CS 16: Balanced Trees

2-3-4 Trees and Red-
Black Trees

"V

®
| o
e .
o o
I

erm 204

CS 16: Balanced Trees

2-3-4 Trees Revealed

 Nodesstore 1, 2, or 3 keys and have
2, 3, or 4 childrenrespectively

» All leaveshave thesame depth

(K
(beh nr

QIO @@

%Iog(N +1) < heights log(N + 1)

205

CS 16: Balanced Trees

2-3-4 Tree Nodes

e Introduction of nodes with more than 1 ke
and more than 2 children

2-node: R
e same as a binary node

<a >a

a b

/] \

e 2 keys, 3 links <a >h

>a
<b

4-node: (a b ¢

o 3 keys, 4 links
<a >C

>a >h
<b <C

erm 206 o

Y,

CS 16: Balanced Trees

Why 2-3-47?

 Why not minimize height by maximizing
children in a tl-tre€?

e Let each node have d children so that we

getO(logyN) search time! Right?

\ &
- Q

Z

I

- - - - >8
Z

—

O
0000000000000 00O0)

e That means if & N2 we get a height of 2

 However, searching out the correct chilo

on each level requires O(Ioglﬁ) by
binarysearch

e 2 log NY2=0O(log N) which is not as good
as we had hoped for!
o 2-3-4-trees willguarantee O(log N) height
using only 2, 3, or 4 children per node

erm 207 .

CS 16: Balanced Trees

Insertion into 2-3-4 Trees

 Insert thenew keyat thelowest internal
node reacheah the search

e 2-nodebecomes-node
g EK [: dg
C

 3-nodebecomedgl-node

f——-(dg

1

 What about &-node?
« WWe can’t insert another key!

208 o

CS 16: Balanced Trees

Top Down Insertion

 In our way down the tree, whenever we
reach al-node webreak it upinto two2-
nodes and move the middle element up

ineto the parent node

 Now we can perform the C

insertion using one of the <D
previous two cases

» Since we follow this

method from the root down(d e) () A

to the leaf, it is called
top down insertion

erm 209

CS 16: Balanced Trees

Splitting the Tree

As we travel down the tree, if we encounter a
4-nodewe will break it up int®2-nodes This
guarantees that we will never have the probl

of inserting the middle element of a formkr
nodeinto its parenét-node

ny

em

erm 210 o

CS 16: Balanced Trees

Whoa, cowboy

211 .

CS 16: Balanced Trees

Whoa, cowboy

212 .

CS 16: Balanced Trees

Time Complexity of Insertion
In 2-3-4 Trees

Time complexity:
e A search visits O(log N) nodes

* An insertion requires O(log N) node splits

« Each node split takes constant time

* Hence, operationSearchandlnsert each
take timeO(log N)

Notes:

 Instead of doing splits top-down, we carlu
In-

perform them bottom-up starting at the
sertion node, and only when needed. Tl
IS calledbottom-upinsertion

« A deletion can be performed Ilysing
nodes (inverse of splitting), and takes
O(log N)time

1S

erm 213 o

CS 16: Balanced Trees

Beyond 2-3-4 Trees

What do we know about 2-3-4 Trees?

e Balanced Sisk

 O(log N) search time Eber

« Different node structures E@

Can we get 2-3-4 tree advantages in a binary
tree format???

BN

Welcome to the world dkedBlack Trees!!!

erm 214 .

CS 16: Balanced Trees

Red-Black Tree

A red-black treeis abinarysearclireewith the
following properties:

» edges are colored@d or black

e N0 two consecutive red edges
on any root-leaf path

« same number of black edges
on any root-leaf path
(= black heightof the tree)

» edges connecting leaves are black

Black — Red

erm 215 .

CS 16: Balanced Trees

2-3-4 Tree Evolution

Note how2-3-4 treesrelate tored-black trees

2-3-4 Red-Black

~ N
- P;\ ACK

™ AR

Now we see@ed-black trees are just a way of
representing 2-3-4 trees!

erm 216 .

