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Abstract

We study the biochemical processes involved in scaffold-mediated crosstalk between the cAMP and
the Raf-1/MEK/ERK pathways. We model the system by a continuous time Markov chain with lev-
els and analyse properties using Continuous Stochastic Logic and the symbolic probabilistic model
checker PRISM. We consider two kinds of properties of the model, causal events and pulsating be-
haviour, and, in order to formulate these properties, we enrich the model with trend formulas. The
system is currently under wet-lab investigation and our approach was developed in collaboration
with the experimentalists.
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1 Introduction

Intracellular signal transduction pathways are the mechanism whereby signals
are transmitted from a receptor to the nucleus, where they determine a re-
sponse such as cell growth or apoptosis. Scaffold proteins can play a major role
in these pathways as they anchor particular proteins into specific locations for
receiving signals or transmitting them. Under certain circumstances, a scaf-
fold can increase the output of a signalling cascade or decrease the response
time for a faster output. While individual pathways have a specific signalling
role, they can also interact with each other, called cross-talk. In this paper we
consider how to model and reason about the scaffold-mediated crosstalk be-
tween the cyclic adenosine monophosphate (cAMP) and the Raf-1/MEK/ERK
pathways, an interaction that has an important role in the regulation of cell
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proliferation, transformation and survival. The scaffold protein is A-kinase
anchoring protein, usually abbreviated to AKAP.

The behaviour of AKAP is complex and is the topic of current wet-lab
investigation; we have worked with life scientists at the University of Glasgow
in the development of this model, which we believe to be the first formal
model. As experiments are ongoing, some aspects of the behaviour are still
unknown and the subject of conjecture.

Since some information is incomplete, our approach to modelling AKAP is
based on a stochastic, computational and concurrent view, using continuous-
time Markov chains (CTMCs). In particular, we use an abstraction of CTMCs
based on discrete levels of concentrations, namely CTMC with levels [6]. The
formal language used for modelling is the state-based language underlying
the probabilistic symbolic model checker PRISM [9]. We express temporal
properties of the model in Continuous Stochastic Logic (CSL) [1], focusing
on causality properties and pulsations. In order to express these properties,
we define trend formulas for variables in the PRISM model which compute for
every state the probability that the value of a specific variable increases or
decreases during a transition.

The main contributions of this paper are the following:

• a novel, formal model of AKAP scaffold-mediated crosstalk between the
cAMP and the Raf-1/MEK/ERK pathways, developed in collaboration with
wet-lab experimentalists,

• validation of pulsation behaviour through model checking with rewards,

• introduction of trend formulas and the use of transient temporal properties
in CSL to prove formally causality and pulsation properties.

The paper is organised as follows. In the next section we give an overview
of AKAP scaffold behaviour. In Sect. 3 we give an overview of the PRISM
model. Section 4 contains a description of some properties of interest and the
results of analysis. Conclusions and directions for future work follow.

2 The AKAP Scaffold

In intracellular signal transduction pathways, scaffolds are proteins that play
mainly an organisational role rather than a signalling role [8]. Scaffolds have
two functions:

• anchoring function by placing particular proteins in specific intracellular
locations for receiving signals or transmitting them;

• catalytic function by increasing the output of a signalling cascade or de-
creasing the response time for a faster output under certain circumstances.
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Fig. 1. Interactions between cAMP, unfilled AKAP scaffold, free PDE8A1 and filled scaffold

We are interested in the AKAP mediated crosstalk between cyclic AMP and
the Raf-1/MEK/ERK pathways. Figure 1 illustrates AKAP and its anchoring
role as positions are filled and unfilled. We focus here on the following species:

• cyclic adenosine monophosphate (cAMP);

• protein kinase A (PKA) which is the main cAMP effector;

• Raf-1 with two phosphorylation sites of interest, Serine 338 (S338) and
Serine 259 (S259);

• phosphodiesterase 8 (PDE8A1);

• phosphatase PP.

