

A Graph Rewriting Calculus: Applications to Biology and Autonomous Systems

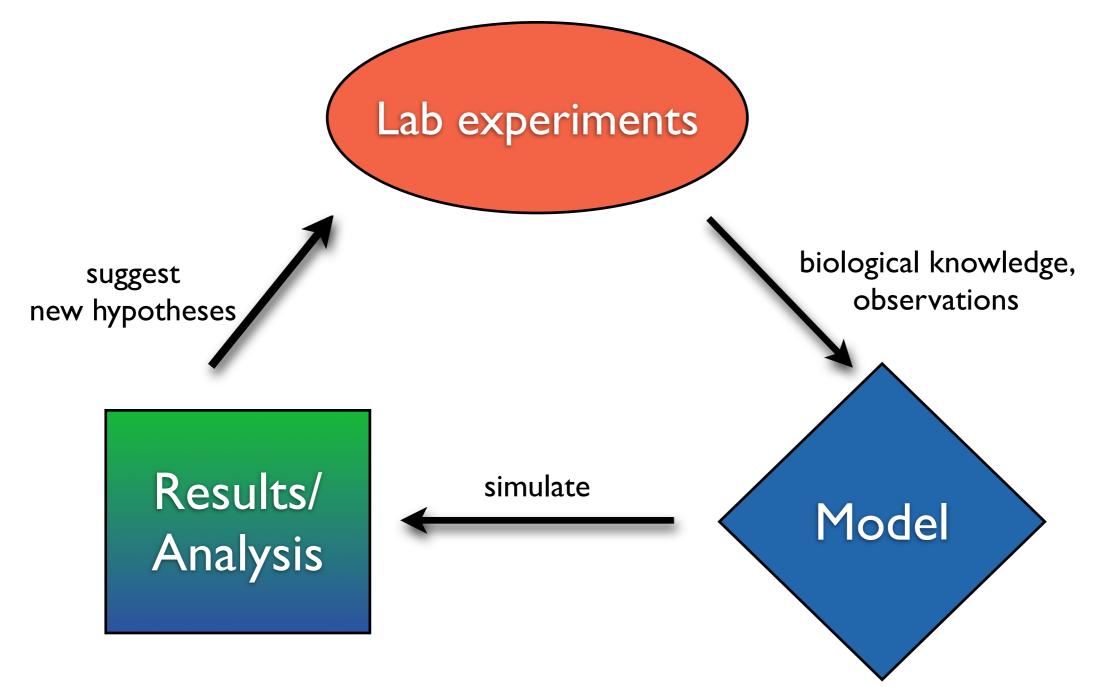
Oana Andrei

PhD Defense

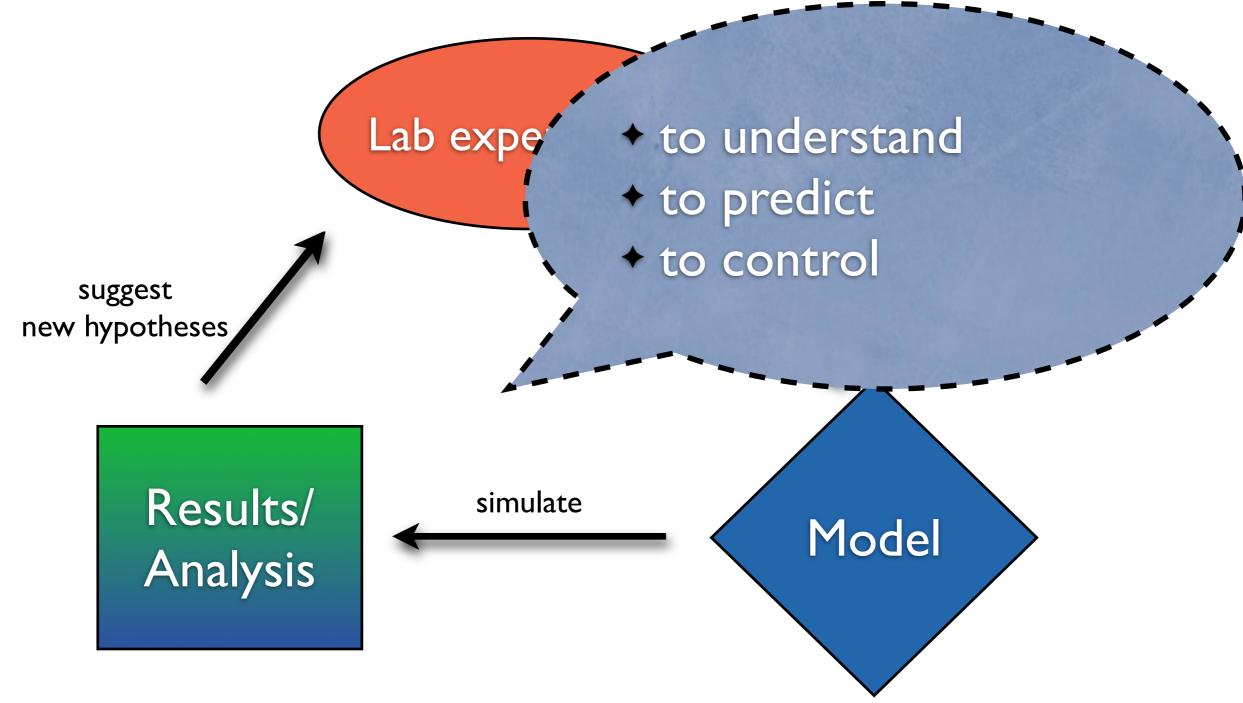
Institut National Polytechnique de Lorraine INRIA Nancy - Grand-Est & LORIA

Adviser: Hélène Kirchner Thanks to Pareo Team, especially to Horatiu Cirstea

Formal Methods in Systems Biology

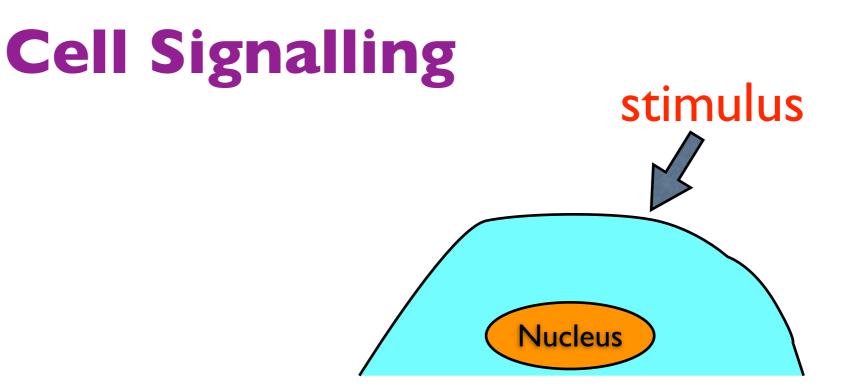


Formal Methods in Systems Biology

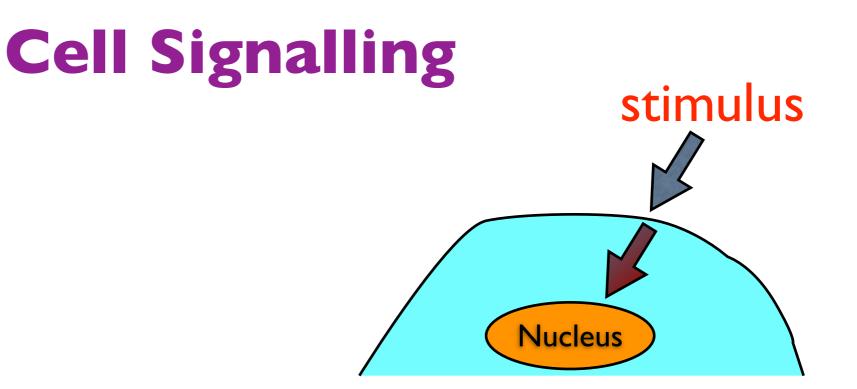


Cell Signalling

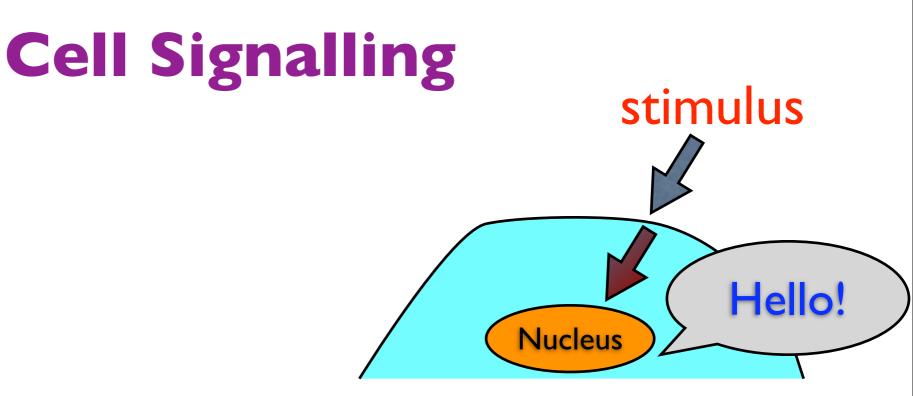
- communication between cells
- cellular processes: proliferation, cell growth, programmed cell death...
- *malfunctions*: cancer, diabetes, autoimmunity...



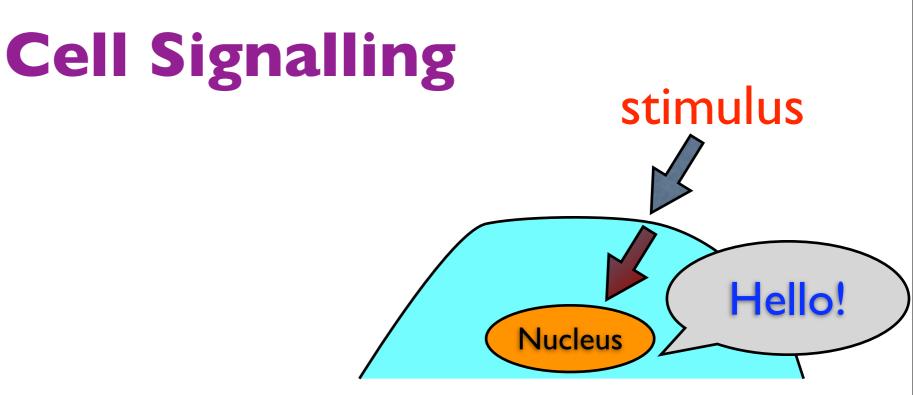
- communication between cells
- cellular processes: proliferation, cell growth, programmed cell death...
- *malfunctions*: cancer, diabetes, autoimmunity...



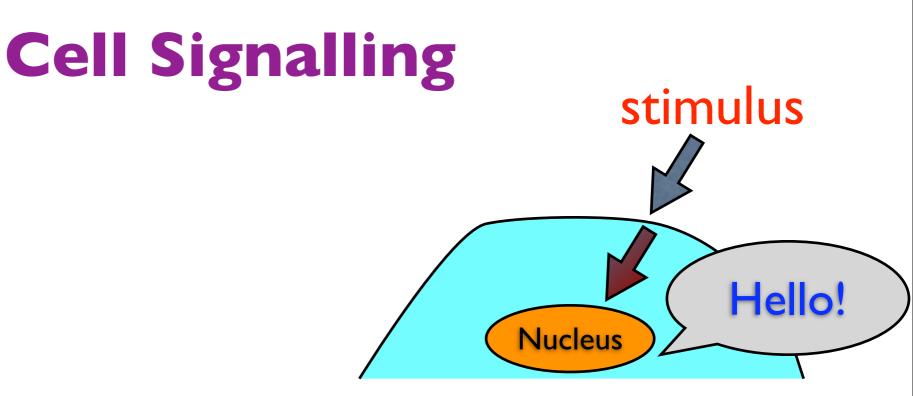
- communication between cells
- cellular processes: proliferation, cell growth, programmed cell death...
- *malfunctions*: cancer, diabetes, autoimmunity...



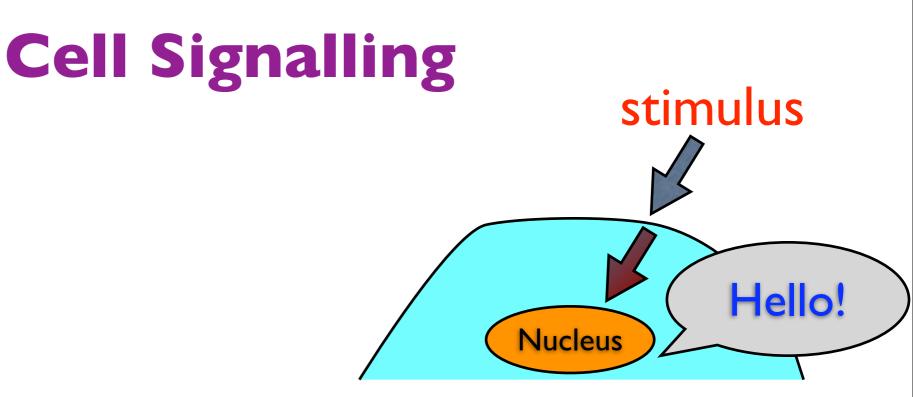
- communication between cells
- cellular processes: proliferation, cell growth, programmed cell death...
- *malfunctions*: cancer, diabetes, autoimmunity...



- communication between cells
- cellular processes: proliferation, cell growth, programmed cell death...



