed in Equation 3.28, shown

below:

p(t|θd) = p(t|d)(1−λ)+ p(t|θC)λ

The λ parameter represents the amount of smoothing that a document receives and this

affects the data model/retrieval model. By optimizing the data model, we can arrive at

a value for λ which provides the best fit of the underlying data. Empirically, we found

that this was approximately 0.5. However, under the analogy described above, the

interpretation of λ and 1−λ is somewhat different. They are considered to be the prior

probability of relevance given the document. Now, without any evidence to suggest

otherwise, the probability of relevance given a document is likely to go either way.

Similar to flipping an unbiased coin, the probability of each alternative is assumed

equal. Therefore, the most sensible estimate for λ would be 0.5. This is an interesting

observation, that the estimate of λ according to the mPL was more or less equal to the

estimate of λ according to our analogy. Remember that the standard Language Model

(i.e JM) was the most consistent in obtaining unification.

If we continue the analogy to consider Bayes Smoothing instead of Jelinek Mercer

smoothing, then λ is assigned the value β

n(d)+β
. Instead of a fixed prior for each docu-

ment, the prior using Bayes Smoothing is proportional to the length of the document.
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The motivation from a smoothing point of view was that a longer document provides a

better sample from which to estimate the document model than short documents, and

therefore require less smoothing. On the other hand, short documents are poorer repre-

sentations and require more smoothing. The analogy provides a different explanation

- the probability of relevance is higher for a longer document than a shorter document.

That is, we are now accounting for more than just the representation of the data but also

by the size of the document. This additional factor may be the cause of the mismatch

between the data model and retrieval model under Bayes Smoothing.

7.1.6 Study Limitations and Caveats

The extent to which we can make generalizations from these findings are conditioned

on accepting the following; (1) the expression and interpretation of the assumptions

of Language Modeling; (2) the statement of the assumptions into empirically based

hypotheses, and; (3) the analysis and measurement of each hypothesis. We raise some

of the points for each of the assumptions and mention any other related facets.

A1 We measured a document’s relevance through the Odds ratio because this is pre-

cisely the definition put forth by Lafferty and Zhai[78]. They argued the query like-

lihood is proportional to the Odds ratio. Nonetheless, document relevance may be

quantified in other ways such as those discussed in Section 5.3.3, though we believe

our interpretation is sound. However, the method with which we used to measure the

Odds ratio, the Relevance Model, could have been different. Instead, we could have

employed the BIM, but for consistency we choose the Relevance Model (being a re-

lated generative approach). This invites the question, whether the correlation would

be as strong under the BIM model or not. Further and more generally, how do other

retrieval models correlate with relevance.

A2 One of the main advantages voiced by Ponte[112] and Ponte and Croft[113] is

the notion of unification of the retrieval function and data model. We have taken this

notion to imply that we can infer a change in behavior of one (the retrieval model),

given the behavior of the other (the data model). Such that, if we obtain a better rep-
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resentation then we should be able to achieve better retrieval performance. However,

maybe this was meant just as an observation of the model, such that the change in one,

will directly influence the other, without stating what that change may be. Though,

Ponte[112] (p145-145) states that effective retrieval can be improved upon to the ex-

tent which the data models are an accurate representation of the data, and that the

user both understands the retrieval approach and have some sense of the distribution

of terms in documents (i.e. A2 and A3). Hence, we believe the former is implied,

implicitly.

A3 Quantifying sufficient discrimination is a contentious point, because what does suf-

ficient discrimination actually mean? We have approached the problem by considering

different thresholds which represent the users tolerance to non-relevant documents.

However, this still considers the problem at an aggregated level and not at the query

level, as for different queries we will have a different tolerance for the irrelevant. Our

interpretation was that a user would be happy if half the relevant documents that con-

tained those query terms were returned, then they would have been satisfied. This

would represent sufficient discrimination for that user given that request. This implies

that if the user submits a very specific query then they will not expect all the possible

relevant documents but they expect to see at least half the relevant documents which

match that query.

In our study, we simulated the user by generating ‘ideal’ queries on their behalf and

considering the effect. One limitation of this study is not having evidence to confirm

or deny whether users can execute the kind of queries that are suggested by A3.

