
ENDS 18 January 2012 Stuart Monro 1/35

Cost Modelling for Parallel
Programming

Stuart Monro
monros@dcs.gla.ac.uk

ENDS 18 January 2012 Stuart Monro 2/35

Motivation

High Level Techniques for Parallel Programming

with a focus on

Programming models and cost models for data parallelism

EU Funded Collaboration

 University of Bayreuth
 Chemnitz University of Technology

Visits:

 Gudula Rünger & Thomas Rauber - Glasgow 2010
 John O'Donnell – Bayreuth 2010
 Stuart Monro – Chemnitz 2011
 Jörg Dümmler – Glasgow 2012 (March)

ENDS 18 January 2012 Stuart Monro 3/35

Motivation

 Sequential algorithms can be sped up by running them on faster machines

The whole algorithm will speed up

 Parallel algorithms on parallel architectures benefit from more tuning parameters than
just overall speed of the machine

Memory usage
Thread management
Data management

 There are also limitations to the amount of parallelism that can be introduced to an
algorithm

Amdahl's Law
Inherent parallelism

 Restructuring a parallel algorithm in order to tune it is not straightforward. The
fundamental aim of this research is to help programmers perform this restructuring
exercise.

ENDS 18 January 2012 Stuart Monro 4/35

Motivation

 Extensive research has produced a large body of information regarding parallel
programming, algorithms and architectures

 Less clear is how to integrate these – which algorithms suit which architectures

 The investment of programming effort for any combination of algorithm and
architecture is very high. So it is important to make the correct decision at the outset

 That decision needs to be based on more than just data/task shorthand and intuition

 Aim is to provide a more concrete foundation to support the decision making process

ENDS 18 January 2012 Stuart Monro 5/35

Exploring the Design Space – An Analogy

Programmer
Finished
Program

1 week

2 hours

2 weeks

ENDS 18 January 2012 Stuart Monro 6/35

Exploring the Design Space – An Analogy

Programmer
Finished
Program

2 days

1 day

3 weeks

Cost Model

ENDS 18 January 2012 Stuart Monro 7/35

Exploring the Design Space

 Restructuring a parallel algorithm in order to tune it is not straightforward.

There is a large design space
Multicores – task & data parallelism
FPGAs – task & data parallelism
CPU clusters – task & data
GPUs – data (& task?)

 Too expensive in terms of time & effort to code these up to compare them, need a
cost model to provide a comparison on which to base a decision

The cost model can also help in terms of considering development time e.g.:
CPU cluster will result in 15% speed up & will require 100 hours of development
time
GPU will result in 25% speed up & will require 500 hours of development time

If a 15% performance gain is sufficient for the programmer's needs then CPU cluster
may be best solution

The cost model informs the decision

ENDS 18 January 2012 Stuart Monro 8/35

Cost Models

 A cost model expresses the execution time, memory consumption or power
consumption of an algorithm as a function of relevant parameters

 It can be used to predict the performance of an algorithm based on those parameters

 For example consider the following:

int sourceArray[i];
int resArray[i];
int j = 42;

for (k = 0; k < i; k++)
if sourceArray[k] < j

resArray[k] = 1;

 The performance of a parallel algorithm to carry out this task could potentially
depend on the following parameters:

Number of comparisons
Number of threads
Number and type of memory accesses
Cache behaviour

ENDS 18 January 2012 Stuart Monro 9/35

Cost Models

 Assuming off-chip memory is used, the cost model could look like the following:

Where:
x = number of operations
y = number of threads

 A & B = constants relating to the number of operations
C = constant relating to the number of off-chip memory accesses
D = constant relating to caching behaviour

f(x) = gives the predicted performance time in cycles

 These constants are known and will vary depending on the architecture used and the
structure of the algorithm.

ENDS 18 January 2012 Stuart Monro 10/35

Cost Models

 Cost models can assist both in:

Choosing the architecture
Structuring the algorithm.

 They can be used by the programmer to make key decisions based on empirical
data.

