Interpreting Computational Models
of Interactive Software Usage

Oana Andrei Muffy Calder
Oana.Andrei@glasgow.ac.uk Muffy.Calder@glasgow.ac.uk
University of Glasgow, UK University of Glasgow, UK
Matthew Chalmers Alistair Morrison
Matthew.Chalmers@glasgow.ac.uk Alistair.Morrison@glasgow.ac.uk
University of Glasgow, UK University of Glasgow, UK
ABSTRACT

Evaluation of how users actually interact with interactive software is challenging because users’
behaviours can be highly heterogeneous and even unexpected. Probabilistic, computational models
inferred from low-level logged events offer a higher-level representation from which we can gain
insight. Automatic inference of such models is key when dealing with large sets of log data, however
interpreting these models requires significant human effort. We propose new temporal analytics to
model and analyse logged interactions, based on learning admixture Markov models and interpreting
them using probabilistic temporal logic properties and model checking. Our purpose is to discover,
interpret, and communicate meaningful patterns of usage in the context of redesign. We illustrate by
application to logged data from a deployed personal productivity iOS application.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

Computational Modeling in Human-Computer Interaction, May 5, 2019, Glasgow, UK

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM... $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Interpreting Computational Models

Computational Modeling in Human-Computer Interaction, May 5, 2019, Glasgow, UK

CCS CONCEPTS

« Mathematics of computing — Markov networks; Maximum likelihood estimation; « Human-
centered computing — User models; Ubiquitous and mobile computing design and evaluation meth-
ods; « Theory of computation — Modal and temporal logics; Verification by model checking.

KEYWORDS

log analysis, usage behaviour, admixture, probabilistic temporal logic, model checking, mobile apps

ACM Reference Format:

Oana Andrei, Muffy Calder, Matthew Chalmers, and Alistair Morrison. 2019. Interpreting Computational Models
of Interactive Software Usage. In Proceedings of Computational Modeling in Human-Computer Interaction. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

INTRODUCTION

Interactive software users are heterogeneous in that they may adopt different usage styles for the
same software. Furthermore, each individual user may move between different usage styles, from
one interaction session to another, or even during a session, possibly due to a variety of contextual
factors. To analyse these differing and dynamic usage styles, we defined a new temporal analytics
approach [1-3] to model and analyse temporal data sets of logged interactions, with the purpose of
discovering, evaluating, and communicating meaningful patterns of usage—and eventually informing
the redesign of the interactive software.

Our temporal analytics approach is based on the following stages: (1) instrument the interactive
software to log events, (2) create user traces from logs, (3) segment user traces based on selected
time intervals of usage, (4) infer parameters for probabilistic models of behaviour for each set of user
traces — admixture models with K activity patterns, (5) choose instances of temporal logic properties
from predefined classes of properties, and define new properties specific to the software under
evaluation, (6) run probabilistic model checking for combinations of probabilistic models and temporal
logic properties, (7) interpret the results of probabilistic model checking, label activity patterns, and
compare across models w.r.t. time intervals of usage and number of number of activity patterns (K),
(8) recommend redesign ideas on the basis of these results and interpretations. This list only sketches
a cleaned version of the analysis processes underlying our approach. In practice, the many different
resources listed above are used together, and the members of the analytics team go back and forth
between them often, combining and comparing the intermediate insights and results.

Here, we give an overview of our past and on-going research and illustrate it on an iOS app with
over 40,000 downloads as of September 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Interpreting Computational Models

) =\

oo | ey
) B

A population admixture model (PAM)

QA(LD A(z,z)m
Xq X
DN EOSPO
>0 |7 <
) ||)

X1

A generalised population admixture model (GPAM)

Figure 1: Pictorial representation of PAMs
and GPAMs for K = 2 and two hidden
states x; and x3. The two activity patterns
are the discrete-time Markov chains in
each box, with yo,y1,y2,y3 the observed
states. Transition probabilities are indi-
cated by the thickness of transitions. 6,
is the probabilistic distribution over the K
activity patterns for the m-th user trace in
PAM, where 1 < m < M and M is the num-
ber of user traces. A is the transition ma-
trix for hidden states in GPAM.

Computational Modeling in Human-Computer Interaction, May 5, 2019, Glasgow, UK

FROM LOGS TO USER TRACES

Raw log data is processed to obtain discrete time series data of timestamped user-initiated events for
each unique device identifier. We call such discrete time series user traces, with the caveat that each
user trace corresponds to a unique device identifier—since a user may be running the same software
on several devices. The state labels UseStart and UseStop denote the beginning and end of each
user interaction session respectively. Each user trace is a temporal ordering of events that contains a
variable number of sessions, and each session is a variable-length sequence of timestamped events.
We segment a set of traces according to time intervals of usage.