An overview of AKAP’s behaviour is as follows:

Activation and inhibition of Raf-1. If the concentration level of cAMP
rises above the basal one, cAMP activates PKA by binding to its regula-
tory subunits. When PKA becomes active, its catalytic subunits catalyse
the transfer of ATP terminal phosphates to the phosphorylation site S259
of Raf-1. The site S338 of Raf-1 is inhibited when S259 is phosphorylated.
Only when S338 gets phosphorylated, the pathway Raf-1/MEK/ERK is ac-
tivated and the signalling cascade begins.

Downregulation by PDE8A1. The catalytic function of PKA sometimes cou-
ples with the AKAP, by binding PKA together with phosphodiesterase
PDE8A1 on the scaffold to form a complex that functions as a signal module.
Under these conditions, as the cell is stimulated, cAMP activates PKA, and
then PKA is responsible for the activation of PDE8A1 (by phosphorylation).
PDE8A1 converts cAMP to AMP by hydrolysis. If phosphorylated, PDE8A1
degrades more cAMP, hence rapidly reducing the amount of cAMP that can
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activate PKA; this leads to a feedback mechanism for downregulating PKA.

The inhibition of Raf-1 at S338 is correlated with a high activity of PKA.
At the beginning, cAMP synthesis is induced, causing a rise of PKA’s activity,
which then causes the inhibition of Raf-1.

In Fig. 1 we use three types of arrow to distinguish between different types
of interactions:

• A activates or phosphorylates B : A //B

• A dephosphorylates B : A //___ B

• A degrades B : A �
B

The arrow with no source and with target cAMP represents a diffusion of
cAMP from the environment.

Scaffold notation. The AKAP scaffold has three positions to be filled by
PKA, Raf-1 and PDE8A1 respectively. Hereafter we use a binary representa-
tion of the states of each position: 1 for activation or phosphorylation and 0
otherwise. The second position concerns the state of the site S259 of Raf-1. If
the scaffold position for PDE8A1 is not filled, we only represent the first two
positions of the scaffold. For instance S100 stands for a filled scaffold with
active PKA and unphosphorylated site S259 and PDE8A1, whereas S01 for an
unfilled scaffold with inactive PKA and phosphorylated S259.

2.1 Biochemical Reactions

In Fig. 2 we describe the biochemical reactions of the model. Each reaction
is given in pseudo-chemical notation, with explicit reference to the scaffold
positions (the underlying reactions have mass action kinetics). We associate
reaction rate constants (from r1 to r26) with each biochemical reaction.

Currently, we do not have good experimental data concerning rates for the
reactions. However, we have some information on the ratio between the rate
of PKA phosphorylating Raf-1 at site S259 and PDE8A1 (either on the scaffold
or not). On unfilled scaffolds, PKA phosphorylates two or three times less
unscaffolded PDE8A1 than Raf-1 at site S259 from the same scaffold. On filled
scaffolds, PKA phosphorylates Raf-1 at S259 and PDE8A1 at the same rate.
Consequently the relation between constant rates of the reactions involving
PKA phosphorylating either PDE8A1 or Raf-1 is: r4 = r5 = r6 = r10 = r11 =
3 ∗ r12 = 3 ∗ r13. In addition, phosphorylated PDE8A1 degrades about three
times more cAMP than PDE8A1 does, hence we deduce the following ratios
between the constants rates of the reactions where PDE8A1 degrades cAMP :
r19 = r20 = r21 = r22 = r23 = r24 = 3 ∗ r25 = 9 ∗ r26.

Finally, when PKA and PDE8A1 form a complex on the scaffold, PKA’s
activity becomes more efficient.
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(cAMP diffusion)

→r1 cAMP

(PKA activation)

S000 + cAMP →r2 S100

S00 + cAMP →r3 S10

(S259 phosphorylation)

S100→r4 S110

S101→r5 S111

S10→r6 S11

(S259 dephosphorylation)

PP + S010→r7 PP + S000

PP + S011→r8 PP + S001

PP + S01→r9 PP + S00

(cAMP release)

S111→r17 S011 + cAMP

S11→r18 S01 + cAMP

(PDE8A1 phosphorylation)

S100→r10 S101

S110→r11 S111

S10 + PDE8A1→r12 S10 + pPDE8A1

S11 + PDE8A1→r13 S11 + pPDE8A1

(PDE8A1 dephosphorylation)