Other We have not considered the external changes such as the effects of stemming

and stopping on the model parameter settings. How does the application (or not) of

these transformations change the nature of the Language Models? That is will the

parameter estimates being different and how will the mAP be affected? Further, how

well do other retrieval models satisfy the correlation of A1? For instance does the

Binary Independence Model or the Vector Space Model produce stronger correlations

with a document’s relevance? Presumably, the BIM would have the strongest or highest

proportion of correlations, whilst the VSM would probably be on par with the LM
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approach. However, without a point of reference or baseline the generality is limited

to Language Models.

7.2 Document Model Observations

So far we have been speaking in broad terms about the implications of our findings on

the validity of the assumptions. Here we present an overview of our observations for

the different document models that we employed through the course of this thesis and

comment on any interesting or useful behavior.

7.2.1 Standard Document Models

We summarize our analysis of each of the document models, Laplace, Jelinek Mercer

and Bayes Smoothing below.

LP The Laplace smoothed document models produced the poorest representations of

the underlying data out of all the document models tested. This is because of the

naive assumption made about the prior distribution, i.e that all terms have an equal

probability of occurring. The LP document models only really overcomes the ZPP,

as opposed to actually generating particularly good representations of the documents.

Consequently, the retrieval performance for the LP document models were the worst

among those assessed. However, the best retrieval results using LP were found when

α was a very small and in the range, 0.01 ≤ α ≤ 0.0001.

JM The Jelinek Mercer smoothed document models provided a substantial improve-

ment to the document model quality over the LP document models. This improvement

comes from the use of an informed prior (the background collection model). The best

representations of the underlying data were obtained when λ was set to approximately

0.55. At this parameter setting, the retrieval performance was optimal or near optimal

for the collections we used. That is, we obtained unification under the JM document

models. This is very close to the λ values suggested by previous research and also
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to our suggested value under our interpretation of the query likelihood (see Section

7.1.5 above) where the value of λ should be set to 0.5. We shall refer to the former

estimated Jelinek Mercer solution as JMe and the latter as JM50. Essentially, JMe and

JM50 were approximately the same. The difference resides in how they were obtained.

Previously, JM50 was originally suggested after empirical studies showed that the re-

trieval performance was maximized at or around this value. Here, we have approached

the query likelihood differently and ascertained JM50 from assigning equal likelihood

to the relevance of a document. Then from the assumptions of the LM approach, we

have derived JMe by using a technique for estimation that is consistent with the as-

sumptions. This provided the best possible choice of parameter setting according to

the data (and data model), without recourse to queries and relevance judgments.

BS Interestingly, the quality of the Bayes Smoothed document models were usually

slightly poorer than the Jelinek Mercer models. However, this difference was very

small as previously noted. When estimating the BS document models the best repre-

sentation tended to obtain reasonable retrieval performance. However it was not until

the data model was over fitted that the best retrieval performance was actually ob-

tained. We posited earlier, that this was because the prior probability is proportional

to the document length (i.e. p(R|d) ∝ n(d)). Under this interpretation, where we are

required to set the prior probability of relevance for a document, then in the absence

of any a priori knowledge, we would like to set the β parameter such that the average

probability of relevance given a document is equal to 0.5. To achieve this we would set

β equal to the average document length (mean or median) n̂(d). Consequently, docu-

ments greater than n̂(d) would be more likely to be relevant a priori, and conversely

documents shorter than n̂(d) would be less likely. In Table 7.1, we show the average

document length, the estimated β parameter from the ˆBDM, and the β parameter from

the BRM. Note that the estimated β is reasonably close to the average document length.

This is an interesting observation, and one that has already been derived from a dif-

ferent perspective. In [33], Fang et al. conducted a formal study on the heuristics of

retrieval algorithms. They applied constraints based analysis on the properties term

weighting function should exhibit. For Bayes Smoothing, they prescribed a lower

bound on the β parameter of n̂(d). Our study would seem to indicate that this is the
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n̂(d) ˆBDM β BRM β

MED 83 103.38 300

CACM 91 82.03 1000

CISI 230 228.54 3000

AP 243 279.02 2000

WSJ 247 371.6 2000

WT2g 218 219.55 5000

Table 7.1: The Average Document Length versus the estimated β. Notice the parameter

estimated parameter value is reasonably close to the average Document Length. In the

case of the WT2g collection, the distribution of document lengths was very skewed,

instead we present the median.

case according to our interpretation of the query likelihood and based on our empirical

findings.