POPULATION ADMIXTURE MODELS

Our experience of analysing interactive software indicates that usage models do not depend only on
relatively static attributes such as location, gender or age of users, but also on dynamic attributes such
as styles of use, that may change in time, shared in a population of users. Motivated by [4, 8], we
assume the existence of a common set of activity patterns that can be estimated from all observed user
traces in population of users. We expect activity patterns to be dynamic in the sense that the observed
pattern changes over time, both for an individual user and for a population, and each individual user
may move between different activity patterns.

We model activity patterns as first-order discrete-time Markov chains (DTMCs). First-order Markov
models have been used for modelling in many related problems, such as human navigation on
the Web [5, 7, 13], usability analysis [14], mobile applications [9], human interactions with search
engines [16]. We defined two new computational models of usage behaviour [2] as admixtures of K
activity patterns as follows:

o Population admixture models (PAMs) are admixtures of activity patterns with a distribution 6
over hidden states (i.e., over activity patterns) for each user trace.

e Generalised admixture models (GPAMEs) are first-order auto-regressive hidden Markov models
(ARHMMs) [12] which express explicit relationships (probabilistic transitions) between observed
states (within an activity pattern) and between hidden states (i.e., activity patterns).

Each of the models PAM and GPAM (illustrated in Fig. 1) offers a different perspective on usage
behaviours, and consequently affords different analysis. Each admixture component has the same
set of observed states, but the transition probabilities are different, as indicated by the thickness
of transitions. The number of mixture components/activity patterns, K > 2, is an exploratory tool:
we do not try to find the "correct” or optimal value for K, instead we explore the variety of usage
styles that are meaningful to software evaluation. We infer the parameters of the admixture models
from the segmented user traces using statistical methods for maximum likelihoods, the Expectation-
Maximisation algorithm [6] for PAMs and the Baum-Welch algorithm [17] for GPAMs.

Interpreting Computational Models

Table 1: Syntax and semantics of PCTL for-
mulae for M a DTMC, init(M) the initial
state of M, s a state, a an atomic proposi-
tion, <€ {<,<,>,>},p € [0,1], N € NU {co}.
If N is co then it can be omitted.

State formulae

O :=true|a| Q| PAD|Poap[¥] | Seap[®]
Path formulae

Y= X0 | oUSN @

Satisfaction relation

M = @ if init(M) = @

s |= true is always true

s |= false is always false

s |= aiff a labels s

s |= @ iff s |= @ is false

sE D ADiff s |=dg and s |= @
sE® VO, iff s |= Py ors |= Py

s |= Puap[¥] iff the probability that ¥ is satisfied by the
paths starting from state s meets the bound > p
s [= Seap[@] iff the steady-state (long-run) probability of

being in a state that satisfies ¥ meets the bound > p

FS"® = trueUS" @

Computational Modeling in Human-Computer Interaction, May 5, 2019, Glasgow, UK

INTERPRETING ADMIXTURE MODELS
Probabilistic Temporal Logic and Model Checking

We use probabilistic model checking with PRISM [10] for reasoning over DTMCs. Probabilistic
computation tree logic (PCTL) allows expression of a probability measure of the satisfaction of a
temporal property by a state of a DTMC, see Table 1. PRISM allows one to assign rewards/costs to
states and/or transitions, and to compute expected values of cumulative rewards within a number of
time-steps or until a state formula holds.

Probabilistic Temporal Logic Properties for Interpreting Admixture Models

We defined the following classes of temporal properties for analysing either individual activity patterns
in PAM and GPAM as well as for analysing the DTMCs resulting from flattening GPAMs [2]:

VisiTProB: filter(state, P-o[¢;U=N¢,], #y) computes the probability that ¢; holds until reach-
ing a state in which ¢, holds, within N time-steps, when starting from a state satisfying ¢,.
VisiTCounT: filter(state, Ryarerwa=2[C=N], ¢o) computes the expected reward accumulated

over N time-steps when starting from a state satisfying ¢,.
STePCouNT: filter(state, Ryeprwa=2[F #1], $o) computes the expected number of steps accumu-
lated before reaching a state satisfying ¢; when starting from a state satisfying ¢,.