PP + S001→r14 PP + S000

PP + S011→r15 PP + S010

PP + pPDE8A1→r16 PP + PDE8A1

(cAMP degradation)

S011 + cAMP →r19 S011

S001 + cAMP →r20 S001

S100 + cAMP →r21 S100

S110 + cAMP →r22 S110

S010 + cAMP →r23 S010

S000 + cAMP →r24 S000

pPDE8A1 + cAMP →r25 pPDE8A1

PDE8A1 + cAMP →r26 PDE8A1

Fig. 2. Biochemical reactions occurring during scaffold-mediated crosstalk between the cAMP and
the Raf-1/MEK/ERK pathway. The notation Sv1v2v3 represents a filled scaffold with v1, v2, v3

denoting the activation state of the bound PKA, S259 and PDE8A1 respectively, i.e., 0 for inactive
and 1 for active or phosphorylated. Similarly, Su1u2 represent a filled scaffold with u1 and u2

denoting the activation state of the bound PKA and S259 respectively.

2.2 Properties

Our collaboration with life scientists has revealed the following expectations,
or conjectures, about AKAP’s behaviour.

Causal relation between concentration fluctuations. From discussions
with life scientists, informally we define causality to mean: assuming ↑x (↓x)
denotes increasing (resp. decreasing) concentration levels for the species x, if
we have ↑ x ⇒ ↓ y then a decrease in y’s level is necessarily preceded by an
increase in x’s level. It is expected that increasing amounts of phosphorylated
PDE8A1 leads to a cascade of changes in the concentration levels of the other
reactants: decreasing amounts of cAMP and active PKA, and an increase in
the activity of Raf-1 – due to lower levels of phosphorylated Raf-1 at site S259.
Informally, we express this causality relation by the following:

↑ pPDE8A1 ⇒ ↓ cAMP ⇒ ↓ active PKA ⇒ ↑ active Raf-1

Pulsating behaviour. Time courses from laboratory experiments suggest
the presence of a pulsating behaviour in the system. The pulsations ensure
that the state of the Raf-1 pathways alternates between active and inactive
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(note: very long periods of activity or inactivity may increase the risk of dis-
ease). In the current model we do not consider explicitly interactions between
cAMP and Raf-1. However, the system is not closed since we include a kind
of exogenous interaction concerning the diffusion of cAMP. We conjecture this
makes the system exhibit a pulsating behaviour corresponding to the feed-
back mechanism for the downregulation of PKA, coupled with the diffusion
of cAMP. Note that we call such a behaviour pulsating, not oscillating. This
is because oscillation assumes fluctuation around a given value; current data
does not provide us with such a value, hence our choice of pulsating rather
than oscillating behaviour.

We note that these properties require a semi-quantitative analysis since
they involve relative rather than exact values and since we have approximate
data on the reaction rates and the concentration amounts of each species.

3 The PRISM Model for the AKAP

Continuous-time Markov chain (CTMC) with levels models were introduced
in [3,6] as stochastic, population based models that are more abstract than
molecular CTMCs – the models underlying stochastic simulation in which
states are characterised by counts of molecular species. In a CTMC with
levels, states are characterised by concentration ranges, discretised into a num-
ber of levels, for each species. One advantage of this approach is that it is
semi-quantitative, allowing us to deal with incomplete or only relative informa-
tion about molecular concentrations, often the case in experimental settings.
Furthermore, in comparison to the CTMC underlying a stochastic simulation,
CTMCs with levels have a reduced state space, leading to models that may
be amenable to stochastic model checking.

Informally, in a CTMC with levels each species is characterised by a num-
ber of levels, equidistant from each other, with step size h. We assume that
all the species have the same step size. We assign to each species different
concentration levels, from 0 (corresponding to null concentration) to a maxi-
mum number N. Here, we assume all reactions have mass action kinetics and
stoichiometry equal to one.