Essentially, we can re-express the β parameter such that it is composed of two parts,

the average document length and a constant φ such that:

β = n̂(d)+φ (7.1)

The n̂(d) represents the portion of smoothing that needs to be applied in order to obtain

a reasonably good fit to the data, whilst the φ represents the normalization component

and could be estimated by drawing upon research in document length normalization.

7.2.2 Context Based Document Models

Our work on the assumptions of Language Modeling suggested two major directions

for improving performance of the approach, either by improving the query through

A3, or improving the document model through A2. We chose to investigate the lat-

ter, with respect to the Context Hypothesis. Hence, we explored the notion of using

the semantic associations (which define the context) within the modeling process in

order to generate better document models. Thus, we examined whether better repre-

sentations were obtained, and whether these resulted in better retrieval performance
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(A2). We found that we were able to create context based document models that gave

a better representation of the underlying generative process; further, that these models

could obtain significantly better retrieval performance. However, we could not always

estimate the model parameters to obtain such performance. This is a limitation which

needs to be addressed in order to use the context in such a manner.

As we previously mentioned, the increase in mPL of the context based models over the

standard models (BS and JM) was relatively small. It is an open question as to whether

this difference will have a significant impact on the retrieval performance. In terms of

mAP the performance of either type of model is not particularly different. A substan-

tially larger increase in the mPL is required based on the differences between BS/JM

and LP in mPL/mAP. However, there is a limit to the predictive likelihood and we sus-

pect that it is probably quite close to estimates obtained under the standard and context

based document models. Hence, the representations we have obtained are probably

as good as they can be2. This further suggests that the standard document models are

probably very good representations already, so there is probably not much point trying

to make them any better. Stated differently, the p(t|d) is already a reasonably good

approximation for p(t|d,R).

7.2.3 Model Limits

Similar limitations have been exposed within speech recognition[123], where decreases

in perplexity which is proportional to the predictive likelihood, have not translated into

better speech recognition performance (i.e. lower word error rate). Is this a prob-

lem with the generative probabilistic Modeling approaches in general? The traditional

probabilistic model used discrimination to discern whether a document is relevant

given a set of features (query terms). Under the Language Modeling approach, the

likelihood of a query being generated is used to rank documents, without regard from

whence it came (i.e. from a non-relevant or relevant document). The presumption

2The maximum predictive likelihood of the model is when the document model tends to the maxi-
mum likelihood estimate, reducing the error between the empirical term probabilities and the estimated
term probabilities. Unfortunately, we did not compute the maximum predictive likelihood during the
course of our experiments, so we are unable to definitively say.
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is that the query likelihood will sufficiently discriminate relevant from non relevant,

but this does not guarantee optimal ranking under the PRP. The analogy of the gen-

erative model is appealing but fundamentally it is limited by how well the predictive

likelihood indicates the performance of the model. Lately, there has been a move

toward discriminative approaches[103], such as Support Vector Machines[151]. How-

ever, such approaches still suffer in that training data (queries and relevance judge-

ments) are required to determine the best model parameters. Nonetheless, despite any

possible problems with the Language Modeling approach it still represents an elegant

model of retrieval, which offers a principled solution to parameter estimation. Whilst,

this is of limited utility, we must remember that the LM approach is only a model of

the retrieval process and every model has its limitations. Some of those limitations

for the LM approach for ad hoc retrieval have been exposed and discussed during the

course of this thesis.

In our case there becomes a point beyond which the quality of the data model is no

longer indicative of the performance of the retrieval model. As we have already men-

tioned this is due to other factors influencing the retrieval performance.

7.2.4 The Two Stage Model: Reconsidered

The two stage model was originally developed from the empirical results motivating

that the document and the query need to be modelled separately[163]. Recall, that

the first stage was to obtain a better representation of the documents, where they sug-

gested Bayes Smoothing. The second stage was to account for the query, where Jelinek

Mercer smoothing was suggested.