Some instances of these properties are: the probability to reach a particular screen view, the probability
of reaching one state from another, the average number of visits to a state from another state, the
average number of steps to each state, the average number of sessions — all within a fixed number of
time-steps (e.g., button taps), the average session length. GPAMs allow us to reason over behaviours
involving several activity patterns, for example the likelihood of changing activity pattern after visiting
a particular state. We can also compute the long run probability to be in a particular activity pattern.

Evaluation of Model Checking Results

We adopt the general inductive approach for analysing qualitative evaluation data [15]: aggregating,
categorising, and ordering the results; creating English language labels for categories based on multiple
cross-readings of the tables alongside their textual (category) descriptions; and continually revising and
refining the category sets. We require that the programmer(s), designer(s), analyst(s), and evaluator(s)
collectively agree on the labels.

CASE STUDY: THE APPTRACKER MOBILE APP

AppTracker [11] is an app for jailbroken iOS devices consisting of a background logging framework
that records information on device use, and a foreground Ul that displays a rich set of charts and
statistics on the user’s app usage (see Fig. 2 for screenshots). Users can view lists of the most-used apps,

Interpreting Computational Models

(a) Main view

Overall Stats

Usage stats

Recording data since 24 Jun 2013

Total usage time 14.3 hours
Number of apps used 31
Most used app Tweetbot >
Total app launches 510
Average day

Average daily use 40.9 minutes
Average daily apps used 9.8
Average app launches 24.3
Most active day

28 Jun 2013 3.4 hours >

(b) Stats view

Figure 2: AppTracker screenshots

Computational Modeling in Human-Computer Interaction, May 5, 2019, Glasgow, UK

filter by time period, or view detailed information on usage of an individual app. For the purposes of
this paper, we consider data gathered from between August 2013 and May 2014 from 489 users. For
analysis, we selected 16 user-initiated events that switch between views. These views determine the
atomic propositions labelling the states in our probabilistic models.

We analysed PAMs and GPAMs for K = 2,3,4,5, and the time intervals first day/week/month
and second and third month of usage. For K = 2, the two types of activity patterns are INDEPTH —
more in-depth usage statistics for specific periods of interest, and BRowsING — more high-level usage
statistics for the entire recorded period. For K > 3, we identified two additional types of activity
patterns: one is GLANCING for short-burst and high frequency behaviour centred usually around one
or two particular states, and the other Loop for quick switches between two states (which is rather
characteristic of an in-depth visualisation behaviour).

We had not anticipated the effect of the new content available in Stats (Fig. 2(b)) only after the
first month of usage - indeed, we were unaware there was any new content until we studied the
analysis results. The new content (or absence) appears to have a profound effect on engagement
(when in BRowsING) and the focus of attention (when in INDEPTH in the second month).

The analysis showed the activity patterns we uncovered did not follow the top level menu structure.
This prompted discussions within the design team, about the role and impact of hierarchical menus
on user interactions, whether the top-level menu structure supports the activity patterns or not.

Finally we note that by identifying typical glancing patterns and the specific screens that users
look at when they are undertaking short sessions of glancing-type behaviour, our approach may offer
a principled way of selecting content appropriate for widget extensions.

Based on these results we recommended three changes for the redesign of AppTracker to achieve a
clearer separation between the main menu options, one favorable to a glancing-like usage and the
other to an in-depth usage, hence changing from three main option in version 1 to two main options
in version 2: (i) move the states conducive to the Loop pattern uncovered in the BROWSING part of the
app to the INDEPTH part; (ii) move the Stats view to the INDEPTH part of the menu; (iii) add more
content in the GLANCING part of the app regarding today’s device usage.

CONCLUSION AND FUTURE WORK

By modelling and analysing the different processes of software usage over a dynamic, heterogeneous
population of users, we have developed new and effective tools for understanding how software is
actually used. Our analytics, based on inferred admixture models and temporal probabilistic logic
properties, offer insights into such populations via temporal and sequential patterns - i.e., forms of
abstraction, structure and insight not afforded by traditional statistical, observational and visual
methods. We are currently working on analysing and evaluating the newer version of the AppTracker
app, redesigned on the basis of recommendations arising from our initial analysis. Future work will

Interpreting Computational Models

Computational Modeling in Human-Computer Interaction, May 5, 2019, Glasgow, UK

involve application to other types of interactive systems, and generalisation of our approach to a
principled way of providing software redesign recommendations as part of a user-centered design
process.

