Scaffold-mediated interaction between cAMP and the Raf/MEK/ERK pathway

Oana ANDREI

joint work with Muffy Calder, Walter Kolch, George Baillie, Kim Brown

> DCS, University of Glasgow May 26, 2009

Why formal methods?

Lab experiments

suggest new hypotheses

simulate

2

biological knowledge, observations

Model

Why formal methods?

* communication between cells

- * cellular processes: proliferation, cell growth, programmed cell death...
- * malfunctions: cancer, diabetes, autoimmune diseases...

- cellular processes: proliferation, cell growth, programmed cell death...
- * malfunctions: cancer, diabetes, autoimmune diseases...

- cellular processes: proliferation, cell growth, programmed cell death...
- * malfunctions: cancer, diabetes, autoimmune diseases...

- * cellular processes: proliferation, cell growth, programmed cell death...
- * malfunctions: cancer, diabetes, autoimmune diseases...

* cellular processes: proliferation, cell growth, programmed cell death...

- * cellular processes: proliferation, cell growth, programmed cell death...
- * malfunctions: cancer, diabetes, autoimmune diseases...

- * communication between cells
- * cellular processes: proliferation, cell growth, programmed cell death...
- malfunctions: cancer, diabetes, autoimmune diseases... Need of good, predictive models for guiding experimentations and drug development.

Scaffold proteins

- * organisational role rather than a signalling role
 - anchoring function (binding proteins)
 - catalytic function (increasing/decreasing the output of a signalling cascade) under some conditions

Scaffold proteins

- * organisational role rather than a signalling role
 - anchoring function (binding proteins)
 - catalytic function (increasing/decreasing the output of a signalling cascade) under some conditions
- Do scaffolds make signals stronger, or faster, or do they just localize them?

* stochastic process algebra

- * continuous time Markov Chains
- * PRISM model checker

PRISM module

PP : [0..N] init pp_init;

* 3 abstract levels of concentrations: low (0), medium (1), high (N=2)

Quantitative analysis

- * use of rewards (or costs) in CSL
 - real values assigned to states or transitions
 - to track variable values in states
 - to compute the expected value of a variable at a given time

PRISM experiment : with scaffold

* cAMP is diffused every 5 rounds from 10 with rate 1.0

* PKA phosphorylates PDE8A and S259 with the same rate

PRISM experiment : without scaffold

* PKA phosphorylates a very small amount of PDE8A compared to S259 : PDE8A is not on the scaffold

$\uparrow pPDE8A \longrightarrow \downarrow cAMP \longrightarrow \downarrow PKA^{+} \longrightarrow \uparrow phosphorylated S259$

Temporal queries in CSL

- * reward-based analysis
- * temporal properties
 - CAMP goes below a certain level k only if PDE8 goes above a level k'"
 - use of derivatives to keep track of decreasing or increasing variable values

Necessary preceded

- → requirement / necessary preceded pattern : a state ϕ is reachable and is necessary preceded all the time by a state ψ
 - $\phi = \downarrow cAMP \land \downarrow PKA^{+}$

 $\psi = \uparrow pPDE8A$

Necessary preceded

$\phi = \downarrow cAMP \land \downarrow PKA^{+} \qquad \psi = \uparrow pPDE8A$

CTL:

$\mathsf{EF}\phi \land \mathsf{AG}((\neg\psi) \Rightarrow \mathsf{AG}(\neg\phi))$

CSL:

$P_{>0} \Gamma \phi 1 \wedge P_{\leq 0} \Gamma (-(-\psi)) \Rightarrow P_{\geq 1} \Gamma (-\phi) 1)$

Oscillations

$\phi = \uparrow \mathsf{pPDE8A} \land \downarrow \mathsf{cAMP} \land \downarrow \mathsf{PKA^+}$

$\psi = \downarrow pPDE8A \land \uparrow cAMP \land \uparrow PKA^+$

$\mathsf{CTL}: \mathsf{AG}((\phi) \Rightarrow \mathsf{EF}\psi) \land (\psi) \Rightarrow \mathsf{EF}\phi))$

CSL:

$\mathsf{P}_{\leq 0} \, \mathsf{LF} \, (-(\phi \Rightarrow \mathsf{P}_{>0} \mathsf{LF} \, \psi \, 1) \vee -(\psi \Rightarrow \mathsf{P}_{>0} \mathsf{LF} \, \phi \, 1))$

New hypothesis

* we introduce an inhibitor for PDE8

either Dipyridamole (a drug causing vasodilation)

* or dominant negative PDE8

New hypothesis

* we introduce an inhibitor for PDE8

either Dipyridamole (a drug causing vasodilation)

* or dominant negative PDE8

does the level of pS259 increase?

PRISM experiment

* cAMP is diffused every 5 consecutive rounds every 10 rounds

* pPDE8A degrades 5 times as much cAMP as PDE8A does

* PKA equally phosphorylates PDE8A and Raf-S259

Conclusions

- formal model of a biological process
- It the biologists validated our results
- refine the model with more experimental data
- find new questions on the model and express them using a temporal logic