- communication between cells
- cellular processes: proliferation, cell growth, programmed cell death...
- *malfunctions*: cancer, diabetes, autoimmunity...

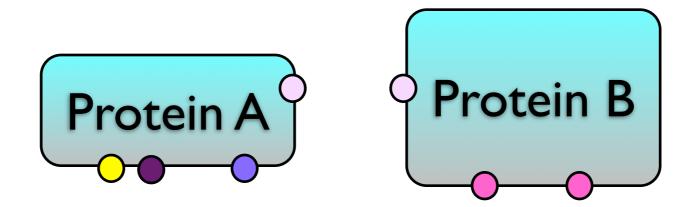


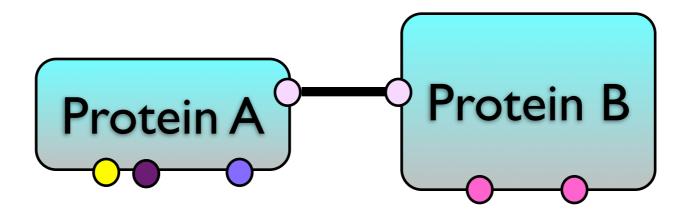
- communication between cells
- cellular processes: proliferation, cell growth, programmed cell death...
- *malfunctions*: cancer, diabetes, autoimmunity...

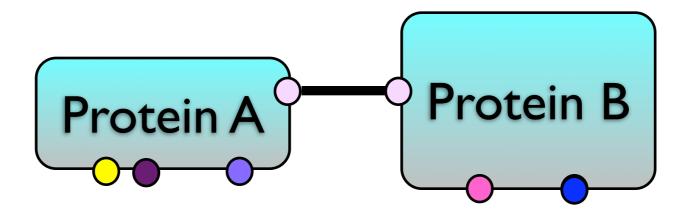
Need of good, predictive models for guiding experimentations and drug development.

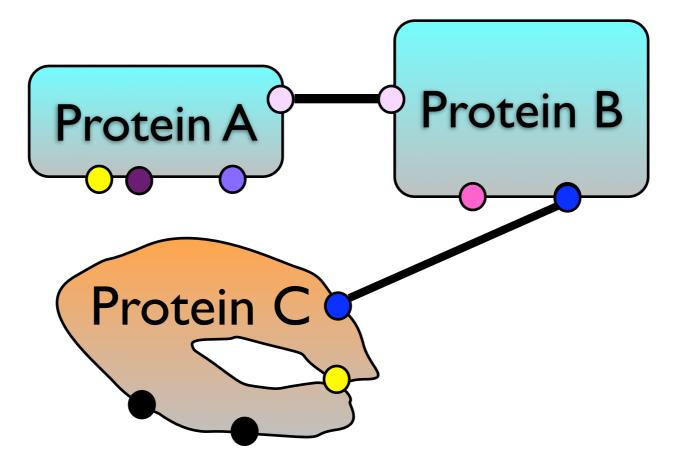
Autonomous Systems

- Living cell are extremely well-organized autonomous systems. [Cardelli 05]
- Autonomic computing [KephartChess 03] refers to self-manageable systems initially provided with some high-level instructions from administrators.
- Bio-inspired modeling of distributed systems









Rule-based Modeling

- well-suited for modeling bio-molecular interactions, cell-signaling
- a rule $| \rightarrow r$ defines a class of reactions
- rewrite strategies control the rule application

Background Works

- the graph structure of molecular complexes in the K-calculus [DanosLaneve 04], BioNetGen [Faeder et al. 05]
- rule-based modeling of a chemical reactor [Bournez et al. 03]

Background Works

- the chemical model of computation, Ycalculus, a higher-order chemical calculus
 [Banatre et al. 05]:
 - a chemical solution where molecules interact freely according to reaction rules,
 - everything is a molecule

prod = replace X, Y by X×Y $\langle prod, 3, 1, 4, 5, 2 \rangle \rightarrow \langle prod, 1, 4, 15, 2 \rangle \rightarrow^*$ $\langle prod, 120 \rangle$

Background Works

- the rewriting calculus [CirsteaKirchner 01]:
 - + extends first-order term rewriting and the λ -calculus
 - all the basic ingredients of rewriting are explicit objects of the calculus

 $\frac{(s(x)+y \rightarrow s(x+y))(s(5)+s(2)) \rightarrow_{\rho}}{s(5+s(2))}$

Objective of This Thesis

- to develop a calculus based on graph rewriting for describing molecules, reactions, and biochemical network generation
- towards a **biochemical calculus**:
 - * add a biological flavor to the chemical calculus
 - ***** rewrite rules and rewrite strategies
 - **★** property verification for the modeled systems

Outline

- An Abstract Biochemical Calculus
- Port Graph Rewriting
- A Biochemical Calculus Based on Strategic Port Graph Rewriting
- Runtime Verification in the Biochemical Calculus
- Conclusions and Perspectives

• An Abstract Biochemical Calculus

- Port Graph Rewriting
- A Biochemical Calculus Based on Strategic Port Graph Rewriting
- Runtime Verification in the Biochemical Calculus
- Conclusions and Perspectives

An Abstract Biochemical Calculus

-- the $\rho_{\langle \Sigma \rangle}$ -calculus --

- a higher-order rewriting calculus
- first citizens:
 - structured objects
 - rules (abstractions)
 - rule applications

- strategies as objects
- encompasses the rewriting calculus
- generalizes the Ycalculus (abstractions over a class of patterns, not only variables)

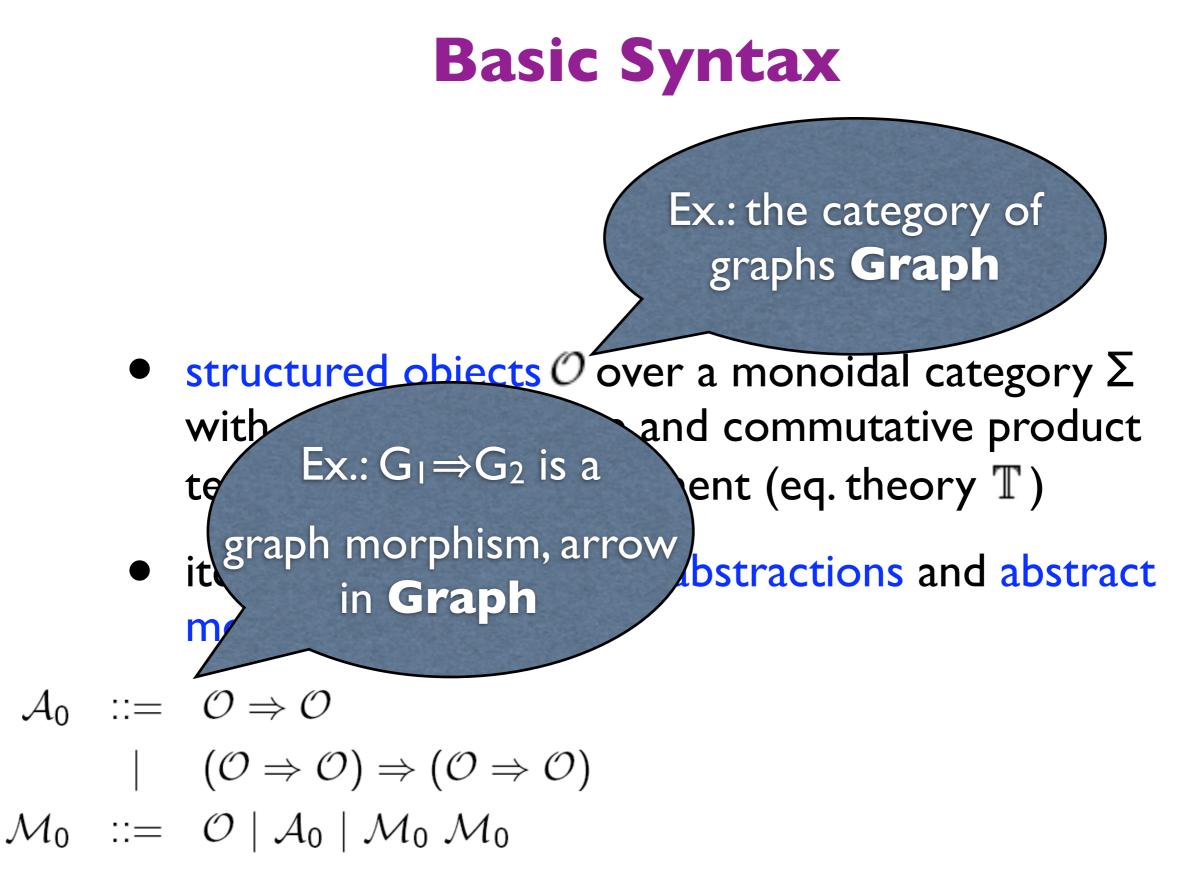
- structured objects O over a monoidal category Σ with ____ an associative and commutative product tensor and ε neutral element (eq. theory \mathbb{T})
- iterative construction of abstractions and abstract molecules

- structured objects O over a monoidal category Σ with ____ an associative and commutative product tensor and ε neutral element (eq. theory \mathbb{T})
- iterative construction of abstractions and abstract molecules

- structured objects O over a monoidal category Σ with ____ an associative and commutative product tensor and ε neutral element (eq. theory \mathbb{T})
- iterative construction of abstractions and abstract molecules

- structured objects O over a monoidal category Σ with ____ an associative and commutative product tensor and ε neutral element (eq. theory \mathbb{T})
- iterative construction of abstractions and abstract molecules

$$\begin{array}{lll} \mathcal{A}_0 & ::= & \mathcal{O} \Rightarrow \mathcal{O} \\ & | & (\mathcal{O} \Rightarrow \mathcal{O}) \Rightarrow (\mathcal{O} \Rightarrow \mathcal{O}) \\ \mathcal{M}_0 & ::= & \mathcal{O} \mid \mathcal{A}_0 \mid \mathcal{M}_0 \mid \mathcal{M}_0 \end{array}$$

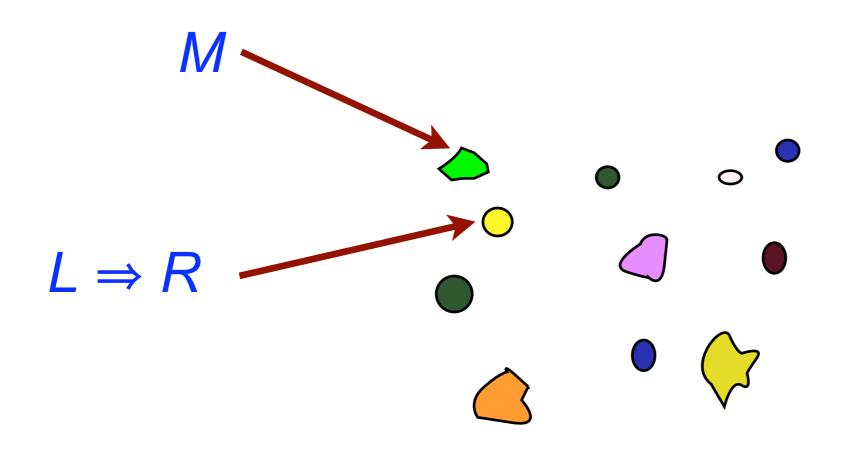


- structured objects O over a monoidal category Σ with ____ an associative and commutative product tensor and ε neutral element (eq. theory \mathbb{T})
- iterative construction of abstractions and abstract molecules

$$\begin{array}{lll} \mathcal{A}_0 & ::= & \mathcal{O} \Rightarrow \mathcal{O} \\ & | & (\mathcal{O} \Rightarrow \mathcal{O}) \Rightarrow (\mathcal{O} \Rightarrow \mathcal{O}) \\ \mathcal{M}_0 & ::= & \mathcal{O} \mid \mathcal{A}_0 \mid \mathcal{M}_0 \mid \mathcal{M}_0 \end{array}$$

- structured objects O over a monoidal category Σ with ____ an associative and commutative product tensor and ε neutral element (eq. theory \mathbb{T})
- iterative construction of abstractions and abstract molecules

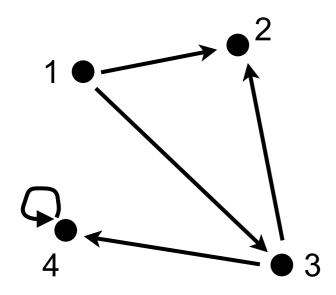
Interactions

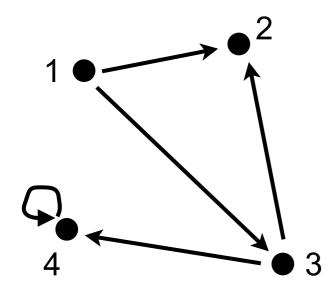


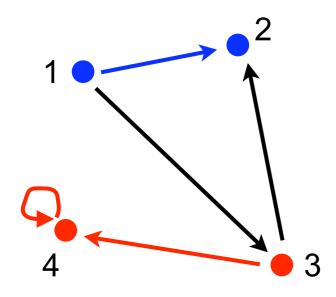
Is $L \Rightarrow R$ applicable to M?

