
ENDS 27 April 2011 Stuart Monro 1/17

General Purpose
Computing Using Graphics

Processing Units
(GPGPU Computing)

Stuart Monro
monros@dcs.gla.ac.uk

ENDS 27 April 2011 Stuart Monro 2/17

Terminology

What is a Graphics Processing Unit (GPU)?
A circuit to produce computer graphics.

Parallel Processing or Concurrency?
Parallel processing

Data parallel – where the same process is carried out on all (or a lot of) the data
simultaneously.

Task parallel – where different processes are carried out simultaneously (not
necessarily using the same data).

Data & task parallel processing will be explained in more detail later

Device vs Host?
Host – CPU
Device – GPU

ENDS 27 April 2011 Stuart Monro 3/17

Motivation

 A lot of research into the use of GPUs to implement parallel programming techniques

 GPUs are now consumer level devices

 Interest in GPU use within HPC rapidly increasing (available and cost effective)

 Parallel programming on GPUs is not straightforward

 Development of an abstract model or framework

ENDS 27 April 2011 Stuart Monro 4/17

History of GPU Computing

1992 – Silicon Graphics release OpenGL

Mid 1990s - release of first person games such as Doom, Duke Nukem 3D & Quake

2001 - Nvidia release GeForce 3 implementing Microsoft DirectX 8.0

2003 – continually improving performance of CPUs begins to slow

2005 – researchers begin to investigate GPUs as alternative platform to support HPC

2006 – Nvidia release the CUDA architecture to support general purpose GPU
computing

2008 – OpenCL specification released

ENDS 27 April 2011 Stuart Monro 5/17

CUDA and OpenCL

What are they?
CUDA – Nvidia's parallel computing architecture.
OpenCL – the open equivalent of CUDA

What are they used for?
CUDA – SETI

Protein folding simulation
Password recovery

OpenCL – no real world applications as yet identified but available on Nvidia & AMD
devices. Included in Apple's Snow Leopard OS.

Differences between them
OpenCL standard indicates that it will support task as well as data parallelism.
OpenCL not tied to a single architecture
OpenCL is not proprietary, managed by the Khronos group

Current state of play with both
Both are still under development however adoption of CUDA & research into its uses
has been more widespread to date.

ENDS 27 April 2011 Stuart Monro 6/17

Why Use a GPU?

Does your program have the following requirements?

 Large computations (lots of number crunching)

 Substantial parallelism (need to get a lot done simultaneously)

 Throughput more important than latency (successful computation over time delay)

ENDS 27 April 2011 Stuart Monro 7/17

Why Use a GPU?

Three of the top five supercomputers in the world use Nvidia GPUs

Rank Name Location GPUs Speed

1 Tianhe-1 China 7,168 2.507 PF
3 Nebulae China 4,640 1.27 PF
4 Tsubame 2.0 Japan 4,200 1.192 PF

Reduced power consumption
Accelerators for specific functions

ENDS 27 April 2011 Stuart Monro 8/17

The Architecture of a GPU

Source: http://www.pgroup.com/lit/articles/insider/v1n1a1.htm

Key features:

 Processors

 Memory

 Interconnect

http://www.pgroup.com/lit/articles/insider/v1n1a1.htm

ENDS 27 April 2011 Stuart Monro 9/17

GPU Memory

Global MemoryGlobal Memory

Local MemoryLocal Memory Local MemoryLocal Memory

SharedShared

TextureTexture

ConstantConstant

Host

Thread Processors

ENDS 27 April 2011 Stuart Monro 10/17

The Programming Model

Host Device

Memory Memory

1. Copy data from host memory to device memory

2. Send instructions from host to device

3. Execute instructions
in parallel

on data in device
memory

4. Copy results from device memory to host memory

ENDS 27 April 2011 Stuart Monro 11/17

CUDA Challenges

 Installing the SDK

 Understanding the model

The movement of data & results between host and device

Where code should be executed

 Suitability of code for parallelisation

Exploitable parallelism

Data dependency

 Ensuring memory requirements of the code are achievable

 Understanding & correctly implementing the different memory types on the device

ENDS 27 April 2011 Stuart Monro 12/17

CUDA Challenges (cont)

 Architectural differences between devices – memory, compute capability

 Thread Management

Execution flow

Same operation in parallel

Limited interaction

ENDS 27 April 2011 Stuart Monro 13/17

Current Work
Parallelisation of Standard Algorithms (Vector Addition)

+ =

Sequential approach:

for (i = 0; i < N; i++)
 c[i] = a[i] + b[i];

Parallel approach

__global__ void vectorAdd(int *a, int *b, int *c)
{
 int bId = blockIdx.x;
 if (bId < NUMOFCALCS)
 {c[bId] = a[bId] + b[bId];}
}
int main()
{

...
vectorAdd<<<NUMOFCALCS,1>>>(dev_a, dev_b, dev_c);
...

}

1 2 3 4 5 6 7 8 6 8 10 12

ENDS 27 April 2011 Stuart Monro 14/17

Current Work

Cost Model

Developing a formula which can help to predict if program performance will improve or
deteriorate through the use of a GPU

 Cost of computation
 Cost of memory access (global and shared)

 Cost of computations on the CPU
 Cost of communication with CPU
 Texture & constant memory
 Atomic operations

ENDS 27 April 2011 Stuart Monro 15/17

Current Work

Cost Model

1000 1000 1000 1000 2500 2500 2500 2500 5000 5000 5000 5000 7500 7500 7500 7500

0

1000

2000

3000

4000

5000

6000

7000

Matrix Multiplication Time

Sequential Time
Parallel Time

Source Matrix Size

T
im

e
 (

se
c)

ENDS 27 April 2011 Stuart Monro 16/17

Current Work

Abstract Model (A consistent set of concepts for GPU programming)

Develop an abstract model of the code written for the GPU in order to:

Identify (where possible) commonalities
 Allocation of memory, data structures & transfers

Highlight programming challenges & consider possible solutions
 Identification of code suitable for parallelisation

 Identification of code not suitable for the GPU (pointers to pointers)

 Memory restrictions

Determine what options need to be presented to a programmer
 Compute capability

 Memory utilisation (off chip vs on chip)

 Host – device communication optimisation

ENDS 27 April 2011 Stuart Monro 17/17

Thesis

 A cost model can be found which can be used to predict the performance of
different data parallel algorithms on different chip architectures

A data parallel GPU cost model can be combined with an existing CPU cost model

 A programming framework can be developed which will abstract away from the
architectural details of the GPU

 That framework can be developed in such a way that the portability of programs
between different chip architectures will be possible

 The syntax used within that framework by programmers to express their algorithms
will be executable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