However, from our findings on the behavior of the different document model and our

interpretation of the query likelihood motivates a different approach for two stage

smoothing. Under the decomposition of the query likelihood in Equation 3.12 the

p(t|R,d) can be approximated by the p(t|θd), where we recommend JM50/JMe be-

cause it will provide the best representation.

p(t|R,d)≈ (1−λ)p(t|d)+λp(t|θC) (7.2)



Chapter 7. Discussion 195

The second stage of smoothing is introduced when we have to account for the prob-

ability of a term given a document and non relevance. This is approximated by the

non-relevance model (i.e the probability of the term coming from a non relevant doc-

ument) and is set to equal the background collection model p(t|θC). Now, we need

to assign the prior probability of relevance given a document, which we make propor-

tional to the document length (i.e. Bayes Smoothing).

The final estimation is shown in Equation 7.3, where the second stage is accounting for

document length normalization. Presumably, if query variance needed to be accounted

for, then it could add a further layer of smoothing.

p(t|θd) =
n(d)

n(d)+β
((1−λ)p(t|d)+λp(t|θC))+

β

n(d)+β
p(t|θC) (7.3)

Under this ‘reconsidered’ two stage approach it may be possible to obtain better re-

trieval performance from the context based models. This is because in Chapter 6, we

only considered making a better representation of document (or p(t|R,d)), whilst ig-

noring the influences of the p(t|N,d) and the document length.

7.2.5 Other Retrieval Models

We have exclusively restricted our attention to the Language Modeling approach to ad

hoc retrieval and we have not considered other retrieval models. We did so for a cou-

ple of reasons; (1) we wanted to deepen our understanding of the Language Modeling

approach, so that we could motivate future developments (such as the context based

document models). And (2) we wanted to see if the assumptions of Language Mod-

eling could be used to obtain better retrieval. Hence, the most appropriate baseline is

the standard Language Modeling approaches. Language models have been shown to

achieve comparable performance to the other models, and hence represent a sufficient

baseline for initial comparisons (i.e. can the baseline of standard document models be

surpassed by context based document models?).

Nonetheless, further research is motivated by our work to re-assess the Language mod-

eling approach with respect to the other retrieval models on the following points: (1)
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how do language models perform against other current competing models (such as

OKAPIs BM25 and VSMs TF.IDF) when the language models are either estimated

(JMe) or set to a standard parameter value setting (JM50, where λ = 0.5)?, and (2) do

other models correlate to relevance as well or better than LMs under the A1 assump-

tion?

7.3 Context Hypothesis

In Chapter 6, we examined three different forms of context within the context based

document models (PLSA, TOPIC and LINK). The context based document models

were our attempt at providing evidence for the Context Hypothesis. We have shown

that on occasions the contexts (PLSA and TOPIC) can benefit retrieval and so provid-

ing some support for the Context Hypothesis. However, on the whole there was no

significant difference between the standard and the context document models, when

the parameters were estimated. As mentioned above, we can only extract so much

(if any) in terms of retrieval performance by improving the document representations.

So, under the context based document models we can not provide enough evidence to

definitely support the Context Hypothesis.

However, it may be the way in which we have implemented the Context Hypothesis

through the document modeling side or the context we employed. Using the semantic

associations between documents as the context and the way we evaluated their perfor-

mance requires that these associations

• provide a better representation of the documents (i.e. A2)

• capture the users understanding of the documents in the collection (i.e. A2.1)

• are generalizable to all users, and

• are applicable regardless of the query/need (i.e query independent)

This raises several issues with context based document models. The quality of the

context will determine how good our representations are, which will in turn affect the
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document’s score with respect to a query (i.e. A2). How well the context will match

the query terms depends on how reflective the contexts are of representing the users

context. Here we have assumed that the contexts are generalizable to all users of the

system. However, in general this did not appear to be the case. For specific queries

we noted a substantial increase in retrieval performance. Possibly this was due to the

context being appropriate to that request. If this is the case, then model selection is

required to select which representations are going to provide the best retrieval per-

formance. Whether this is possible is as yet undetermined, but is being considered

elsewhere[111].

Our interpretation of the Context Hypothesis has been steered by the assumptions

of Language Modeling which prompted the development of context based document

models. The alternative to modeling on the document side, looking to improve the

query. For instance, we could employ context to expand the query or re-weight the

importance of query terms. Another option is that, we could consider context as a bias

that the user has for particular documents in collection given their information need.