 There is a trade off between the usability and accuracy of the cost model:

The more accurate the model, the more complex it will be to use

A cost model does not need to be 100% accurate to be useful

ENDS 18 January 2012 Stuart Monro 11/35

Cost Models
 The cost model performance prediction may vary from the actual performance

 A percentage measure of accuracy is calculated as:

Where:
A = actual performance
P = predicted performance.

For example:

Actual execution time (in cycles) = 105,000

Predicted execution time = 100,000
Accuracy = 4.76%
Predicted execution time = 110,000
Accuracy = -4.76%

 Work at Bayreuth and Chemnitz has concluded that a model which produces an
accuracy of the actual time plus or minus 10% is useful

ENDS 18 January 2012 Stuart Monro 12/35

Using a Cost Model in Parallel Programming

 Parallel programming encompasses a wide range of architectures, from single nodes
with a few cores to supercomputers

 The construction & implementation of a supercomputer can cost $100millions

 This makes it important to manage the runtime of applications on such a platform

 A parallel application running in an environment such as a multi-node CPU cluster or
a supercomputer will consist of many tasks.

 In this context a task is a piece of work which can run on one or more processors
A task is not a thread but may use a collection of threads
Task examples:

Execute a specific algorithm (sum reduction of an array)
Update a display
Gather information from remote sensors

ENDS 18 January 2012 Stuart Monro 13/35

Using a Cost Model in Parallel Programming

 A function will exist relating to the task which can be used to calculate how long the
task will take to complete dependant on how many processors are allocated to it e.g.

 In this example
A=100
x = the number of processors allocated

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

No. Processors

T
im

e

ENDS 18 January 2012 Stuart Monro 14/35

Using a Cost Model in Parallel Programming

 Using this function we can effectively alter the running time of a task by amending the
number of processors allocated to it:

10

50

100

0 1 2 3 4 5 6 7 8 9 10

No. Processors

R
un

 T
im

e

ENDS 18 January 2012 Stuart Monro 15/35

Using a Cost Model in Parallel Programming

 The parallel application can be represented as a tree

 Each node in the tree will have processors available to it which will allow the
execution of specific tasks

 A key aspect of structuring a parallel application will include considering the partition
of such tasks, with attention being paid to:

Data dependencies
Communication costs
Processing requirements

N1

N1.2 N1.3N1.1

N1.2.1 N1.2.2 N1.3.1

N1.2.1.1 N1.2.1.2 N1.3.1.1 N1.3.1.2

N1.2.1.1.1 N1.2.1.1.2

ENDS 18 January 2012 Stuart Monro 16/35

Using a Cost Model in Parallel Programming

One node may require the execution of a number of tasks which have their own
dependencies

ENDS 18 January 2012 Stuart Monro 17/35

Using a Cost Model in Parallel Programming

If a cost model is available for each task then it should be possible to predict how long
each will take to run

Task Number Time Units Required

1 40

2 60

3 75

4 100

5 100

These predictions are based on the assumption that one processor is used for 1 task.

ENDS 18 January 2012 Stuart Monro 18/35

Using a Cost Model in Parallel Programming

If these cost models include parameters for the number of processors each task uses,
then the run times can be optimised to the minimum possible length overall for the
application by varying the number of processors available to each task.

The example below works on the basis that 10 processors are available in total

Total Time Taken = 40 Units

This is the approach used by Dümmler et al in their development of a scheduler for
multiprocessor task programming

Task Number Time Units Required

1 40

2 60

3 75

4 100

5 100
Total Time Units Required 375

ENDS 18 January 2012 Stuart Monro 19/35

Parallel Programming – Real World Examples

These examples were discussed at the 3rd UK GPU Computing Conference in
December 2011. In both cases, efforts made to accelerate existing programs
using GPUS were presented

Porting Fortran Oceanographic code to GPUs

 Science & Technology Facilities Council (part of Daresbury Science &
Innovation)
 Attempt to accelerate a European ocean model originally written in Fortran by

use of GPUS.
 Each module ported to GPU grew in size from ~400 lines of code to ~1000 lines

of code
 Total project took approx 6 months
 Four routines in total were ported to GPUs. Of those, speed-ups were achieved

on three routines. Maximum speed-up was around 25%
 Conclusion of the project participants was that the gains in performance did not

justify the effort expended

Cost models were not used in this exercise

ENDS 18 January 2012 Stuart Monro 20/35

Parallel Programming – Real World Examples

These examples were discussed at the 3rd UK GPU Computing Conference in
December 2011. In both cases, efforts made to accelerate existing programs
using GPUS were presented