Definition 3.1 [CTMC with levels] Given a finite set of atomic propositions
AP , a continuous-time Markov chain (CTMC) is a triple C = (S,R, L) where
S is a finite set of states, R : S × S → R≥0 a rate matrix, and L : S → 2AP a
labelling of states. For a given state s, there is a race between outgoing tran-
sitions from s if there are more than one states s′ such that R(s, s′) > 0. The
probability that a transition from s to s′ completes within t time units when
R(s, s′) > 0 is determined according to the memoryless negative distribution
and is equal to 1− e−R(s,s′)·t.
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A CTMC with levels for a biochemical system is a CTMC where the states
represent levels of concentrations of the species and the reactions between
species define transitions and transition rates between states defined as follows.
For n different species (Ai)i=1..n, a state is a tuple s = (l1, l2, . . . , ln) with
li the discrete concentration level for the species Ai, for all i = 1..n. Let
us consider a reaction in general form Ai1 + . . . + Aik

r−→ Aj1 + . . . + Ajl

with i1, . . . , ik and j1, . . . , jl ranging from 1 to n pairwise distinct, and r the
constant reaction rate. We associate to this reaction the characteristic species
vectors pre and post of size n for the set of reactants and the set of products
respectively. Then the reaction can be fired from a state s if s − pre ≥ 0
and s− pre + post ≤ (N, . . . , N). If a transition from s is taken according to
this reaction, then we move to the state s′ = s− pre + post . The rate of the
transition R(s, s′) is equal to the product of the concentration levels of the
reacting species r

h
· li1 · . . . · lik .

Following the style adopted in [4], we define a PRISM model 3 of AKAP
using CTMCs with levels as follows. A molecular species is represented as
a PRISM process (module) and its behaviour by labelled transitions. The
reactions are represented by multi-way synchronisations between transitions
based on common labels. There is one module for each species, i.e. for cAMP,
scaffold, unscaffolded PDE8A1 and PP, each with corresponding variables rep-
resenting levels of concentrations. In particular, the module for the scaffold
has a variable for each possible combination of scaffold positions (S000, S100,
S101, S110, S011, S010, S001, S111, S00, S10, S01, S11). Commands in the
modules correspond to reactions, which are synchronised on each participat-
ing module (i.e. consumers and producers in the chemical reaction) based on
common labels. Additionally, we define diffusion of cAMP from time to time.

As an example, consider the reaction r2 from Fig. 2 indicating that cAMP
activates PKA when the level of cAMP is above the basal level. Then in the
module describing cAMP we add the command:

[activate_PKA] (cAMP > basal_camp) -> (cAMP) : (cAMP’ = cAMP-1);

in the module describing the scaffold we have the coupling command:

[activate_PKA] (S000 > 0) & (S100 < scaffold_max) ->

(S000) : (S100’ = S100+1) & (S000’ = S000-1);

and in the module with all constant rates we add the command with the same
label as for the other two commands:

[activate_PKA] true -> (r2/h) : true;

where h is the step size obtained by dividing the maximal molar concentration
of the species by the number of levels chosen for the discretisation. Through

3 The full PRISM model of AKAP is available at http://www.dcs.gla.ac.uk/~muffy/akap.
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synchronisation on the common label, the transition rate will then be the
product of r2/h and the concentration levels of cAMP and PKA.

Unless otherwise stated, we assume the number of levels N = 3. We con-
sider maximum N levels of filled/unfilled scaffolds, 2∗N levels of phosphatase
PP, and around N/2 levels of unscaffolded PDE8A1. Whereas for cAMP, since
it is diffused in the system, we allow a greater concentration of cAMP, maxi-
mum 10 ∗N . The state space of the model with N = 3 has the size of order
1.6∗ 106 with 1.4∗ 107 transitions. The time for model construction was 2.355
seconds on a 2 GHz Intel Core 2 Duo processor with 4GB memory.

4 Model-Checking the AKAP Model

In this section we formalise the properties described in Sect. 2.2 and we use
PRISM [9] to verify their satisfaction (or not). First we use rewards to compute
the expected level of concentration at a particular time. However this analysis
is not sufficient to confirm the causality relation between events and the pul-
sating behaviour. So second, we consider transient properties. We extend the
set of state formulas of the CTMC model to include trend formulas for some
variables of interest. The aim is to reason in terms of ascending/descending
(positive/negative) trends for particular concentration levels of populations.
Prior to this, we review very briefly the syntax and semantics of CSL and the
PRISM model checker.