Matching

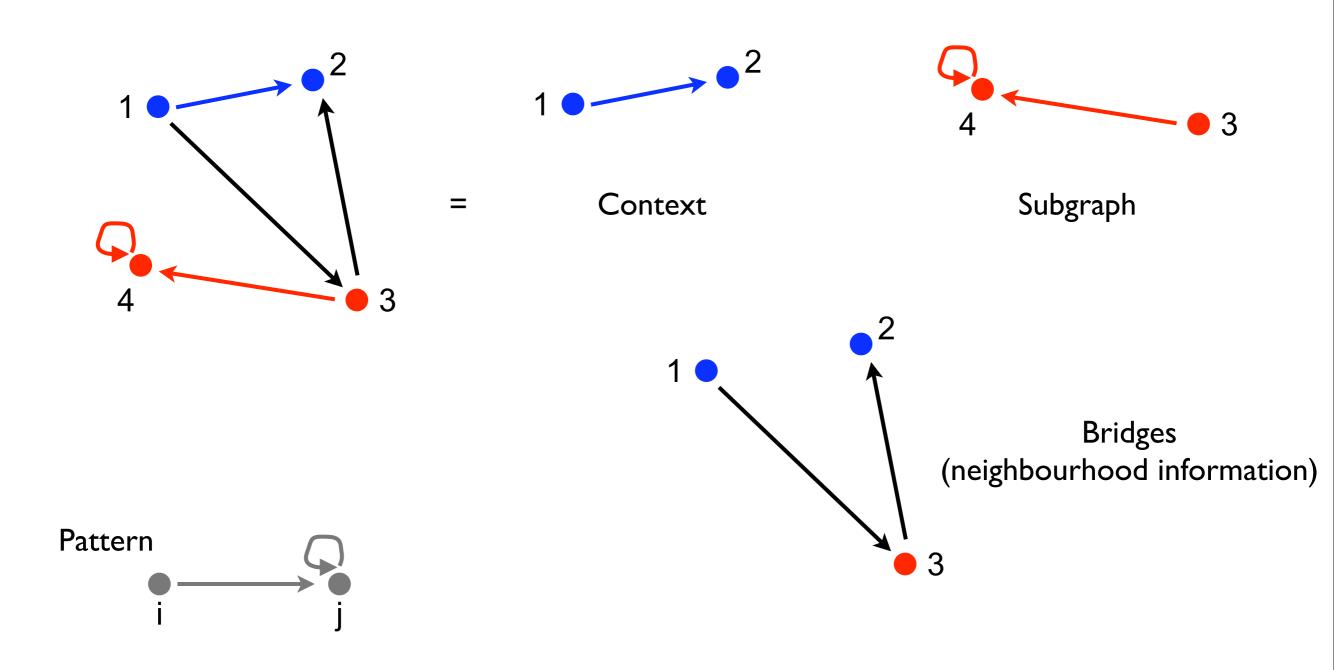
- submatching equation modulo $\mathbb{T}: L \prec_{\mathbb{T}} M$
- solutions have the form $(\sigma, M^-, \mathcal{B})$ such that $M =_{\mathbb{T}} M^- \lfloor \sigma(L) \rfloor_{\mathcal{B}}$
- a submatching algorithm for every instantiation of Σ and $\mathbb T$







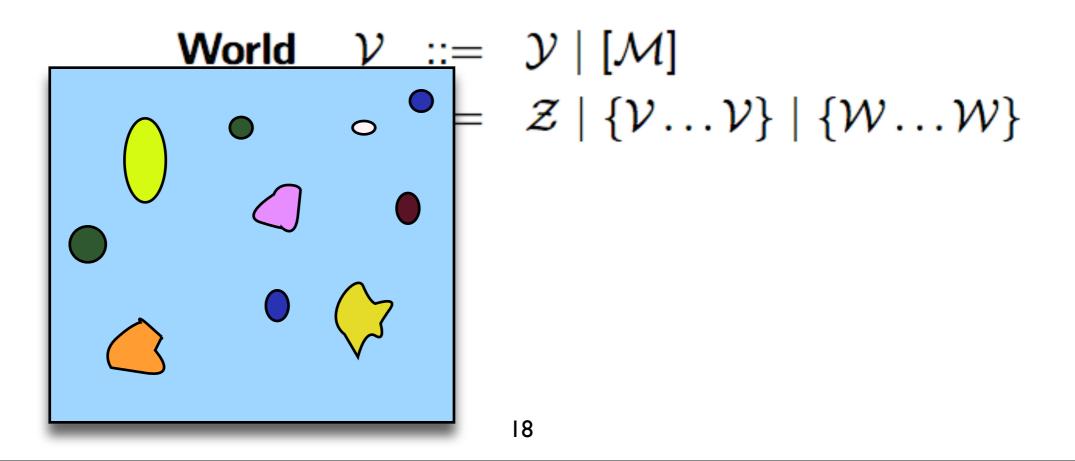
Matching and Decomposition



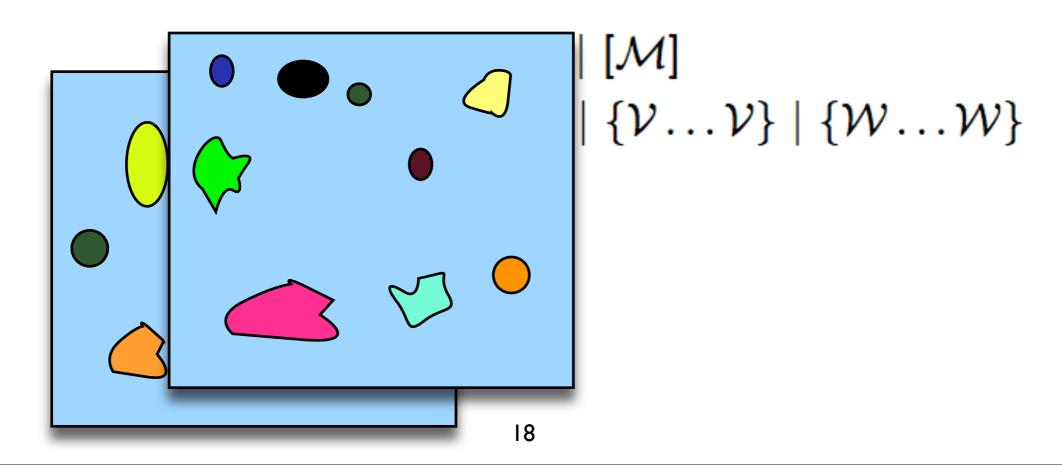
- the molecules in an environment are encapsulated in a world
- alternative worlds are grouped in a multiverse

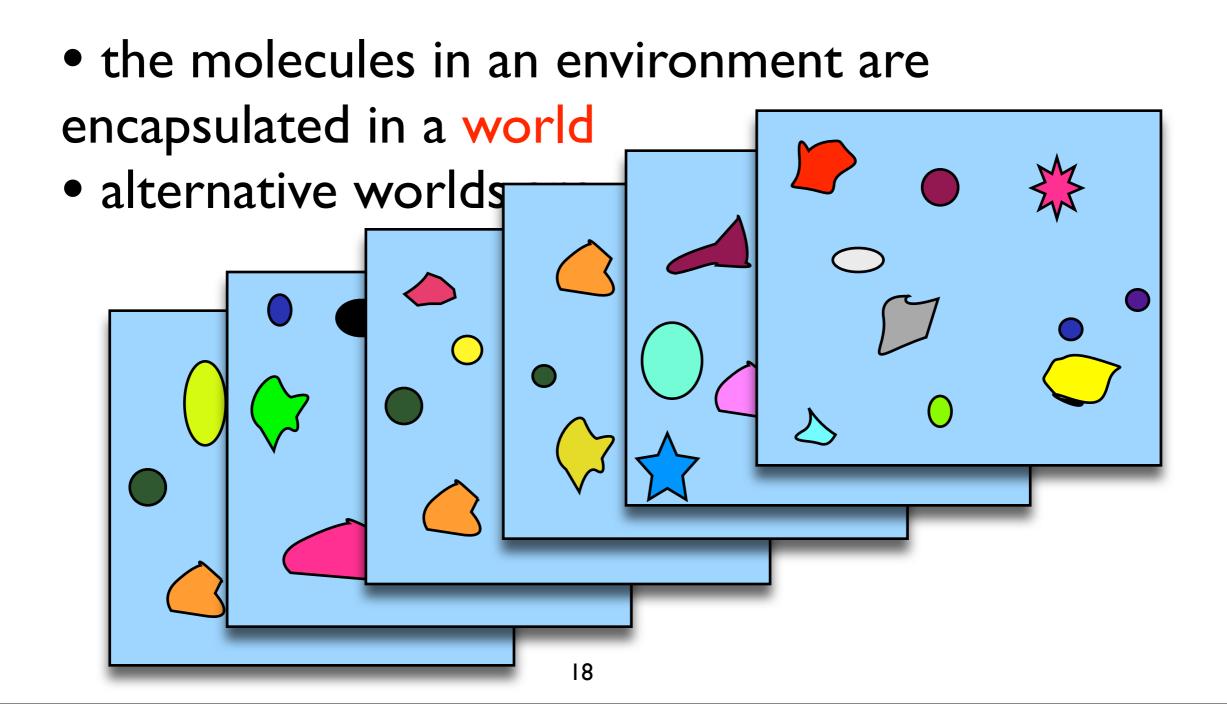
World $\mathcal{V} ::= \mathcal{Y} \mid [\mathcal{M}]$ Multiverse $\mathcal{W} ::= \mathcal{Z} \mid \{\mathcal{V} \dots \mathcal{V}\} \mid \{\mathcal{W} \dots \mathcal{W}\}$

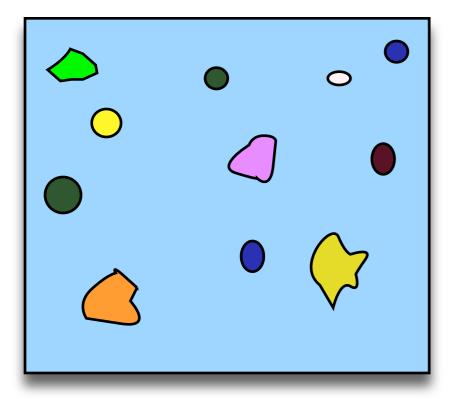
- the molecules in an environment are encapsulated in a world
- alternative worlds are grouped in a multiverse

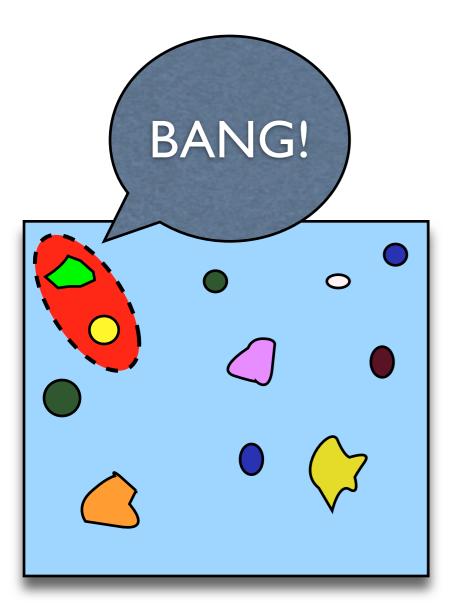


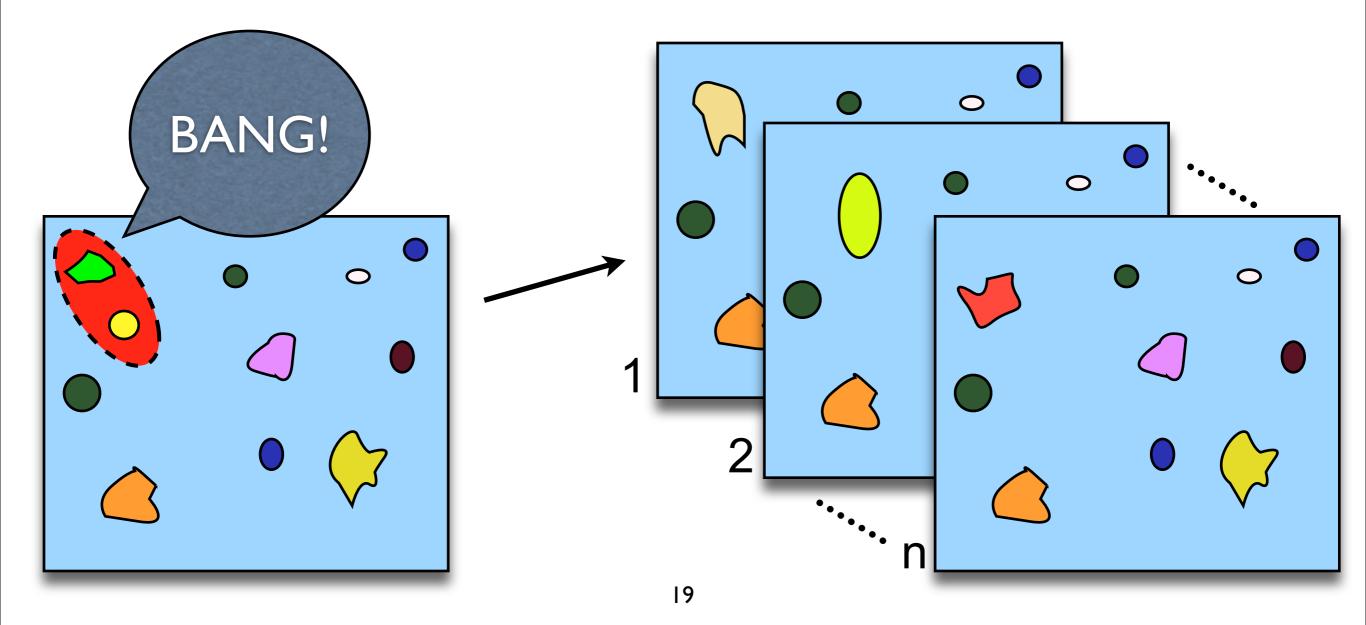
- the molecules in an environment are encapsulated in a world
- alternative worlds are grouped in a multiverse