This view considers the user’s immediate search context and defines their pre-existing

beliefs about what is relevant and what is not. During the course of searching, the

user refines their search, and their context narrows as they focus on particular docu-

ments (i.e. the relevant set of documents). In that sense, we can consider relevance as

a specific context. Restated, the semantic associations between documents define the

context, and this context is the set of documents relevant to a query. Under the Con-

text Hypothesis, a request to the IRS would comprise of two parts; the query and the

context. This context is usually assumed to be undefined and represents when no bias

is introduced by the user’s prior beliefs on relevance. Here we still consider context as

defined by a probability distribution over the vocabulary, however, other efforts have

examined context as a set of non textual features[122].

In the following subsection, we present the Integrated Language Modeling approach,

where we first derive the model and then show how we can incorporate the user’s

context as an a priori belief about the relevance of documents.



Chapter 7. Discussion 198

7.3.1 The Integrated Language Model

We begin our decomposition of the Integrated Language Modeling approach by start-

ing with the premise that we would like to rank documents according to the log Odds

of relevance given the document and a query (i.e the log Odds Ratio). This can be

expressed as:

logO(r|d,q) = log
p(q|d,R)
p(q|d,N)

+ log
p(R|d)
p(N|d)

(7.4)

Recall from Section 3.2.1, that the Odds Ratio and the right hand side expression are

mathematically equivalent, and for the expression to be reduced to the query likeli-

hood approach the two sub assumptions, A1.1 and A1.2, were required. We make no

such assumptions. Instead, we apply Bayes Theorem to the prior on relevance given a

document such that we obtain Equation 7.5.

logO(r|d,q) = log
p(q|d,R)
p(q|d,N)

+ log
p(d|R)p(R)
p(d|N)p(N)

(7.5)

Note that, the decomposition in Equation 7.5 is in direct contrast with the previous

probabilistic models because of the dependencies assumed. In Figure 7.1, the de-

pendencies between the variables q, d and R are shown for the classical probabilis-

tic model[119], the language model[113] according to [78], the generative relevance

model[83] and the integrated language model.

From this decomposition, we estimate the Odds ratio through an Integrated Language

Modeling approach. That is, we evaluate each conditional probability using generative

language models. We describe how to implement the model and show how under

different conditions the model can reduce to either the standard Language Modeling

approach or the Relevance Modeling approach (described in Section 3.5.5). Then, we

show how the user’s context can be encoded within such a model.

First, we assume a generative view of relevance can be taken as in [82], where rele-

vance and non-relevance are described as multinomial term distributions, respectively.

Thus, relevance R is defined by the relevance model θR, and similarly, non-relevance

N is defined by the non-relevance model θN . Further, we ignore the prior probability
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Figure 7.1: Graphical diagrams showing the dependencies between the query q, the

document d and relevance r variables in different probabilistic IR models. (Shaded

circles represent observable variables)



Chapter 7. Discussion 200

of relevance versus non relevance p(R)
p(N) , since it is a constant and will not affect the

ranking.

We also assume that p(q|d,R) can be approximated by p(q|θd,θR) and the p(q|d,N)

can be approximated by the p(q|θN) as done earlier. The odds ratio is now proportional

to Equation 7.6.

log
p(R|q,d)
p(N|q,d)

∝ log
p(q|θd,θR)

p(q|θN)
+ log

p(d|θR)
p(d|θN)

(7.6)

The query likelihoods are computed according to Equation 3.17 where it is assumed

that the query terms are drawn independently and identically from the document model

and non relevance model, such that:

p(q|θd,θR) = ∏
t∈q

p(t|θd,θR)n(t,q) (7.7)

p(q|θN) = ∏
t∈q

p(t|θN)n(t,q) (7.8)

where p(t|θd,θR) = (1−λ)p(t|θd)+λp(t|θR). The document likelihoods are comput-

ing according to Equation 3.50, where again the document terms are sampled indepen-

dently and identical drawn from the (non)relevance models.

p(d|θR) = ∏
t∈d

p(t|θR)n(t,d) (7.9)

p(d|θN) = ∏
t∈d

p(t|θN)n(t,d) (7.10)