Continuous Stochastic Logic (CSL) [1] is a stochastic extension of the Com-
putational Tree Logic (CTL) allowing one to express a probability measure of
the satisfaction of a temporal property in either transient or in steady-state
behaviours. The formulas of CSL are state formulas and their syntax is the
following:

State formula Φ ::= true | a | ¬Φ | Φ ∧ Φ | P./ p[φ] | S./ p[φ]

Path formula φ ::= X Φ | Φ UI Φ

where a ranges over a set of atomic propositions, ./∈ {≤, >,≥, >}, p ∈ [0, 1],
and I is an interval of R≥0. There are two types of CSL properties: transient
(of the form P./ p[φ]) and steady-state (of the form S./ p[φ]). For this current
work we are only interested in transient or time-dependent properties. A
formula P./ p[φ] is true in state s if the probability that φ is satisfied by the
paths starting from state s meets the bound ./ p. The path formulas are
constructed using the X (next) operator and the UI (time-bounded until)
operator. Intuitively the path formula X Φ is true if Φ is satisfied in the
next state, whereas Φ1 UI Φ2 is true if Φ2 is holds at some time instant in
the interval I and at all preceding time instants Φ1 holds. This is a minimal
set of operators for CSL. The operators false, disjunction and implication
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can be derived using basic logical equivalences. Two more path operators are
available as syntactic sugar:

• the eventually operator F (future) where FI Φ ≡ true UI Φ, and

• the always operator G (globally) where GI Φ ≡ ¬(FI ¬Φ).

The PRISM language supports rewards (or cost) structures for extending
the set of state formulas in CSL [9]. In this paper we are only interested in
instantaneous rewards which have the form R./ r[I

=t] with ./∈ {≤, <,>,≥},
r, t ∈ R≥0. Such a formula, from a state s, is true if the expected state reward
at time instant t meets the bound ./ r.

The PRISM probabilistic model checker has a property specification lan-
guage based on the temporal logics PCTL, CSL, LTL and PCTL∗, including
extensions for quantitative specifications and rewards. PRISM allows one to
express a probability measure that a temporal formula is satisfied. The bound
./ p may not be specified, in which case a probability is calculated in PRISM.
We can check the satisfaction of properties of a signalling pathway like sta-
bility of a protein by steady state analysis (the concentration of a protein
becomes stable at a particular level and stays there for some reaction rates),
or transient behaviour of proteins (concentration peak within a given time
interval or conditioned by a specific state of another protein, monotonic in-
crease of protein concentration), and many more. A model can be extended
with information about rewards or costs such that one can analyse expected
values of the rewards cumulated up to a specific state or a time instant, at a
specific time instant, or in a steady-state.

4.1 Reward-based Analysis of the AKAP Model

For each species of interest: phosphorylated PDE8A1, free cAMP (not bound
to some PKA), active PKA and phosphorylated Raf-1 at site S259, we associate
a reward structure which evaluates to the expected level of concentration at a
particular time. For example, the following instantaneous reward associated
with pPDE8A1, named phosphopde8, computes the sum of the expected lev-
els of unscaffolded and phosphorylated pPDE8A1 and the expected levels of
scaffolded and phosphorylated PDE8A1, at each time instant:

rewards "phosphopde8"

true : pPDE8A1 + S101 + S111 + S001 + S011;

endrewards

We use the temporal query R”phosphopde8”=?[I
=T ] for the reward phosphopde8

with T an integer variable ranging from 0 to 30 time-units. In Fig. 3 we plot
the expected levels of concentration for each species. We observe delays in
peak successions for all variable values as expected. However, this does not
prove that the properties expressed in Sect. 2 are satisfied, it does not prove
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Fig. 3. Expected levels of concentrations of phosphorylated PDE8A1, free cAMP, active PKA, and
phosphorylated Raf-1 at site S259 after 30 time-units

there is a causality relation between all pulsations. In order to prove causality
we consider transient properties based on trend formulas.