(Heating) $[N \land M] \longrightarrow_h [N \land @M]$

(Heating) $[N \land M] \longrightarrow_{h} [N \land @M]$ (Application) $(L \Rightarrow R)@M \longrightarrow_{a} \{[\varsigma_{1}(R)] \dots [\varsigma_{n}(R)]\}$ if $Sol(L \prec M) = \{\varsigma_{1}, \dots, \varsigma_{n}\}$

(Heating) $[N \land M] \longrightarrow_{h} [N \land @M]$ (Application) $(L \Rightarrow R)@M \longrightarrow_{a} \{[\varsigma_{1}(R)] \dots [\varsigma_{n}(R)]\}$ if $Sol(L \prec M) = \{\varsigma_{1}, \dots, \varsigma_{n}\}$ (AppFail) $(L \Rightarrow R)@M \longrightarrow_{af} (L \Rightarrow R) M$ if $Sol(L \prec M) = \emptyset$

(Heating) $[N \land M] \longrightarrow_{h} [N \land @M]$ (Application) $(L \Rightarrow R)@M \longrightarrow_{a} \{[\varsigma_{1}(R)] \dots [\varsigma_{n}(R)]\}$ if $Sol(L \prec M) = \{\varsigma_{1}, \dots, \varsigma_{n}\}$ (AppFail) $(L \Rightarrow R)@M \longrightarrow_{af} (L \Rightarrow R) M$ if $Sol(L \prec M) = \emptyset$ (Cooling) $[N \{[M_{1}] \dots [M_{n}]\}] \longrightarrow_{c} \{[N \land M_{1}] \dots [N \land M_{n}]\}$

(Heating) $[N \land M] \longrightarrow_{h} [N \land @M]$ (Application) $(L \Rightarrow R)@M \longrightarrow_{a} \{[\varsigma_{1}(R)] \dots [\varsigma_{n}(R)]\}$ if $Sol(L \prec M) = \{\varsigma_{1}, \dots, \varsigma_{n}\}$ (AppFail) $(L \Rightarrow R)@M \longrightarrow_{af} (L \Rightarrow R) M$ if $Sol(L \prec M) = \emptyset$ (Cooling) $[N \{[M_{1}] \dots [M_{n}]\}] \longrightarrow_{c} \{[N \land M_{1}] \dots [N \land M_{n}]\}$

- introducing an explicit object for failure

 $\begin{array}{ll} (\text{Heating}) & [N \ A \ M] \longrightarrow_{h} [N \ A @M] \\ (\text{Application}) & (L \Rightarrow R) @M \longrightarrow_{a} \{ [\varsigma_{1}(R)] \dots [\varsigma_{n}(R)] \} \\ & \quad \text{if} \ \ \mathcal{Sol}(L \prec M) = \{\varsigma_{1}, \dots, \varsigma_{n} \} \\ (\text{AppFail}) & (L \Rightarrow R) @M \longrightarrow_{af} \ \left\{ [\text{stk}] \right\} & \quad \text{if} \ \ \mathcal{Sol}(L \prec M) = \emptyset \\ (\text{Cooling}) & [N \ \{ [M_{1}] \dots [M_{n}] \}] \longrightarrow_{c} \{ [N \ M_{1}] \dots [N \ M_{n}] \} \end{array}$

- introducing an explicit object for failure

- enforce confluence and termination
- control over composing or choosing the abstractions to apply

- ★ strategy languages: Elan, Stratego, Tom, Maude
- ★ strategies: Identity, Failure, Sequence, First, Not, IfThenElse, Try, Repeat,...

$first(S_1, S_2) \triangleq X \Rightarrow S_1 @X (stk \Rightarrow (S_2 @X)) @(S_1 @X)$

$first(S_1, S_2) \triangleq X \Rightarrow \frac{S_1 @X}{stk} \quad (stk \Rightarrow (S_2 @X)) @(\frac{S_1 @X}{stk})$ $stk \quad S_2 @X$

$first(S_1, S_2) \triangleq X \Rightarrow S_1 @X (stk \Rightarrow (S_2 @X)) @(S_1 @X)$

$first(S_1, S_2) \triangleq X \Rightarrow \frac{S_1 @X}{W} \quad (stk \Rightarrow (S_2 @X)) @(\frac{S_1 @X}{W})$ $W \qquad W$ stk

Strategy-based Extensions

• tackling application failure

 $[N S M] \longrightarrow_{hr} [N \operatorname{seq}(S, \operatorname{try}(\operatorname{stk} \Rightarrow S M))@M]$

Strategy-based Extensions

• tackling application failure

 $[N S M] \longrightarrow_{hr} [N \operatorname{seq}(S, \operatorname{try}(\operatorname{stk} \Rightarrow S M))@M]$

• An Abstract Biochemical Calculus

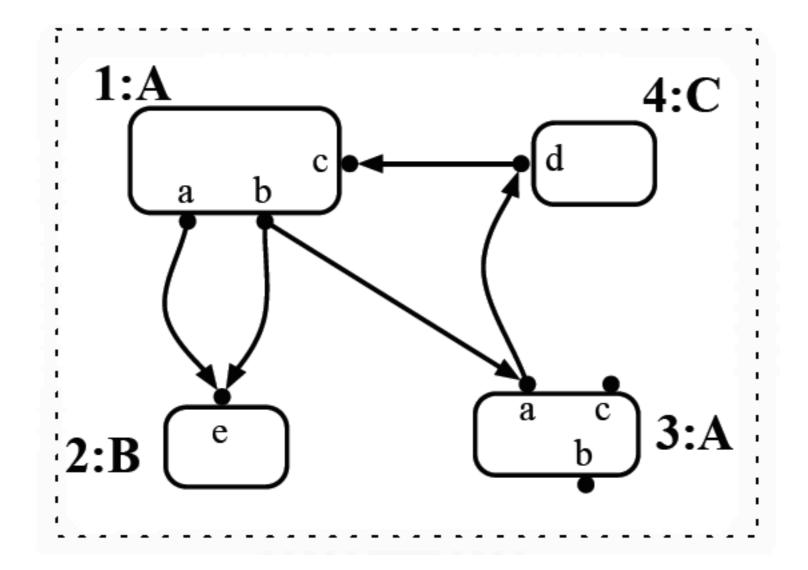
• Port Graph Rewriting

- A Biochemical Calculus Based on Strategic Port Graph Rewriting
- Runtime Verification in the Biochemical Calculus
- Conclusions and Perspectives

Port Graphs

- graphs with multiple edges and loops
- edges connect to ports of nodes
- defined over a signature (N, P)
- category **PGraph**
 - port graphs as objects
 - node morphisms as arrows

A Port Graph

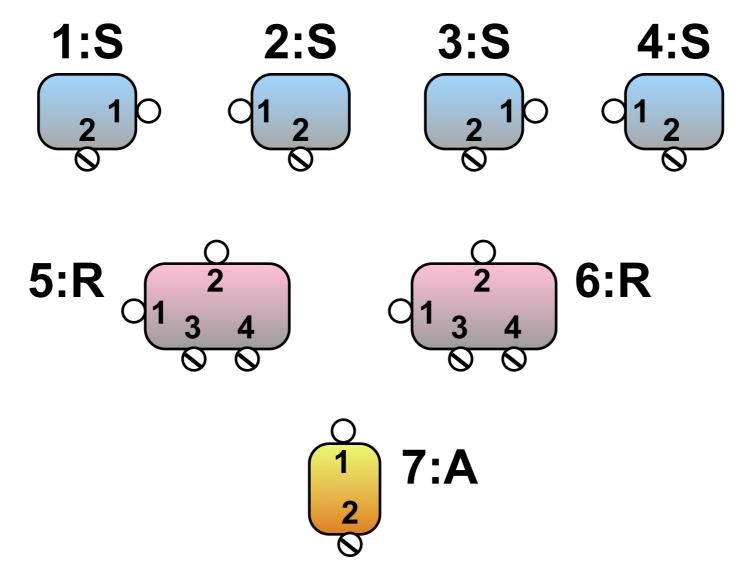


Molecular Complexes as Port Graphs

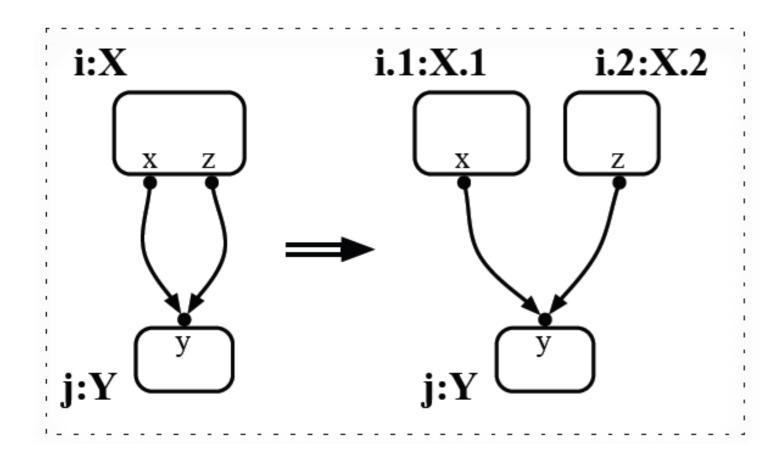
Molecular complex	Port graph
protein	node
site	port
bond	edge
interaction	rewrite rule

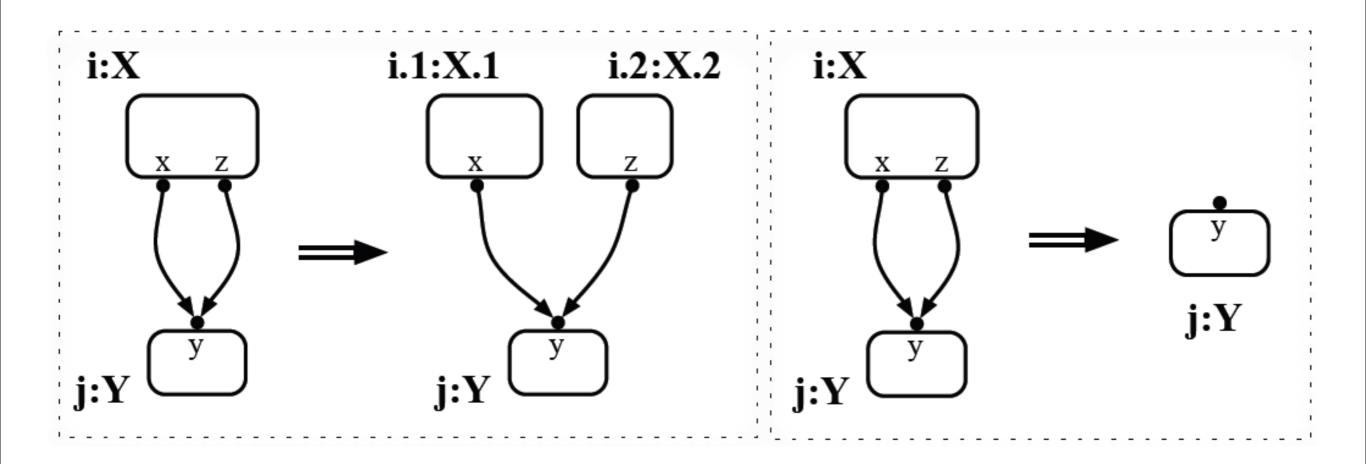
Example: a fragment of the EGFR signaling pathway

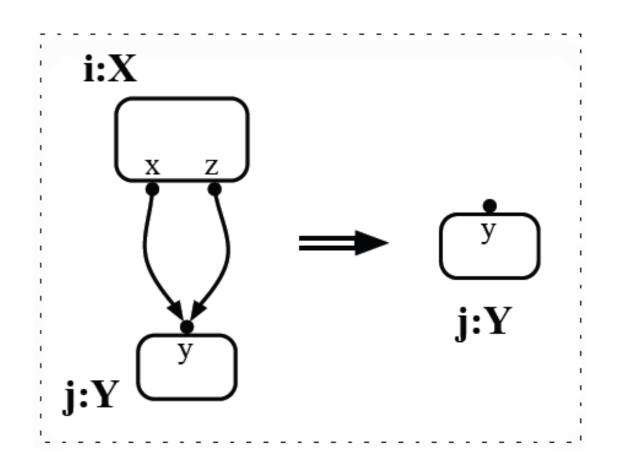
Initial state:

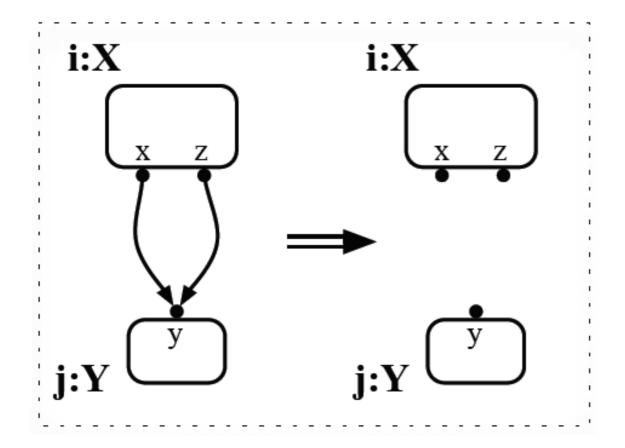


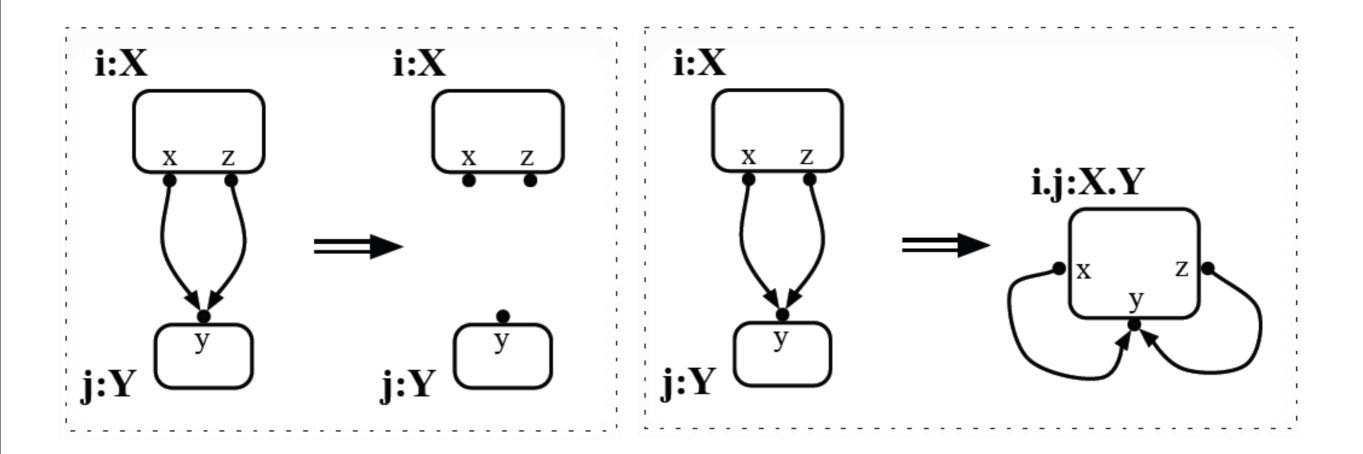
[AndreiKirchner07-NCA]



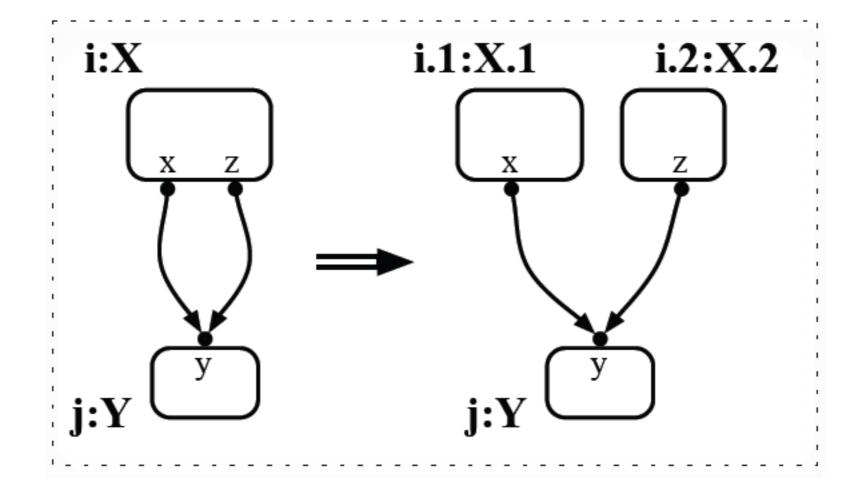






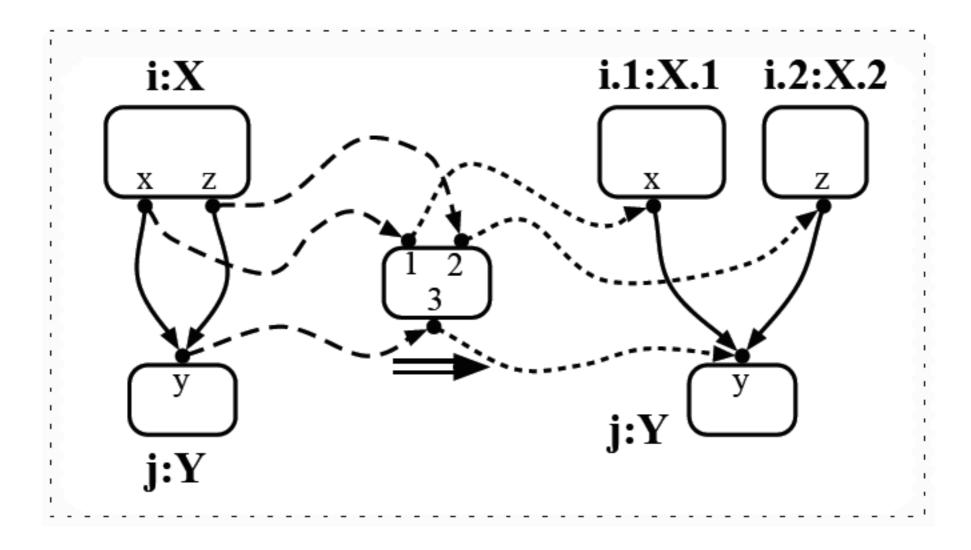


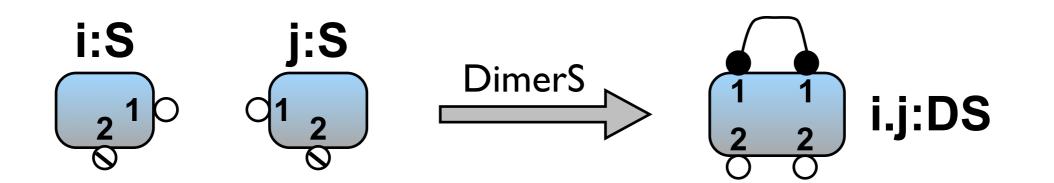
A Port Graph Rewrite Rule as a Port Graph

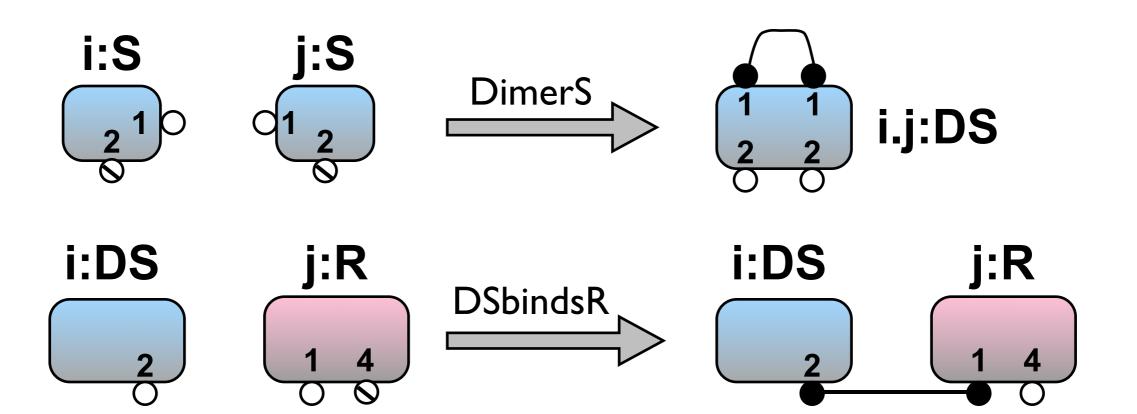


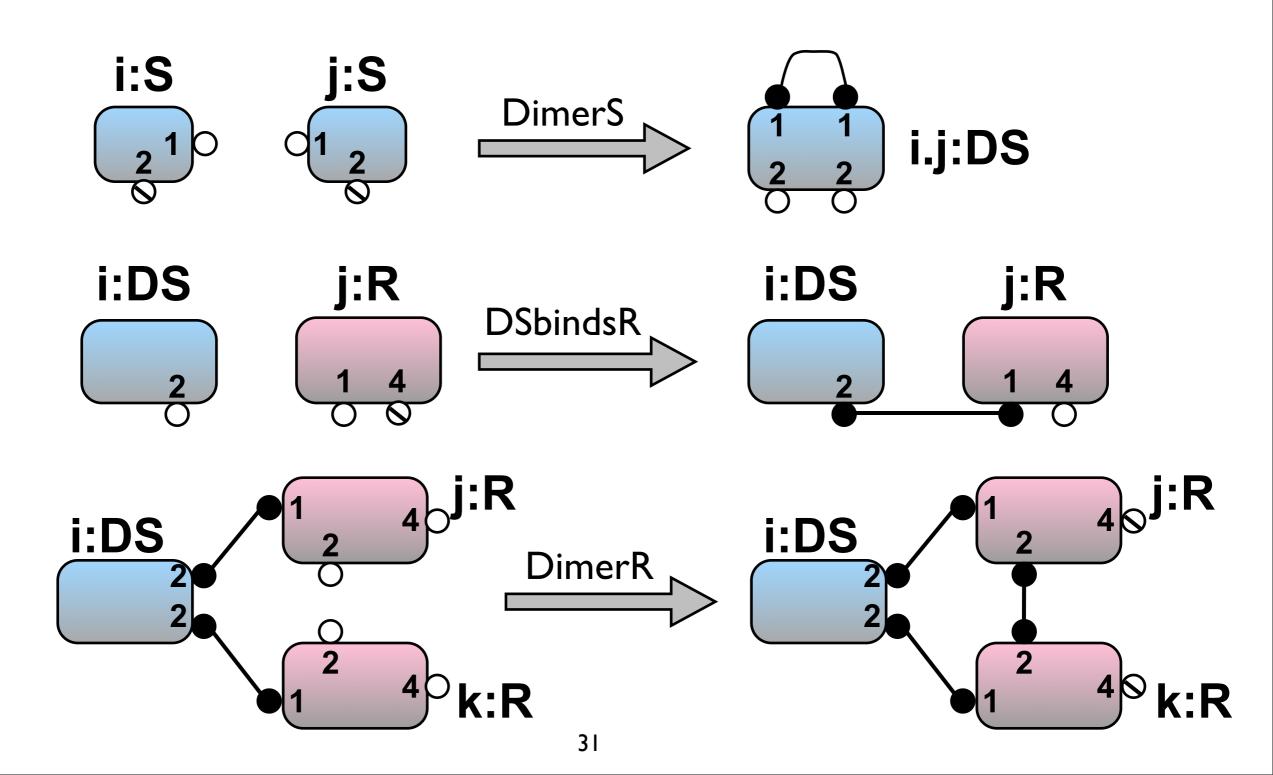
A Port Graph Rewrite Rule as a Port Graph

A Port Graph Rewrite Rule as a Port Graph









Port Graph Rewriting Relation

$$G \Rightarrow_{L \Rightarrow R} G'$$
 if $\exists (g, G^-, B) \in Sol(L \prec G)$

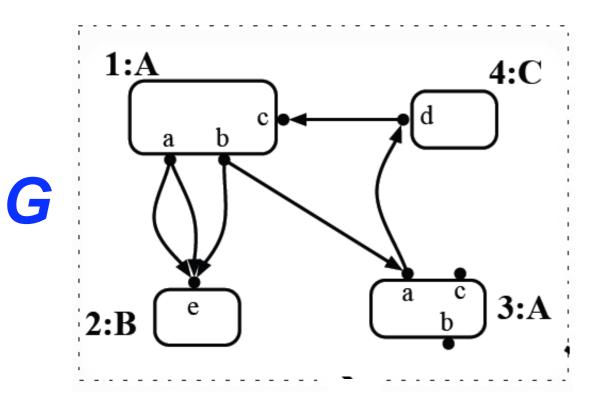
such that

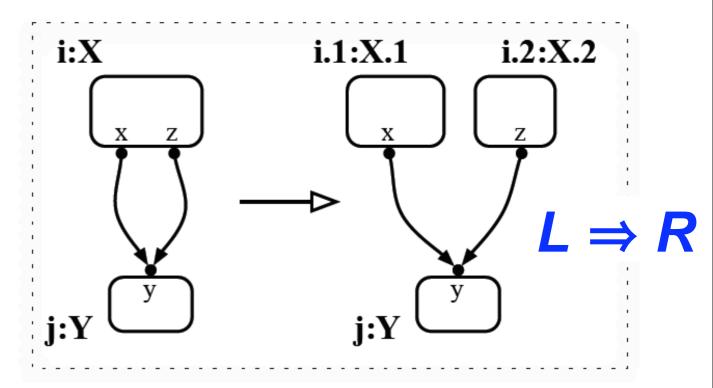
 $G = G^{-} \lfloor g(L) \rfloor_{\mathcal{B}}$

and

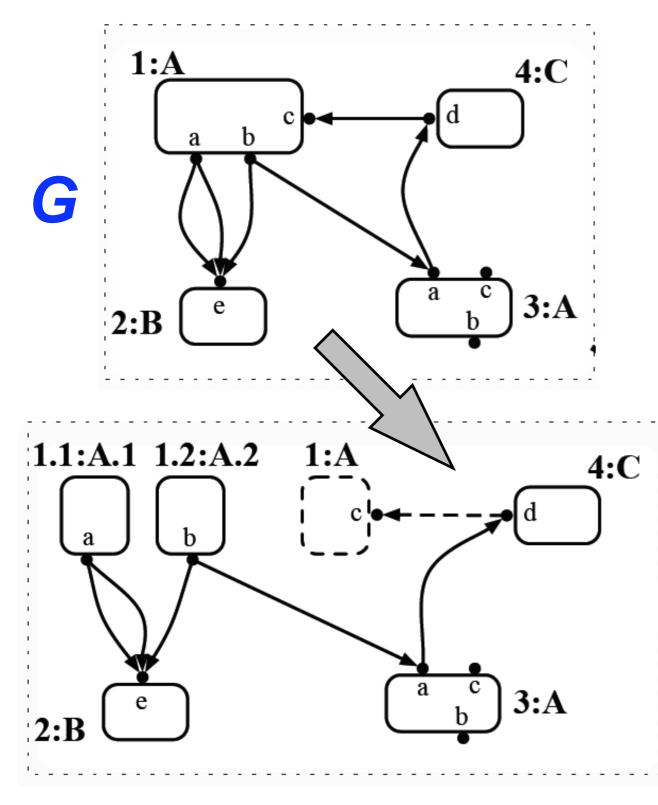
$$G' = G^{-} \lfloor g(\mathbf{R}) \rfloor_{\Downarrow_{g} \mathcal{B}}$$