The full ranking function, after substituting in the above expression can be expressed

as in shown below:

log
p(R|q,d)
p(N|q,d)

∝ log
∏t∈q p(t|θd,θR)n(t,q)

∏t∈q p(t|θN)n(t,q) + log
∏t∈d p(t|θR)n(t,d)

∏t∈d p(t|θN)n(t,d)

= ∑
t∈q

n(t,q) log

(
λp(t|θd)+(1−λ)p(t|θR)

)
p(t|θN)

+ ∑
t∈d

n(t,d) log
p(t|θR)
p(t|θN)
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So far we have presented an integrated model without respect to how one would actu-

ally instantiate the document model θd , relevance model θR and non relevance model

θN . The following sections detail how this could be performed when various states of

knowledge exist.

7.3.1.1 Without any prior knowledge

It is a typical scenario in information retrieval that the system is submitted a impover-

ished description of the users information need in the form of a query. Thus, we have

no a priori knowledge of the relevance model θR. In this situation the relevance model

can be assumed to be equivalent to the collection model θC since we do not know

any better. Whilst we have no knowledge about non-relevance distribution either, we

can use the collection model as an estimate of the non-relevance model θC. This was

originally proposed in the context of the classical probabilistic model[26] and the idea

has been successfully applied since for (non) Relevance Models[83]. This is quite a

reasonable estimate for non-relevance, and has been show to perform empirically well

in both instances. Therefore, θR = θN = θC and it represents the case when we have no

a priori knowledge. Consequently, the log posterior probability of the document given

relevance over non-relevance will be equal to zero. Further, if we set λ equal to one,

then p(t|θd,θR) = p(t|θd), making the ranking function proportional to the standard

Language Modeling approach.

log
p(R|q,d)
p(N|q,d)

∝ log
p(q|θd)
p(q|θC)

+ log
p(d|θC)
p(d|θC)

∝ log p(q|θd)

Obviously, this is similar to decomposition offered by Lafferty and Zhai[78]. However,

we arrive at the LM approach as a result of not knowing any other information, as

opposed to making a convenient assumption. When relevance information, either, a

priori or a posteriori, does become available we can incorporate this directly into the

model. This is without recourse to any theoretical problems of how to deal with the

relevance data, because there is a natural mechanism to utilize such information.
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7.3.1.2 With relevance information

When relevance information is available (either implicitly, explicitly or through pseudo

relevance feedback) then it is possible to obtain an estimate of the relevance model

p(t|θ̂R) a posteriori. Here, the relevance feedback is the context that is defined by

the set of documents which are relevant to the information need. A relevance model

p(t|θ̂R) is created with this set of feedback documents and then ranking can be per-

formed according to Equation 7.11, where the results will be query biased, so to speak.

Note, that this is going to result in a slightly different ranking to the originally proposed

relevance model[83], because the influence of the query is still a factor in the equation.

Depending on the difference between the two distributions, θR and θN , the bias intro-

duced by the query will vary. If the difference is very small, the influence of the query

will dominate the overall score, whereas if the difference is large, then the document

prior will dominate the ranking. This is a known problem with using the document

prior within the scoring function. This issue that will need to be addressed for the ef-

fective utilization of contextual evidence for both this approach and the standard LM

approach.

If we perform query contraction, such that |t ∈ q|= 0, then the ranking documents will

be based solely on the document likelihood and the model will be equivalent to the

generative Relevance Model[83].

7.3.1.3 With Context

Any form of context, defined as semantic associations between documents, can be

used to bias the retrieval of the documents so that the documents are ‘in context’ with

the user and their information need. As we previously mentioned in Chapter 4, the

context could be anything from topics and semantic clustering to user profiling and

collaborative filtering.

Given a set of predefined contexts x∈X , then the user could select the specific context x

that is the most appropriate for their need, or the IRS could attempt to select the context
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x on the user’s behalf. The context defined by p(t|x) would then be used to estimate an

a priori relevance model to bias the ranking according to the context x. The contexts

used in this thesis could be re-used such that they are chosen as the context of the user,

instead of using them for the context based document models. It would be interesting

to see whether selecting the context could improve the retrieval performance under the

integrated model, though this is left to future work.