4.2 Trend-based Analysis of the AKAP Model

We compute the positive or ascending (negative or descending) trend of a vari-
able in a CTMC model based on the probability of any state where the value
of the variable increases (decreases) being the next state to which a transition
is made from the current state. For R a set of biochemical reactions and A
a species involved in some reactions in R, the probabilities for positive and
negative trends in a state s are computed by the following formulas:

P↑A(s) =

{∑
{ρ(r, s) | r ∈ R, preA(r) < postA(r)}/E(s), if E(s) 6= 0

0, otherwise

P↓A(s) =

{∑
{ρ(r, s) | r ∈ R, preA(r) > postA(r)}/E(s), if E(s) 6= 0

0, otherwise

where ρ(r, s) returns the transition rate of the reaction r if possible in state s,
or 0 otherwise, and E(s) is the exit rate of state s, i.e., E(s) =

∑
r ρ(r, s). We

choose a confidence threshold of ξ for the probabilities to indicate a positive
or negative trend which we choose to take the value 0.6 for our model. Then
the formula ↑ A is a state formula for the CMTC with levels model and it
says that the species A follows an ascending trend in state s if P↑A(s) ≥ ξ.
Similarly, the formula ↓ A is true if P↓A(s) ≤ ξ. The trend formula for a
variable in the CTMC model is the stochastic counterpart of the sign of the
first-order derivative for the same variable in the associated ODE model.

We add trend formulas to the PRISM model for cAMP, active PKA (PKA*)
and scaffolded phosphorylated PDE8A1 (pPDE8A1) using PRISM formulas and
labels. We illustrate in the following the procedure for computing the ascend-
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ing trend formula for active PKA. The concentration level of active PKA is
increased only by reactions r2 and r3. The rates of the transitions corre-
sponding to these reactions are computed by formulas rate_r2 and rate_r3

respectively with respect to the current state. In case a reaction is not pos-
sible in the current state, the transition rate takes the value 0. The rates for
all transitions induced by the reactions depicted in Fig. 2 are computed in a
similar manner and the formula exit_rate represents their summation. The
probability P↑PKA A(s) in the current state s is given by formula PKA_A_up,
while the state label trend_PKA_A_up will be used in the CSL formula for
reasoning over the ascending trend of active PKA, denoted by ↑ PKA∗.

formula cond_r2 = (cAMP>basal_camp)&(S000>0)&(S100<scfld_max);

formula rate_r2 = (cond_r2 ? (r2/H)*(cAMP*H)*(S000*H) : 0);

formula cond_r3 = (cAMP>basal_camp)&(S00>0)&(S10<u_scfld_max);

formula rate_r3 = (cond_r3 ? (r3/H)*(cAMP*H)*(S00*H) : 0);

formula rate_PKA_A_up = rate_r2 + rate_r3;

formula PKA_A_up = (exit_rate=0 ? 0 : rate_PKA_A_up/exit_rate);

label "trend_PKA_A_up" = (PKA_A_up>=threshold);

In the following we formalise the temporal properties of Sect. 2.2.

Necessarily Preceded.

We express the causality property stated in Section 2.2 as a temporal
query using the necessarily preceded or requirement pattern [10]. This pattern
represents an ordering relation between two events, the occurrence of the later
being conditioned by the occurrence of the former: a state φ is reachable and
is necessary preceded all the time by a state ψ. This pattern is expressed as
the CTL formula EFφ ∧ (AG((¬ψ)⇒ AG(¬φ))).

Assume the following two state formulas φ1 = (↓ cAMP ∧ ↓ PKA∗) and
ψ1 = ↑ pPDE8A1 with φ corresponding to a state where the levels of cAMP and
active PKA are decreasing, and ψ to a state where the level of phosphorylated
PDE8A1 is increasing. Employing basic propositions equivalences, we translate
the requirement pattern into CSL to obtain the following formula which was
checked as true for our PRISM model:

P>0[Fφ1] ∧ P≥1[G((¬ψ1)⇒ P≤0[Gφ1]))] −→ true

We express a tighter causality relation between increasing concentration levels
of pPDE8A1 (ψ2 =↑ pPDE8A1) and decreasing levels of cAMP (φ2 =↓ cAMP)
using the following formula checked as true for our PRISM model:

P≥1[F((¬ψ2 ∧ ¬φ2)U(P≥1[(ψ2 ∧ ¬φ2)Uφ2]))] −→ true
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This formula stands for ↑ pPDE8A1 ⇒ ↓ cAMP in the notation from Sect. 2.2
and it states that there is a continuous time period where the trend of pPDE8A1
is not descending and the trend of cAMP is not descending until the concen-
tration level of pPDE8A1 starts increasing and soon after the level of cAMP
starts decreasing. This CSL pattern can also be employed in order to show
that ↓pPDE8A1 ⇒ ↑cAMP and ↓ cAMP ⇒ ↓ PKA∗.