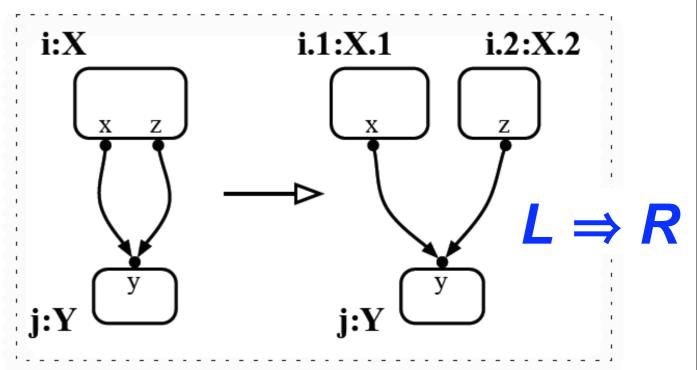
Port Graph Rewriting



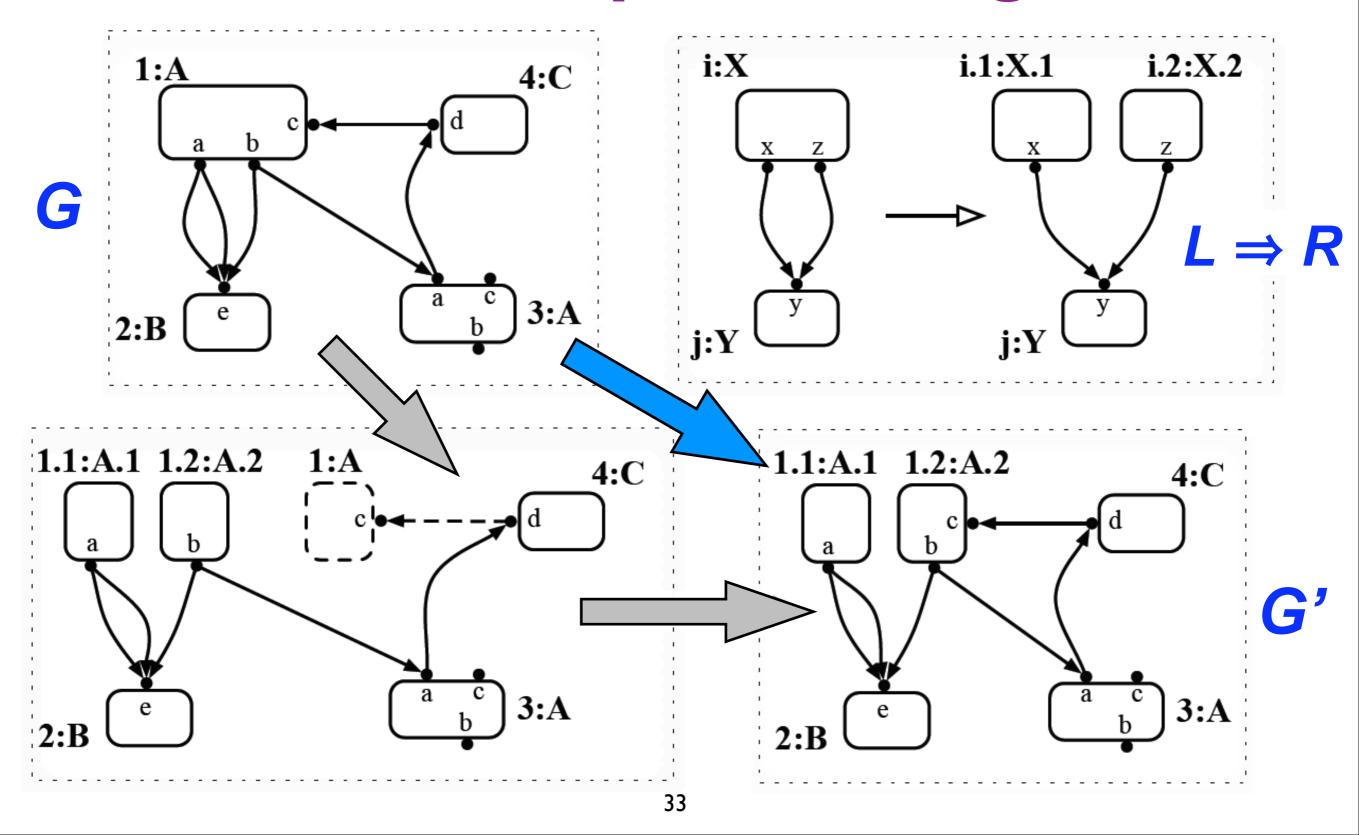


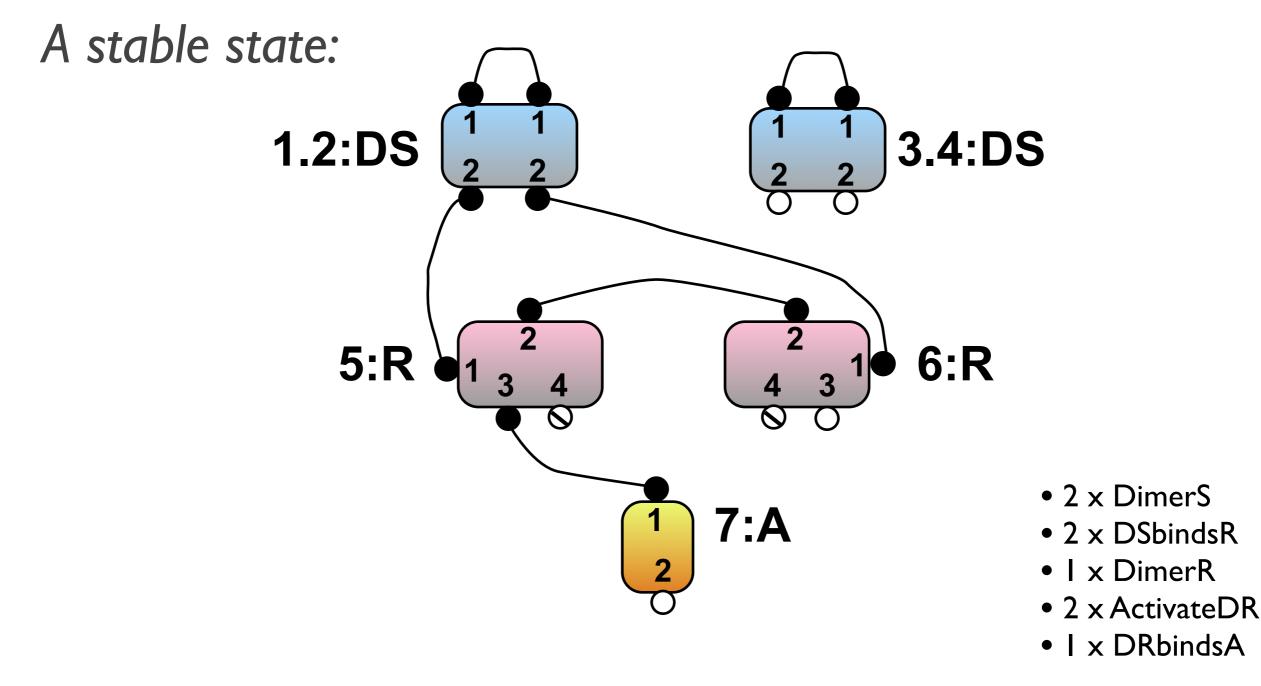
Port Graph Rewriting





Port Graph Rewriting





Term Rewriting Semantics for Port Graph Rewriting

- a sound and complete axiomatization using algebraic terms
- prototype in TOM

[AndreiKirchner07-RULE]

- An Abstract Biochemical Calculus
- Port Graph Rewriting
- A Biochemical Calculus Based on Strategic Port Graph Rewriting
- Runtime Verification in the Biochemical Calculus
- Conclusions and Perspectives

A Biochemical Calculus Based on Strategic Port Graph Rewriting -- the ρ_{pg}-calculus --

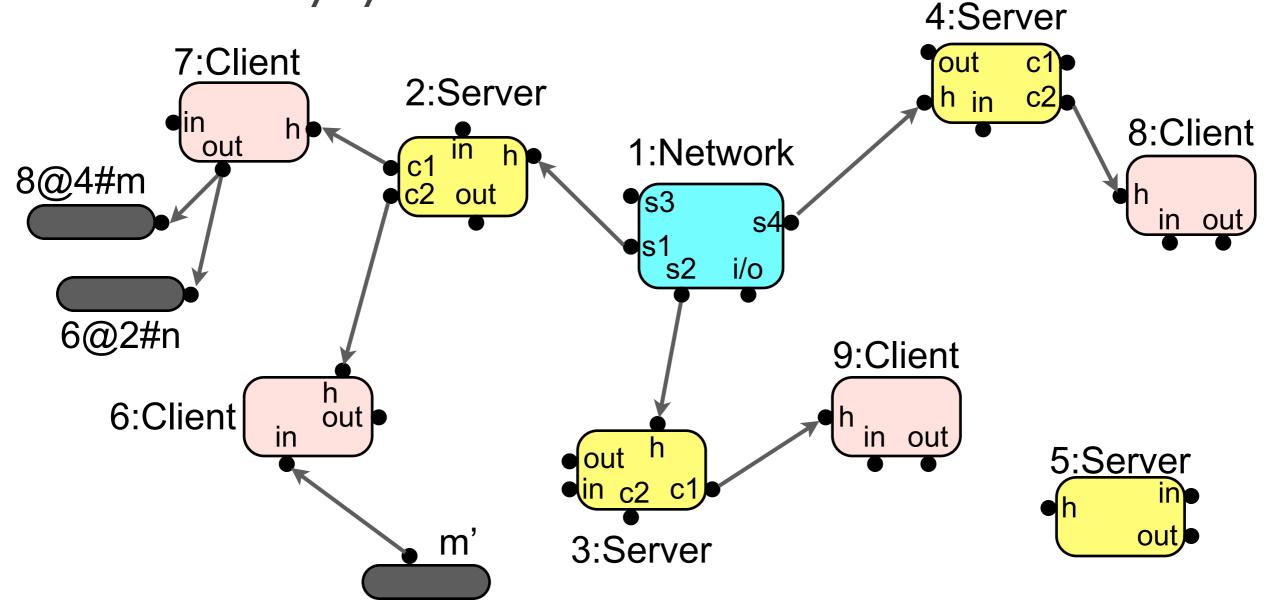
- instantiated $\rho_{\langle \Sigma \rangle}$ -calculus with the structure of port graphs
- a (sub)matching algorithm
- showed the expressivity of the port graph structure by defining the matching and replacement operations

Applications: Autonomous Systems

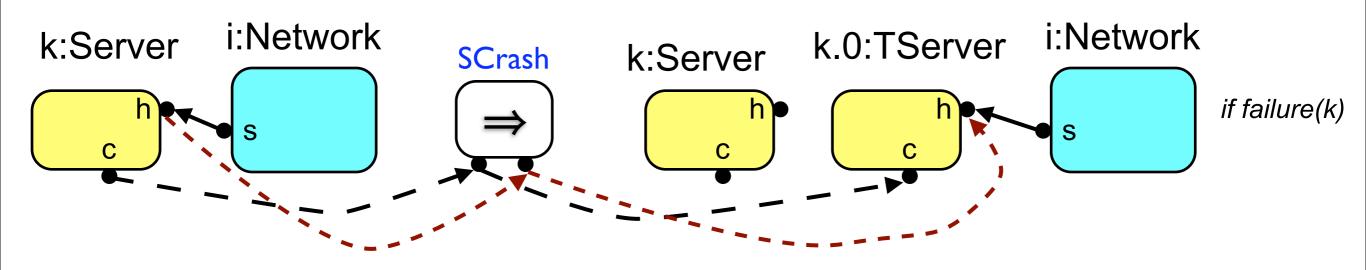
- self-X properties:
 - self-configuration
 - self-protection
 - self-healing
 - self-optimization
- strategy-based modeling