BarraCUDA – Fast Sequence Mapping Software using GPUs

 University of Cambridge Metabolic Research Laboratories
 Attempts to accelerate genome sequencing by developing software targeting

many-core architectures
 Porting an existing algorithm to GPUs – no information regarding development

time
 First attempt failed to produce performance gains
 Second attempt saw partial success in that a 10% speed-up over the

performance of an 8 core CPU was achieved (not a like-for-like comparison)
 Research team expected better than this – a 10% speed up was not considered

satisfactory based on the effort involved

Cost models were not used in this exercise

ENDS 18 January 2012 Stuart Monro 21/35

Development of Cost Models

Two approaches to the development of a cost model:

 Theoretical development
 Measurement based development

In either approach the aim is to produce a function to predict the execution time of
the algorithm

ENDS 18 January 2012 Stuart Monro 22/35

Development of Cost Models

Theoretical development is based on an analysis of the characteristics of the
algorithm and the hardware that it is intended to be run on. For example, the
manufacturer of the hardware may produce documentation detailing how long
certain operations should take on their hardware e.g.:

Accessing global memory will take between 400-600 cycles
Accessing shared memory will take 4 cycles
Adding two integers will take 4 cycles
Multiplying two integers will take 16 cycles

The work done by Hong & Kim and Kothapalli et al takes this approach.

ENDS 18 January 2012 Stuart Monro 23/35

Development of Cost Models

Measurement based development focuses on developing benchmarks for
standard application operations and measuring how long these take to run. Such
operations could include:

Addition of two integers/floats
Multiplication of two integers/floats
Comparing two integers/floats
Read from memory
Write to memory
Transferring data between devices

Once the measurements are captured, models are then derived using curve fitting

int z, x = 42, y = 24;
start_time = clock()
loop n times

z += x + y
stop_time = clock()
duration = stop_time start_time

ENDS 18 January 2012 Stuart Monro 24/35

Why Use a Measurement Based Approach

A number of factors can affect the performance of an algorithm, not all of which
can be captured by a theoretical model:

 OS operations
 Code start up times
 Data transfer overheads
 Memory contention/latency
 Task scheduling mechanisms
 Architectural differences
 Unknowns

Some theoretical models (Hong & Kim) attempt to factor in some of these
(memory latency)

Running & measuring benchmarks gives a clear view of likely performance

The theoretical model bases its predictions on what should happen. The
measurement based model bases its predictions on what is actually

observed to happen

ENDS 18 January 2012 Stuart Monro 25/35

Developing a Measurement Based Model

Measurements will take into account unknown factors. A model based on
measurements would be developed iteratively starting with:

K = unknown factors

As a new factor is identified and measured this could be added to the model.

For example, if it was identified that the cost of memory contention is 10 cycles for
every 1000 accesses then the model could be expanded to:

K = remaining unknown factors.

As the model is refined, the impact of K on it will be reduced

ENDS 18 January 2012 Stuart Monro 26/35

The Development Approach

The approach taken to develop models will use measurement experiments as
follows:

 4 devices/architectures
Drygalski
Kryten
Curieuse 1
Curieuse 2

 Measuring:
Operations
Memory hierarchy
Standard functions

 Unit of measurement - cycles

 Results analysis

 Curve fitting

ENDS 18 January 2012 Stuart Monro 27/35

Ensuring Benchmarks Are Effective and Valid

First benchmark – adding two integers

Problem – regardless of value of n, duration remains the same!