The advantage of the Integrated Language modeling approach is that a priori knowl-

edge (i.e. context) can be encoded directly into the model, if available, whist still

ranking with respect to the query. When a posteriori relevance data becomes avail-

able, this too can be encoded directly into the model as relevance feedback. Further,

query expansion (or even contraction) may be performed, independently or in con-

junction with the relevance model. The integrated model provides several possibilities

for ingraining contextual evidence within a principled framework. Furthermore, the

Integrated Language Modeling approach provides a novel combination of the query

likelihood and document likelihood approaches within one framework.

7.4 Summary

In this chapter we discussed the main points relating to our research, including the

validity of the assumptions of Language Modeling, why the assumptions broke down,

and areas for further research. We acknowledged that there were other ways to incor-

porate context and concluded the chapter by proposing an alternative implementation

of the Context Hypothesis using the Integrated Language Modeling approach. This

approach can incorporate the users direct and immediate context within the model and

represents an integration between the different paradigms of language modeling for ad

hoc text retrieval.



Chapter 8

Conclusions

This chapter concludes the thesis with an overview of the work performed herein,

followed by a summary of the contributions to knowledge. Finally, we conclude the

thesis by detailing directions for future research which stem directly from this work.

8.1 Summary of Work

The premise of this thesis was that documents that are semantically associated tend

to be more relevant than documents that are not, with respect to the user and their

query. We adopted the Language Modeling approach as an intuitive framework for

naturally embedding the user’s context and understanding of the language used within

documents. By considering the underlying assumptions of the model, we identified the

possibility of obtaining better retrieval performance by building better representations

of the documents using the context associated with that document. Hence, we proposed

context based document models that attempted to capture the user’s understanding.

The user’s understanding was quantified through the semantic associations between

documents and reflected how the users perceived the documents in the document and

their context. This provided an instantiation of the Context Hypothesis, for which we

provided some evidence towards.

204
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Our testing and analysis commenced with an examination of three main assumptions

of the Language Modeling approach for ad hoc information retrieval. We found that

the underlying assumptions held to a certain extent, but there were times when the

assumptions were violated. We have ascertained that the query likelihood was corre-

lated to the document’s relevance. Further, this correlation improved when the user

submitted queries that sufficiently discriminated relevant documents from non relevant

documents. However, to make a stronger claim that the query likelihood is propor-

tional to the document’s relevance can not be justified by our research. The unification

of the data and retrieval model only occurred when certain smoothing techniques were

applied and the divergence of the data and retrieval model appeared to be from the

other factors known to affect the retrieval performance. When we built the context

based document models we were consistently able to build better document represen-

tations, however this did not neccessarily translate into better retrieval performance.

This shows that there would appear to be a limit as to how good the representation

needs to be, in order to achieve effective retrieval performance. On the other hand,

the analysis of the third assumption suggested that much improvement to retrieval

performance could be obtained if better queries (ones which are consistent with the

assumptions) were submitted.

Under our interpretation of the smoothing in Section 7.1.5, when we estimated a doc-

ument language model, one part was attributed to the query’s contribution to the rel-

evance of a document and the other accounted for the query’s contribution to the non

relevance of a document. Consequently, by smoothing the document models with

the background collection model, is it accounting for the query terms’ contribution

to non-relevance? (i.e. the noise detracting from our correlation between p(q|d) and

p(q|d,R)). By doing so, the model’s retrieval performance should improve and the

correlation in A1 should also improve. When we employed the context based docu-

ment models our focus was on attempting to improve the representational quality of the

documents. That is, we attempted to improve the document such that the distribution

of terms appearing within the document would be more indicative of the document’s

relevance. This led us to derive a different formulation of the two stage model, where

the first stage attempts to make the best representation of the underlying data as pos-
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sible, whilst the second stage of smoothing accounts for the non-relevance. However,

after re-considering how we can effectively use the context of document associations

to improve the retrieval performance, we proposed the Integrated Language Model-

ing where the information need is composed of both query terms and query context.

Under this approach, context was considered as a loosely defined notion of relevance

and when the context becomes more focused (explicated and model), it would define a

specific context, that of relevance with respect to the query.