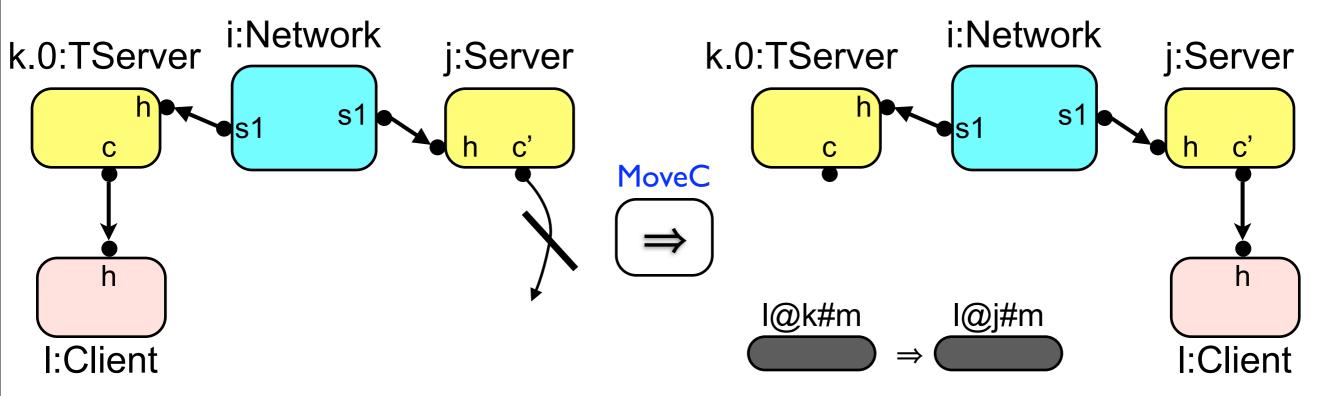
Applications: Autonomous Systems

A mail delivery system:

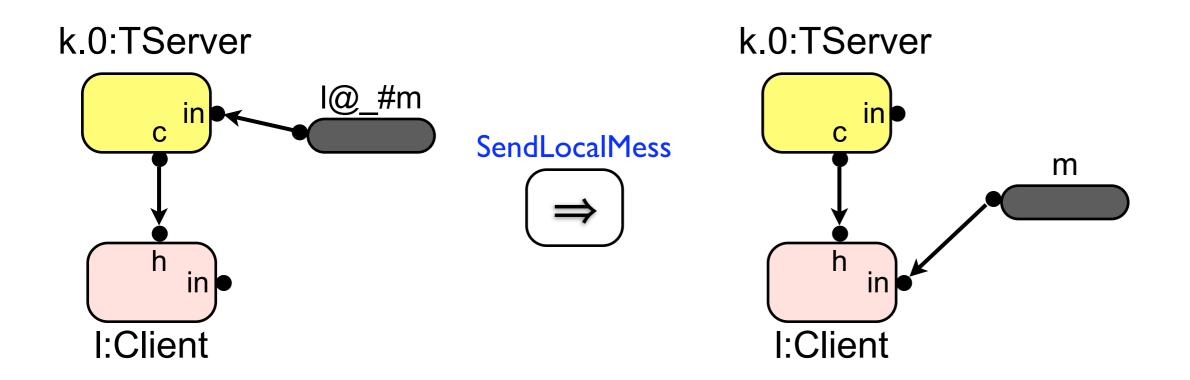


Applications: Autonomous Systems - Self-healing





Applications: Autonomous Systems - Self-healing



SCrash; repeat(SendLocalMess); repeat(first(MoveC, SendAwayIn, SendAwayOut))

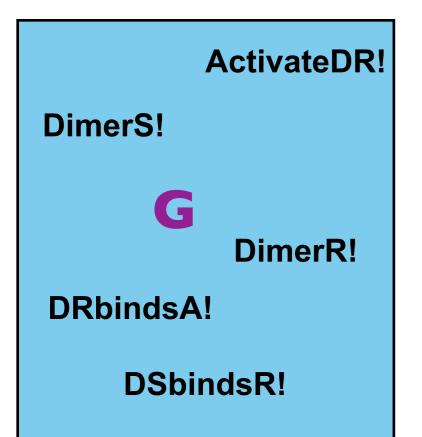
Initial molecular graph:

G = 1:S 2:S 3:S 4:S 5:R 6:R 7:A

Initial molecular graph:

G = 1:S 2:S 3:S 4:S 5:R 6:R 7:A

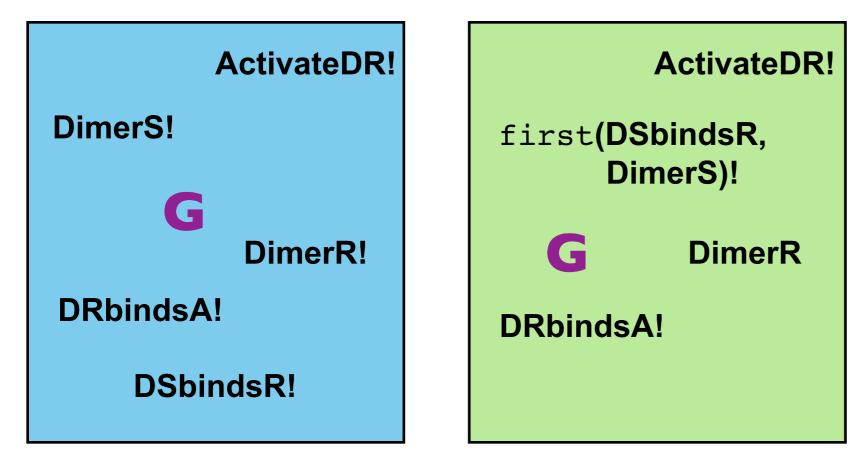
Some possible initial states:



Initial molecular graph:

G = 1:S 2:S 3:S 4:S 5:R 6:R 7:A

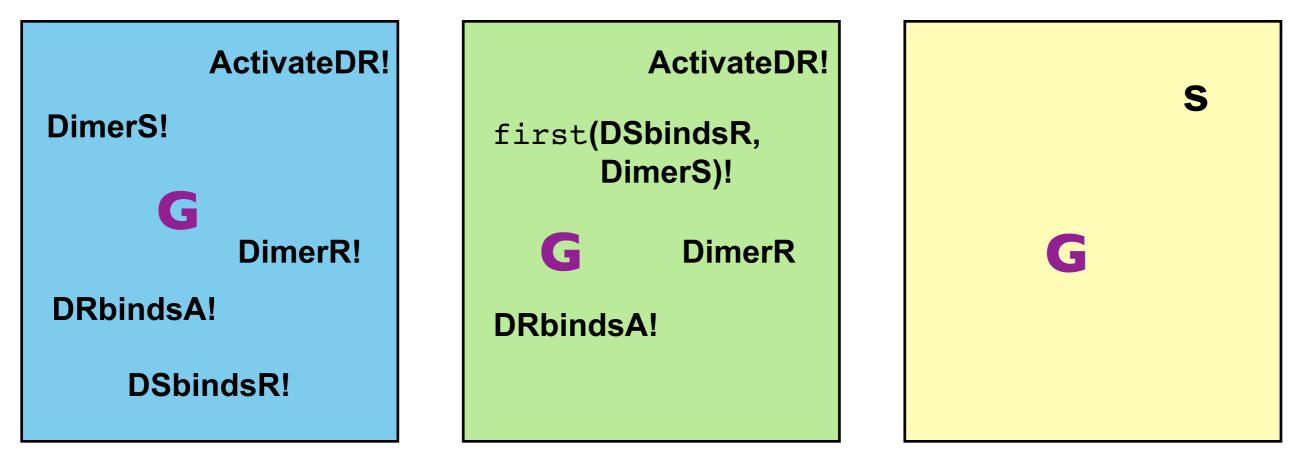
Some possible initial states:



Initial molecular graph:

G = 1:S 2:S 3:S 4:S 5:R 6:R 7:A

Some possible initial states:



s = repeat(seq(first(DSbindsR, DimerS), DimerR,ActivateDR, DRbindsA))

- An Abstract Biochemical Calculus
- Port Graph Rewriting
- A Biochemical Calculus Based on Strategic Port Graph Rewriting
- Runtime Verification in the Biochemical Calculus
- Conclusions and Perspectives

Motivation

- invariant:
 - rule $G \Rightarrow G$
 - strategy $first(G \Rightarrow G, X \Rightarrow "Failure")!$
- remove (G⇒"Failure")! or "repair" (G⇒H)!
- more: a modal logic with structural and temporal formulas $\rightarrow \rho_{pg}^{v}$ -calculus

Structural Formulas

Structural Formulas

Structural formulas:

$\varphi ::= \top \mid \perp \mid \gamma \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \diamondsuit \varphi$

Structural Formulas

Structural formulas:

$\varphi ::= \top \mid \perp \mid \gamma \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \diamondsuit \varphi$

Satisfaction relation:

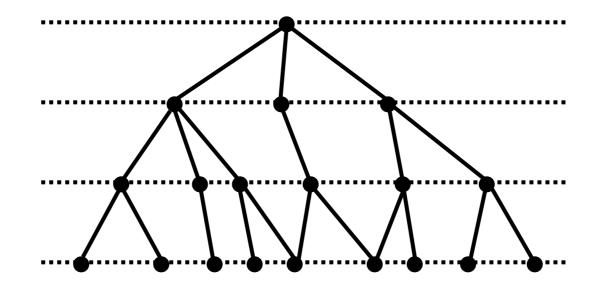
Mapping Structural Formulas to Strategies

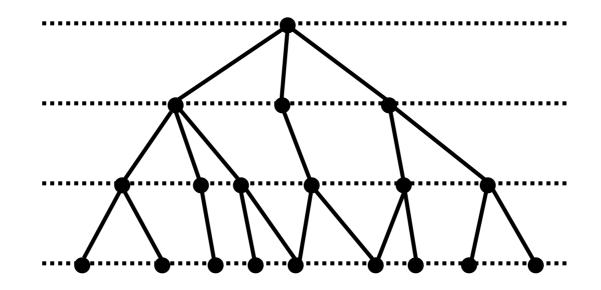
- $\tau(\top) = \mathsf{id}$
- $\tau(\perp)$ = fail
- $\tau(\diamond\gamma) \qquad = \gamma \Rightarrow \gamma$
- $\tau(\neg \varphi) = \operatorname{not}(\tau(\varphi))$
- $\tau(\varphi_1 \wedge \varphi_2) = \operatorname{seq}(\tau(\varphi_1), \tau(\varphi_2))$
- $\tau(\varphi_1 \lor \varphi_2) = \operatorname{first}(\tau(\varphi_1), \tau(\varphi_2))$
- $\tau(\varphi_1 \to \varphi_2) = X \Rightarrow \mathtt{seq}(\tau(\varphi_1), \mathtt{first}(\mathtt{stk} \Rightarrow X, \tau(\varphi_2))) @X$

Mapping Structural Formulas to Strategies

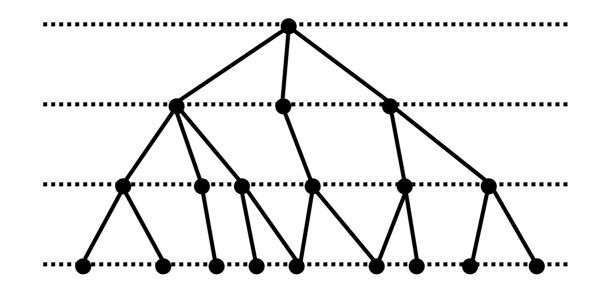
- $\tau(\top)$ = id $\tau(\perp)$ = fail $\tau(\diamondsuit\gamma) \qquad = \gamma \Rightarrow \gamma$ $\tau(\neg \varphi)$ $= \operatorname{not}(\tau(\varphi))$ $\tau(\varphi_1 \wedge \varphi_2) = \operatorname{seq}(\tau(\varphi_1), \tau(\varphi_2))$ $\tau(\varphi_1 \vee \varphi_2) = \operatorname{first}(\tau(\varphi_1), \tau(\varphi_2))$ $\tau(\varphi_1 \to \varphi_2) = X \Rightarrow seq(\tau(\varphi_1), first(stk \Rightarrow X, \tau(\varphi_2)))@X$ $G \not\models \varphi$ if and only if $\tau(\varphi) @ G \longrightarrow^* \{ [stk] \} \}$
 - $G \models \varphi \quad \text{if and only if} \quad \tau(\varphi) @G \longrightarrow^* \{[G]\}$