CS 16: Balanced Trees

More Red-Black Tree

Properties

N # of internal nodes
L #leaves€ N + 1)
H height

B black height

Property 1: 2® < 1< 45

D5 A A
RARK K AR K

Property 2: %Iog(N +1)<B<log(N+ 1)

Property 3: log(N+1)<H< 2log(N+ 1)

This implies that searches take timé(logN)!

erm 217 .

CS 16: Balanced Trees

Insertion into Red-Black Trees

1.Perform a standard search to find the le
where the key should be added

2.Replace the leaf with an internal node wi
the new key

3.Color the incoming edge of the new node

red

4.Add two new leaves, and color their
Incoming edges black

5.1f the parent had an incomingdedge, we
now have two consecutivededges! We
must reorganize tree to remove that
violation. What must be done depends
the sibling of the parent.

=l

af

th

on

erm 218 o

CS 16: Balanced Trees

Insertion - Plain and Simple

Let:

be the new node
O p be its parent
O ¢ be its grandparent

Case 1: Incoming edge ab is black

No violation

p STOP!

I! \ Pretty easy, huh?

Well... it gets messier...

erm 219 .

CS 16: Balanced Trees

Restructuring

Case 2: Incoming edge agb isred, and
its sibling is black @

Aﬁ

We call this a fight rotation”

No further work on tree is necessary
Inorder remains unchanged

Tree becomes more balanced

No two consecutiveed edges!

erm 220 .

CS 16: Balanced Trees

More Rotations

Similar to a right rotation, we can do a
“left rotation”...

X

Simple, huh?

erm 221 .

CS 16: Balanced Trees

Double Rotations

What if the new node is between its parent and
grandparent in the inorder sequence?

We must perform a “double rotation”
(which is no more difficult than a “single” one

d

Sy

This would be called a
“left-right double rotation”

A 4

erm 222 .

CS 16: Balanced Trees

Last of the Rotations

And this would be called a
“right-left double rotation”

g N\

WA

erm 223 .

CS 16: Balanced Trees

Bottom-Up Rebalancing

Case 3: Incoming edge ab isred and its
sibling is alsored

VAT VAN

« We call this a promotion’

* Note how the black depth remains un-
changed for all of the descendantg)of

e This process will continue upward beyor
g If necessary: renanigasi and repeat.

erm 224 .

CS 16: Balanced Trees

Summary of Insertion

o If two red edgeare present, we do either

 arestructuring(with a simple or double
rotation) andstop, or
e apromotionandcontinue

A restructuringakesconstant timeand Is
performed at most once. It reorganizes|an
off-balanced section of the tree.

 Promotiongnay continue up the tree and
are execute®(log N) times.

e Thetime complexity of an insertion Is
O(logN).

erm

225 o

CS 16: Balanced Trees

An Example

Start by inserting “REDSOX” into an empty tree

E
O R

© G

®

Now, let’s insert “C U B S”...

erm 226 .

CS 16: Balanced Trees

A Cool Example

c
@
O (&

227

CS 16: Balanced Trees

An Unbelievable Example
u r-
D R
’
@

Oh No'@ X

What should we do?

C

228

a)
U
R
U
(9

P

Double Rotatio
©

229

CS 16: Balanced Trees

A Beautiful Example
B

@

© 0 U

R

Rotation

231

CS 16: Balanced Trees

A Super Example

s:>f
R

B DO U

~ &

f

DO U
A> We could’'ve
Holy Consecutive S placed it on

Red Edges, Batmaw either side
S

erm 232 .

(3

CS 16: Balanced Trees

Use the
Bat-Promoter!

®<A

BIFF!

o
ALY
A

@vj

€

233

CS 16: Balanced Trees

j <:ARotation

The SUN lab

and RedBat
trees are safe...(E U
...for now!!! g
C &

©