The Language Modeling approach has provided a renaissance of the application of

probability theory to ad hoc Information Retrieval, which has led to many interesting

avenues of research. This thesis has taken an in depth examination into the theory and

application of the LM approach and exposed some of the limitations. Essentially, a

Language Model is only as good as the parameters that can be estimated. The extent

to which we can estimate these parameters such that it maximizes the retrieval perfor-

mance is dependent on the quality and amount of data that is available and, of course,

the validity of the model assumptions.

8.2 Contributions to Knowledge

Within this thesis there are several notable contributions. These are outlined below:

• The formalization of the underlying assumptions of the Language Modeling Ap-

proach for ad hoc Information Retrieval (See Section 3.2 and Appendix A).

• Development of a principled framework for context based document modeling

(See Chapter 4).

• Analysis of the underlying assumptions of the Language Modeling approach to

ad hoc retrieval [3](See Chapter 5).

• An evaluation of Probabilistic Latent Semantic Analysis within a language mod-

eling framework[4] (See Section 6.1).

• An empirical analysis of context based document language models on different
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collections. Contexts were represented by the association between documents,

either through unsupervised learning techniques, user interaction, or through ex-

plicit user reference (such as hyper links and citations)[4, 5]. (see Chapter 6).

• A different interpretation of smoothing was set forth which acknowledges rele-

vance in the model. (See Section 7.1.5).

• Recapturing dependencies to derive a two component language model - that ad-

dresses the criticisms of the standard and relevance modeling approaches by

providing a mechanism for both query expansion and relevance feedback. (See

Section 7.3.1).

8.3 Further Work

We have identified several avenues of future work which are motivated by the work

contained herein.

• The analysis of the assumptions made by other retrieval models; specifically

whether other retrieval models correlate as well or better than the Language

Modeling approach to the ranking according to the relevance of a document.

• A re-assessment of the retrieval performance obtainable by the Language Mod-

eling approach; when compared with other competing retrieval models how does

the Language Modeling approach fare when its parameters are estimated or set

to some nomimal value obtained through empirical evaluation such as JM50 and

JMe.

• An assessment of our two stage model to determine whether accounting for

the non-relevance contribution of query terms will improve the retrieval per-

formance of the context based document models.

• An exploration into document model selection, where the document model that

best represents the user’s understanding with respect to the query is selected with

the goal of maximising the retrieval performance.
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• A user study to validate whether the users can submit queries which are consis-

tent with the assumptions. Further, if users are trained can they submit queries

which are more effective with respect to retrieval performance.

• The development of user interfaces that support the user in formulating queries

which are consistent with the underlying assumptions of the Language Modeling

approach. Providing this information to the user in some form or another should

enable them to formulate queries of better quality.

• An investigation into whether we can determine when automatic query expan-

sion will improve the retrieval performance, and what type of query expansion

is most applicable given the information need (for instance using Q1 or Q2).

• The development and empirical testing of the Integrated Language Model to see

whether the context can be used as a surrogate for relevance, and if this can

improve retrieval performance. Further, to determine whether we can automati-

cally identify the appropiate context of the user to use in the Integrated Language

Model.
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Assumptions of Language Modeling

The underlying assumptions of Langauge Modeling are stated as follows:

A1 Correlation The probability of a query given a document is correlated with the

probability of a document being relevant[113, 57] . Stated, more firmly, the

probability of a query given a document is proportional to the probability of the

document being relevant[78]. Where for the latter, the following assumptions

are required:

A1.1 The probability of a document and a query given the event of non-relevance,

the document and query are independent. i.e. p(d,q|N) = p(d|N)p(q|N).

A1.2 The probability of a document and relevance (or non relevance) is inde-

pendent, i.e. p(d,R) = p(d)p(R) and p(d,N) = p(d)p(N)

A2 Unification The data model and the retrieval function are one and the same as

relevance is subsumed by the document modeling process[113, 78].

A2.1 The user has some understanding of the distribution of terms with in doc-

uments.

A3 Discrimination The terms that a user submits as a query will be sufficient in dis-

criminating relevant from non relevant documents

A3.1 The user will issue query terms that are highly discriminative[113], i.e.

209
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will identify relevant from non-relevant, or

A3.2 The user will issue query terms that are highly likely in relevant documents[96].
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