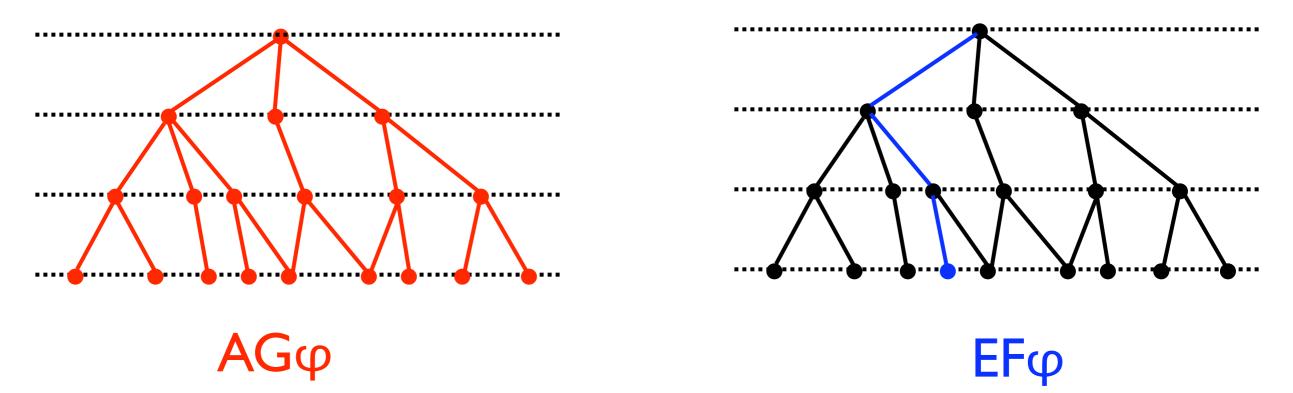
- a subset of CTL formulas constructed using:
 - a path quantifier -- A, E
 - a temporal operator -- X, G, F, U
 - structural formula(s) φ

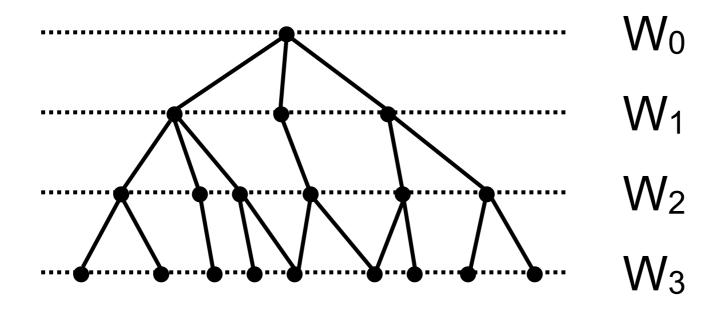


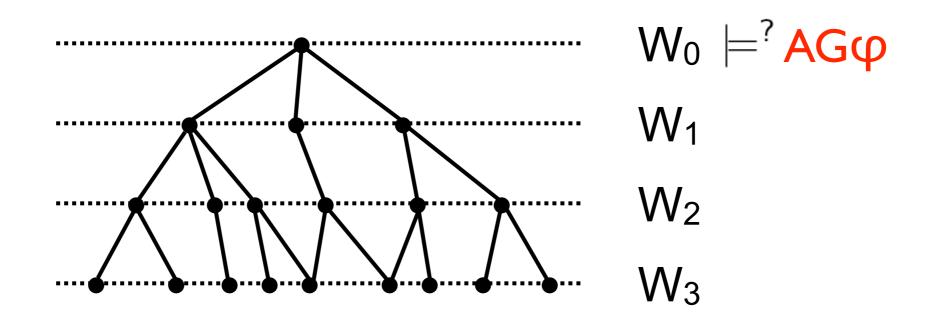


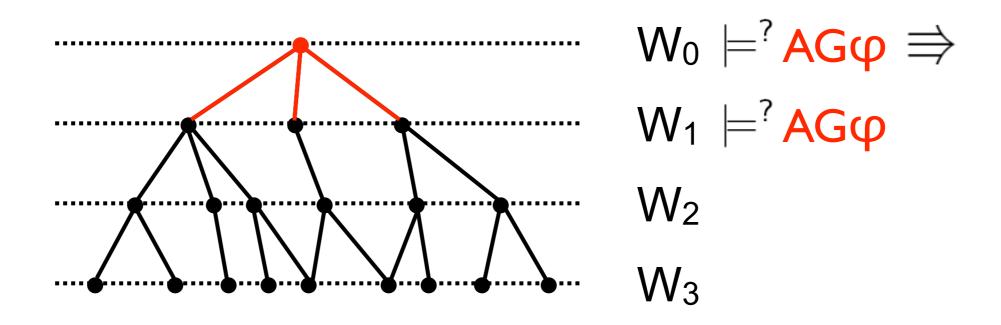
AGφ

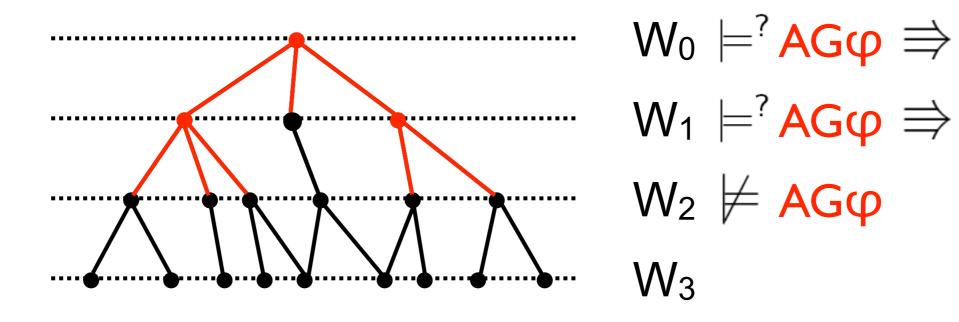


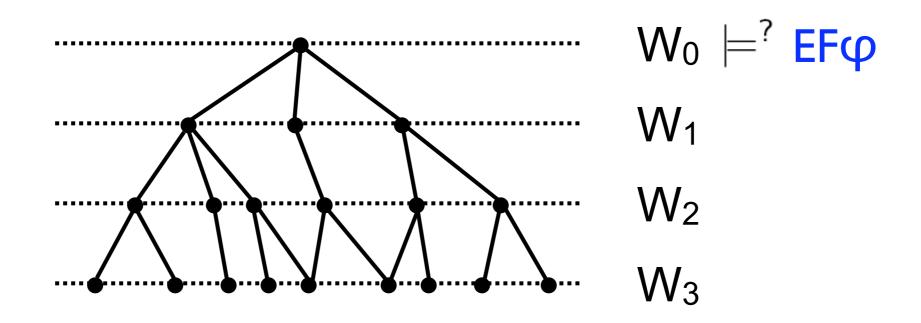


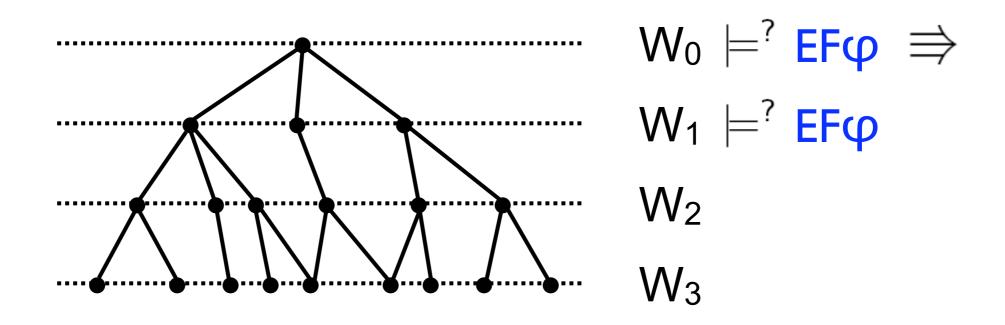


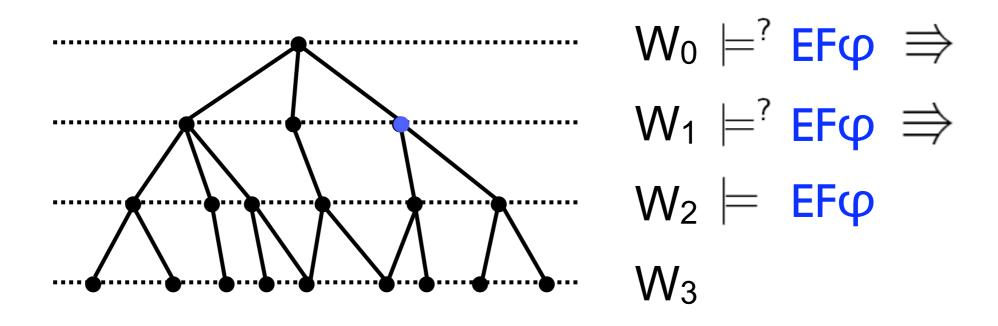












- An Abstract Biochemical Calculus
- Port Graph Rewriting
- A Biochemical Calculus Based on Strategic Port Graph Rewriting
- Runtime Verification in the Biochemical Calculus
- Conclusions and Perspectives

Conclusions

Aim: develop better models of living phenomena and new biologically-inspired computational models

Conclusions

Aim: develop better models of living phenomena and new biologically-inspired computational models

- a higher-order biochemical calculus
- port graphs
- simulation and verification
- applications to protein-protein interactions and autonomous systems

Conclusions

Aim: develop better models of living phenomena and new biologically-inspired computational models

- a higher-order biochemical calculus
- port graphs
- simulation and verification
- applications to protein-protein interactions and autonomous systems

Strategies

Perspectives

- express other or new strategies, instantiate with various structures (bigraphs)
- develop efficient simulation methods with graphical interface
- other types of bio-molecular interactions, stochastic aspects
- applicability in modeling synthetic biology

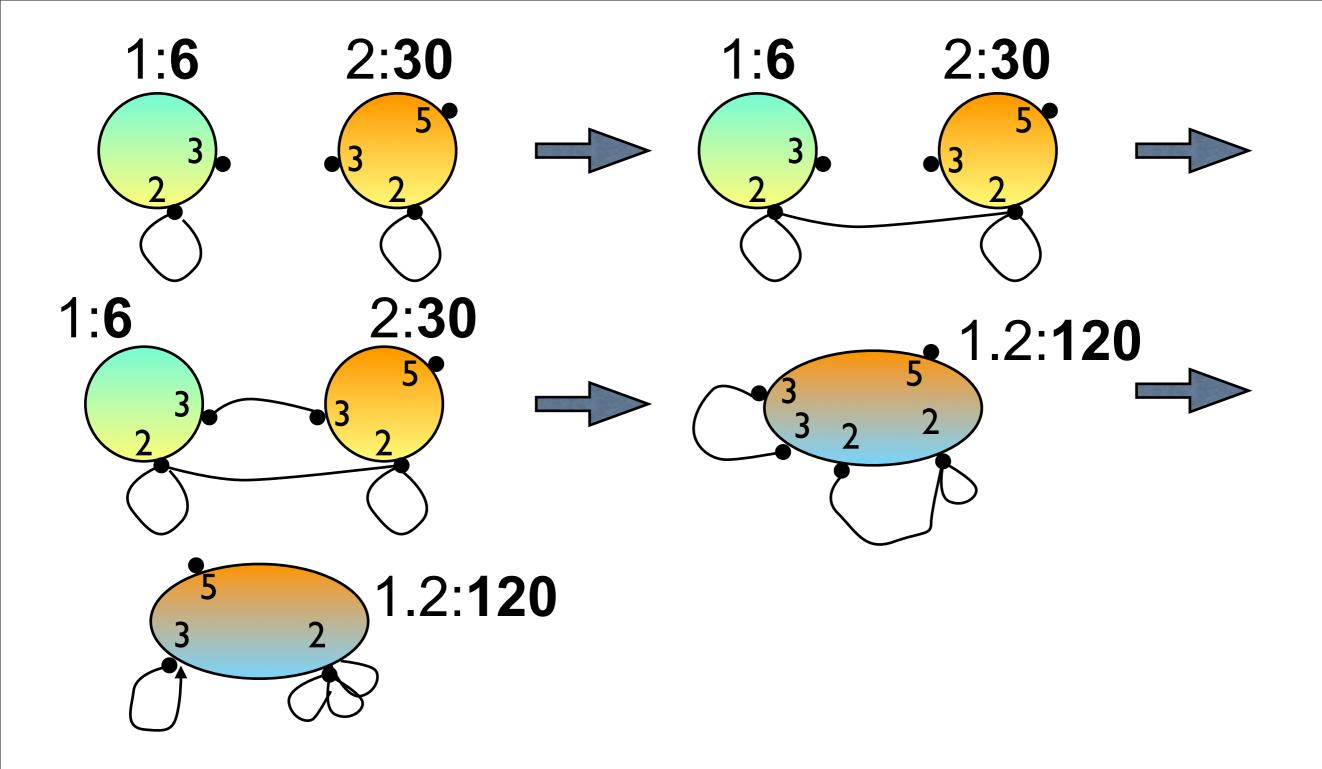
Merci de votre attention!

Publications

With Hélène Kirchner:

- ★ A Higher-Order Graph Calculus for Autonomic Computing *GTCIT'08*
- ★ A Biochemical Calculus Based on Strategic Graph Rewriting AB'08
- **Strategic Port Graph Rewriting for Autonomic Computing** *TFIT'08*
- ★ Graph Rewriting and Strategies for Modeling Biochemical Networks NCA'07
- ★ A Rewriting Calculus for Multigraphs with Ports RULE'07

- Strategy-Based Proof Calculus for Membrane Systems WRLA'08 (with Dorel Lucanu)
- A rewriting logic framework for operational semantics of membrane systems TCS'07 (with Gabriel Ciobanu and Dorel Lucanu)
- Expressing Control Mechanisms of Membranes by Rewriting Strategies WMC'06 (with Gabriel Ciobanu and Dorel Lucanu)



repeat(CreateBondBetweenIdenticalPorts);
FusionNodes;
repeat(FusionIdenticalPorts)