(2,4) TREES

e Search Trees (but not binary)
e also known as 2-4, 2-3-4 trees

 very important as basis for Red-Black trees (so pay
attention!)

(2,4) Trees 1



Multi-way Search Trees

e Each internal node of a multi-way search ffee
- has at least two children

- stores a collection of items of the forky X),
wherek is a key and is an element

- containd - 1 items, wherd is the number of
children

- “contains” 2 pseudo-item&, = —o ky = o

e Children of each internal node are “between” items

- all keys in the subtree rooted at the child fall
between keys of those items

e External nodes are just placeholders

(2,4) Trees 2



Multi-way Searching

e Similar to binary searching

If search keys< k;, , search the leftmost child

If s> k,_,, search the rightmost child

That's it in a binary tree; what aboutdf>2 ?

Find two keysk. _; and;. between whisfalls,
and search the chilg

fors=8
/Searchin
3 fors=12

@@@

N

8

@ 17 18 19 20 2
“Bh d oooo

Not found!

 \WWhat would an in-order traversal look like?

(2,4) Trees




(2,4) Trees

e At most 4 children
» All external nodes have same depth
e Heighth of (2,4) tree iO(logn) .

e How is this fact useful in searching?

(2,4) Trees




(2,4) Insertion

e Always maintain depth condition

« Add elements only to existing nodes

Empty _ Insert4 % Insert6 $
tree /

Insert 12

J L1 L1 L

 What if that makes a node too big?
- overflow

e Must perform asplit operation
- replace node with two nodes awid
- V' gets the first two keys
- V" gets the last key

- send the other key up the tree

- iIf vis root, create new root with third key
- otherwise just add third key to parent

e Much clearer with a few pictures...

(2,4) Trees




(2,4) Insertion (cont.)

\
\Insert 15

4 6 12 15

e Tree always grows from the top, maintaining
balance

 What if parent is full?

(2,4) Trees




(2,4) Insertion (cont.)

e Do the same thing:
-—_ _lInsert 17

« Overflow cascade all the way up to the root
- still at mostO(logn)

(2,4) Trees




(2,4) Deletion

e A little trickier

 First of all, find the key
- simple multi-way search

 Then, reduce to the case where deletable item Is
the bottom of the tree

- Find item which precedes it in in-order traversal
- Swap them

e Remove the item
-~ Delete 13

e Easy, right?

e ...but what about removing from 2-nodes?

(2,4) Trees 8

a



(2,4) Deletion (cont.)

* Not enough items in the node
- underflow

« Pull an item from the parent, replace it with an item

from a sibling
- calledtransfer

__ Delete 4 5> 10

 Still not good enough! What happens if siblings a
2-nodes?

e Could we just pull one item from the parent?
- too many children

e But maybe...

(2,4) Trees 9



(2,4) Deletion (cont.)

* \We know that the node’s sibling Is just a 2-node

e So wefusethem into one
- after stealing an item from the parent, of course
\Delete 12

e Last special case, | promise: what if the parent was
2-node?

(2,4) Trees 10



(2,4) Deletion (cont.)

« Underflow can cascade up the tree, too.
__Delete 14

(2,4) Trees

11




(2,4) Conclusion

e The height of a (2,4) tree 3(logn)
« Split, transfer, and fusion each takél)

e Search, insertion and deletion each t@éogn)

 Why are we doing this?
(2,4) trees are fun! Why else would we do it?
Well, there’s another reason, too.

They're pretty fundamental to the idea of Red-Black trees

well.

And you're covering Red-Black trees on Monday.
Perhaps more importantly, your next project is a Red-Black tr

e Have a nice weekend!

as

€

(2,4) Trees

12



