(2,4) **TREES**

- Search Trees (but not binary)
- also known as 2-4, 2-3-4 trees
- very important as basis for Red-Black trees (so pay attention!)

Multi-way Search Trees

- Each internal node of a multi-way search tree T:
 - has at least two children
 - stores a collection of items of the form (k, x), where k is a key and x is an element
 - contains *d* 1 items, where *d* is the number of children
 - "contains" 2 pseudo-items: $k_0 = -\infty$, $k_d = \infty$
- Children of each internal node are "between" items
 - all keys in the subtree rooted at the child fall between keys of those items
- External nodes are just placeholders

Multi-way Searching

- Similar to binary searching
- If search key $s < k_1$, search the leftmost child
- If $s > k_{d-1}$, search the rightmost child
- That's it in a binary tree; what about if d > 2?
- Find two keys k_{i-1} and k_i between which s falls, and search the child v_i .

What would an in-order traversal look like?

(2,4) Trees

- At most 4 children
- All external nodes have same depth
- Height h of (2,4) tree is $O(\log n)$.
- How is this fact useful in searching?

(2,4) Insertion

- Always maintain depth condition
- Add elements only to existing nodes

- What if that makes a node too big?
 - overflow
- Must perform a *split* operation
 - replace node v with two nodes v' and v''
 - v' gets the first two keys
 - v" gets the last key
 - send the other key up the tree
 - if v is root, create new root with third key
 - otherwise just add third key to parent
- Much clearer with a few pictures...

- Tree always grows from the top, maintaining balance
- What if parent is full?

(2,4) Insertion (cont.)

• Do the same thing:

- Overflow cascade all the way up to the root
 - still at most $O(\log n)$

(2,4) Deletion

- A little trickier
- First of all, find the key
 - simple multi-way search
- Then, reduce to the case where deletable item is at the bottom of the tree
 - Find item which precedes it in in-order traversal
 - Swap them
- Remove the item

- Easy, right?
- ...but what about removing from 2-nodes?

(2,4) Deletion (cont.)

- Not enough items in the node
 - underflow
- Pull an item from the parent, replace it with an item from a sibling
 - called *transfer*

- Still not good enough! What happens if siblings are 2-nodes?
- Could we just pull one item from the parent?
 - too many children
- But maybe...

(2,4) Deletion (cont.)

- We know that the node's sibling is just a 2-node
- So we *fuse* them into one
 - after stealing an item from the parent, of course

• Last special case, I promise: what if the parent was a 2-node?

(2,4) Deletion (cont.)

• Underflow can cascade up the tree, too.

(2,4) Conclusion

- The height of a (2,4) tree is $O(\log n)$.
- Split, transfer, and fusion each take O(1).
- Search, insertion and deletion each take $O(\log n)$.
- Why are we doing this?
 - (2,4) trees are fun! Why else would we do it?
 - Well, there's another reason, too.
 - They're pretty fundamental to the idea of Red-Black trees as well.
 - And you're covering Red-Black trees on Monday.
 - Perhaps more importantly, your next project is a Red-Black tree.

Have a nice weekend!