Don Knuth - Analysis of assembly code allows us to see what is actually going on
rather than what we believe to be happening

Assembly listing showed that:

 Compiler performing addition operation
 At runtime, result of that addition was multiplied by n

Runtime measurement gives us the time to do that multiplication – nothing more

int z, x = 42, y = 24, n = 1000;
start_time = clock()
for (i = 0; i < n; i++)

z += x + y
stop_time = clock()
duration = stop_time start_time

ENDS 18 January 2012 Stuart Monro 28/35

Ensuring Benchmarks Are Effective and Valid

CUDA compiler produces intermediate assembly code listing in PTX format

 PTX is described by Nvidia as a low-level Parallel Thread eXecution virtual
machine and information set architecture.

 Mainly used for optimising kernels or developing cross-platform libraries

 Can also be used to abstract away from underlying GPU architecture

 In this case, used to analyse the effects of compiler optimisations on benchmark
code

(Full PTX listing not shown here due to its verbosity)

ENDS 18 January 2012 Stuart Monro 29/35

Ensuring Benchmarks Are Effective and Valid

Analysis of the compiled benchmark code at the assembler level ensures that the
benchmark is doing what is intended

Initial benchmarks were affected by compiler optimisations resulting in invalid
results:

$LDWbegin__Z12runBenchmarkPjPiii:

...

ld.param.s32 %r3, [__cudaparm__Z12runBenchmarkPjPiii_numKernelLoops];
mul.lo.s32 %r5, %r3, 66;

...

Revised code produced the following:

$LDWbegin__Z12runBenchmarkPjPiii:

...

@%p1 bra $Lt_0_3330;
ld.param.s32 %r3, [__cudaparm__Z12runBenchmarkPmPiiiii_numKernelLoops];
mov.s32 %r5, %r3;
ld.param.s32 %r6, [__cudaparm__Z12runBenchmarkPmPiiiii_firstInt];
ld.param.s32 %r7, [__cudaparm__Z12runBenchmarkPmPiiiii_secondInt];
add.s32 %r8, %r6, %r7;

...

ENDS 18 January 2012 Stuart Monro 30/35

The Experimental Approach – Curve Fitting

The development of a mathematical model (describing a curve) which best fits a
series of data points

Matlab provides functionality to produce such models

That model then forms the basis of the cost model for the operation which
originally produced the data points

A (very simple) example:

The function f(x) = x will produce a straight line

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

f(x)

x

f(
x)

ENDS 18 January 2012 Stuart Monro 31/35

The Experimental Approach – Curve Fitting

The graph produced by the addition of two integers:

ENDS 18 January 2012 Stuart Monro 32/35

The Experimental Approach – Curve Fitting

A linear model to describe that graph (seen on previous slide):

Where

A = 42
B = 215

If a 95% confidence interval is used then the upper and lower bounds of A and B
can also be specified:

A (41.5, 42)
B (210, 217)

ENDS 18 January 2012 Stuart Monro 33/35

Methodology

The methodology used for each experiment is as follows:

 Benchmark code written in C/CUDA to perform specific operation
Variation in each benchmark is the number of loops (10,000 – 1,000,000 in
increments of 10,000)
Each variation of each benchmark is run 10 times

 Results are analysed using Matlab and a model for each benchmark is

developed

 Model is tested with a utility written in Java to apply the model to every
benchmark variation and compare the recorded actual result with the result
predicted by the model

 Each experiment is run overnight between midnight & 4am (to avoid GPU use
conflicts)

 Each experiment is run at least 5 times

 To date over 150 experiments have been run on three different architectures

ENDS 18 January 2012 Stuart Monro 34/35

Results to Date

 Models have been developed for six different operations on two different
architectures.

 This development has included testing those models to ensure that they meet
the required accuracy levels

 Some finalisation is required to ensure that differences in results between
experiments are supported

 Further experiments have been developed to handle different input parameters
to those operations (varying the number of threads) these are expected to be run
and analysed in the next 1-2 weeks

 Work has begun on development of experiments to produce models for different
aspects of the memory hierarchy

ENDS 18 January 2012 Stuart Monro 35/35

Next Steps

 Investigate impact of caching/kernel optimisation as part of memory hierarchy
modelling

 Produce models for higher level functions (map, reduction, scan)

 Incorporation into TwoL (in conjunction with Chemnitz & Bayreuth)

 Expansion into more complex algorithms/applications

 Publish

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