Pulsating behaviour.

An oscillating behaviour concerns fluctuation around a given value k. Os-
cillation and its expression as temporal formulas in CTL and PCTL has been
studied in [2] and informally described as always in the future, the variable
x departs from and reaches the values k infinitely often. The corresponding
CTL formula is AG(((x = k) ⇒ EF(x 6= k)) ∧ ((x 6= k) ⇒ EF(x = k))).
In the context of BIOCHAM [5], a weaker form of oscillation properties ex-
pressed in CTL is used with the symbolic model checker NuSMV; the oscil-
lating behaviour is approximated by the necessary but not sufficient formula
EG((EF¬ϕ) ∧ (EFϕ)).

We are interested in pulsating behaviour, i.e. no fixed k. We therefore
consider oscillations (around 0) of the values of some variables. We refer to
this approximate oscillating behaviour as pulsation. Note that we can observe
a pattern corresponding to a pulsation in Fig. 3: we repeatedly have the situ-
ation where the level of phosphorylated PDE8A1 increased whereas the levels
of cAMP and active PKA decreased, and then the level of phosphorylated
PDE8A1 decreased whereas the levels of cAMP and active PKA increased.
Assume the two state formulas φ = ( ↑ pPDE8A1 ∧ ↓ cAMP∧ ↓ PKA∗) and
ψ = ( ↓ pPDE8A1 ∧ ↑ cAMP∧ ↑ PKA∗). The CSL formula describing a pul-
sation involving the two state formulas φ and ψ is the following and it was
checked as true for our model using PRISM:

P≥1[G((φ⇒ P>0[Fψ]) ∧ (ψ ⇒ P>0[Fφ]))] −→ true

Similarly we can show individual pulsations for pPDE8A1, cAMP and PKA∗.

5 Conclusion and Future Work

We have developed a formal model of the behaviour of the AKAP scaffold
and scaffold-mediated crosstalk between the cAMP and the Raf-1/MEK/ERK
pathways. The model is a CTMC with levels and is implemented in the PRISM
language.

The behaviour of this scaffold is complex, with feedback, and the model
was developed in collaboration with wetlab experimentalists. We have con-
sidered the questions and conjectures concerning system behaviour posed by
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experimentalists; these include sequentially dependent events and pulsating
behaviour. In the context of imprecise and incomplete data, pulsation seems
more appropriate than oscillation. We have used rewards and CSL to express
the properties, and checked them with the PRISM model checker. In order
to express pulsation, we have defined trends. Discussions with the experi-
mentalists confirm their interest and validation of the model and analysis.
A stochastic approach seems particularly suited to this problem, given they
do not know absolute reaction rates, but some ratios. In this case, they are
interested in causal behaviour and trends, rather than precise quantities.

Future work includes reasoning about the amplitude of the pulsation and
we will investigate the relation between trends in a CTMC model and the
sign of first-order derivatives in the corresponding ODE model. Derivatives
have been considered previously in the context of model checking biochemical
systems. For example in BIOCHAM [7,11], oscillatory properties are analysed
using queries expressed as formulas in LTL with constraints over real numbers.
Such formulas are interpreted over traces of states and a state include not
only the concentration value of each molecule but the value of its first order
derivative as well.

We will also refine the model with data on the rates, as more data become
available, and add more detail about relationships within the model (e.g., four
molecules of cAMPs are required to activate one PKA).

We note that we have investigated further hypotheses, such as whether
the way PDE8A1 decreases the PKA phosphorylation of Raf-1 at S259 can be
counterbalanced by the addition of a PDE8A1 inhibitor such as the a drug
Dipyridamole. This is the topic of a further paper.
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