ACKNOWLEDGMENTS

This research was supported by EPSRC Programme Grants A Population Approach to Ubicomp System
Design (EP/J007617/1) and Science of Sensor Systems Software (EP/N007565).

REFERENCES
[1] Oana Andrei and Muffy Calder. 2017. Temporal Analytics for Software Usage Models. In Software Engineering and Formal
Methods - SEFM 2017 Collocated Workshops (LNCS), A. Cerone and M. Roveri (Eds.), Vol. 10729. Springer, 9-24.
[2] Oana Andrei and Muffy Calder. 2018. Data-driven modelling and probabilistic analysis of interactive software usage.
Journal of Algebraic and Logical Methods in Programming (JLAMP) 100 (2018), 195-214.
[3] Oana Andrei, Muffy Calder, Matthew Chalmers, Alistair Morrison, and Mattias Rost. 2016. Probabilistic Formal Analysis
of App Usage to Inform Redesign. In Proc. of iFM’16 (LNCS), Vol. 9681. Springer, 115-129.
[4] James F. Bowring, James M. Rehg, and Mary Jean Harrold. 2004. Active learning for automatic classification of software
behavior. In Proc. of ISSTA'04, G. S. Avrunin and G. Rothermel (Eds.). ACM, 195-205.
[5] Flavio Chierichetti, Ravi Kumar, Prabhakar Raghavan, and Tamas Sarlés. 2012. Are web users really Markovian?. In Proc.
of WWW’12, A. Mille, F. L. Gandon, J. Misselis, M. Rabinovich, and S. Staab (Eds.). ACM, 609-618.
[6] A.P.Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society. Series B (Methodological) 39, 1 (1977), 1-38.
[7] Carlo Ghezzi, Mauro Pezzé, Michele Sama, and Giordano Tamburrelli. 2014. Mining Behavior Models from User-Intensive
Web Applications. In Proc. of ICSE’14, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 277-287.
[8] Mark Girolami and Ata Kaban. 2004. Simplicial Mixtures of Markov Chains: Distributed Modelling of Dynamic User
Profiles. In NIPS’03, S. Thrun, L. K. Saul, and B. Schélkopf (Eds.). MIT Press, 9-16.
[9] Vassilis Kostakos, Denzil Ferreira, Jorge Gongalves, and Simo Hosio. 2016. Modelling smartphone usage: a Markov state
transition model. In Proc. UbiComp’16, P. Lukowicz, A. Kriiger, A. Bulling, Y.-K. Lim, and S. N. Patel (Eds.). ACM, 486-497.
[10] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time
Systems. In Proc. of CAV’11 (LNCS), G. Gopalakrishnan and S. Qadeer (Eds.), Vol. 6806. Springer, 585-591.
[11] Alistair Morrison, Xiaoyu Xiong, Matthew Higgs, Marek Bell, and Matthew Chalmers. 2018. A Large-Scale Study of iPhone
App Launch Behaviour. In Proc. of CHI’18. ACM, 344:1-344:13.
[12] Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. The MIT Press.
[13] Philipp Singer, Denis Helic, Andreas Hotho, and Markus Strohmaier. 2015. HypTrails: A Bayesian Approach for Comparing
Hypotheses About Human Trails on the Web. In Proc. of WWW’15. ACM, 1003-1013.
[14] Harold W. Thimbleby, Paul A. Cairns, and Matt Jones. 2001. Usability analysis with Markov models. ACM Trans.
Comput.-Hum. Interact. 8, 2 (2001), 99-132.
[15] David R. Thomas. 2006. A General Inductive Approach for Analyzing Qualitative Evaluation Data. American Journal of
Evaluation 27, 2 (2006), 237-246.
[16] Vu Tran, David Maxwell, Norbert Fuhr, and Leif Azzopardi. 2017. Personalised Search Time Prediction using Markov
Chains. In Proc. of ICTIR’17,). Kamps, E. Kanoulas, M. de Rijke, H. Fang, and E. Yilmaz (Eds.). ACM, 237-240.
[17] Lloyd Welch. 2003. Hidden Markov Models and the Baum-Welch Algorithm. IEEE Inf. Th. Soc. Newsletter (2003).

	Abstract
	Introduction
	FROM LOGS TO USER TRACES
	POPULATION ADMIXTURE MODELS
	INTERPRETING ADMIXTURE MODELS
	Probabilistic Temporal Logic and Model Checking
	Probabilistic Temporal Logic Properties for Interpreting Admixture Models
	Evaluation of Model Checking Results

	CASE STUDY: THE APPTRACKER MOBILE APP
	CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

