
1Advanced Analysis: Amortization

ADVANCED ANALYSIS:
AMORTIZATION AND RECURRECNE

RELATIONS

• amortized time complexity

• accounting method

• Java vectors

• Recurrence Relations

2Advanced Analysis: Amortization

Amortized Running Time
• Amortized running time considers interactions

between operations by studying the total running
time of a series of operations.

• Example: a Clearable Stack: supports the usual
stack methods plus operation

clearStack():Empty the stack by removing all
all its elements
Input: None; Output: None

clearStack takes O(n) time in the worst case

• Proposition: A series of n operations on an initially
empty clearable stack implemented with an array
takes overall O(n) time

• Justification:
- Let M0..., Mn-1 be the series of operations and

Mi0..., Mik-1 be the k-thclearStack operations in
the series

- We define i-1 = -1
- The run time of operation Mij is O(ij -ij -1) since at

most ij - ij-1 elements can be on the stack

3Advanced Analysis: Amortization

Amortized Running Time (cont)
- Thus the running time of all theclearStack

operations is

which is a telescoping sum.
- So the run time is O(n)

• Definition: theamortized running time of an
operation within a series of operations is the worst-
case running time of the entire series of operations
divided by the number of operations.

O i j i j 1––()
j 0=

k 1–

∑ 
 

4Advanced Analysis: Amortization

Accounting Method
• Theaccounting method performs an amoritzation

analysis with a system of credits and debits

• Let’s view the computer as vending machine that
requires one cyber-dollar for a constant amount of
computing time.

• An operation consists of a series of constant-time
primitive operations that cost one cyber-dollar each.

• We will overcharge an operation that executes few
primitives and use the profit to pay for operations
that execute many primitives.

• We will need to set up a scheme for charging
operations. This is known as the amoritization
scheme.

5Advanced Analysis: Amortization

Amortization Scheme Example
for a ClearableStack

• Assume one cyber-dollar is enough to pay for the
push, pop, top, size, or isEmpty and for the time
spent by the clearStack to dereference one element.

• We will charge 2 cyber-dollars though.

• So we undercharge clearStack but overcharge the
other operations. When a clearStack operation is
executed, the cyber-dollars stored in the stack are
used to pay for derefencing the items.

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$ $ $ $ $ $ $ $ $ $

6Advanced Analysis: Amortization

Java Vectors
• The java.util.vector class provides a convenient

expandable data type in Java.

• A vector is a wrapper around an array that holds a
variable calledcapacityIncrement. When the user
inserts then+1st element into a vector of size n, the
size of the array is increased bycapacityIncrement if
it is positive, or doubled ifcapacityIncrement is 0.

• Consider the case ofcapacityIncrement =0:
- Copying an array into a larger array takes

O(n) time, but this only happens for log(n)
insertions.

- Each insertion has O(1) amortized running time

1 2 4 5 6 7 8 9 113 10 12 13 14 15 16

7Advanced Analysis: Amortization

Java Vectors (contd.)
• Justification:

The array doubles in size with the insertion of every
2ith element (1st, 2nd, 4th, etc.)
Worst case: we insert exactlyn = 2i elements, so the
last operation involves copying the entire array over
again.
We haven insertions, andn elements copied in the
last insertion. We also have i-1 previous expansions
of the array, which perform the following number of
element-copy operations:

• The overall time complexity is proportional to 3n-1,
which is O(n)

• But what if thecapacityIncrement is, say, 3?
Do we still have the same amortization?
- No! Copying an array into a larger array is O(n),

but this happens once everyn/capacityIncrement
insertions.

- Each insertion is amortized to O(n)

2
k

k 1=

i 1–
∑ 2

i
1– n 1–= =

8Advanced Analysis: Amortization

Java Vectors (contd.)
• Justification:(c = capacityIncrement)

Let us assume that the original vector size is 0.
The vector increases in size by the insertion of every
(ic)th element (1st, cth, 2*cth, etc.)
Worst case: we insert exactlyn = ic elements, so the
last operation involves copying the entire array.
We haven insertions, andn elements copied on the
last insertion.
We also have i-1 other array copies, for a total of:

previous element copies.

• The overall time complexity is proportional to
n(n-1/(2c)), which is O(n2)

ck
k 0=

i 1–
∑ c k

k 0=

i 1–
∑ c

i i 1–()
2

-----------------= =

9Advanced Analysis: Amortization

Recurrence Relations

10Advanced Analysis: Amortization

The Pizza Slicing Problem

How many pieces of pizza can you get with
N straight cuts ?

1 cut
2 slices

2 cuts
4 slices

3 cuts
6 slices

But ... who said you should cut
through the center every time?

... N cuts
2N slices

11Advanced Analysis: Amortization

A Better Slicing Method ...

When cutting, intersect all previous cuts and
avoid previous intersection points!

4 cuts
11 slices!!

5 cuts
16 slices!!

12Advanced Analysis: Amortization

So ... How Many Pieces?

TheN-th cut createsN new pieces.
Hence, the total number of pieces given by N cuts,
denotedP(N), is given by the following two rules:

• P(1)= 2

• P(N) = P(N-1) + N

Recursive definition of P(N)!

4 cuts
11 slices

5 cuts
16 slices

3 cuts
7 slices

13Advanced Analysis: Amortization

Recurrence Relations
• The pizza-cutting problem is an example of

recurrence relation, where a functionf(N) is
recursively defined.

• The standard method for solving recurrence
relations, called“unfolding”, makes repeated
substitutions applying the recursive rule until the
base case is reached.

The base case is reached wheni = N − 1

f N() f N 1–() N+=

f 1() 2=

for N ≥ 2

(Base Case)

(Recursive Case)

f N() f N 1–() N+=

f N() f N 2–() N 1–() N+ +=

f N() f N 3–() N 2–() N 1–() N+ + +=
...

f N() f N i–() N i– 1+() … N 1–() N+ + + +=

f N() 2 2 3 … N 2–() N 1–() N+ + + + + +=

f N() N
N 1+()

2
------------------ 1+ O N2()= =

14Advanced Analysis: Amortization

Towers of Hanoi

Goal: transfer allN disks from peg A to peg C

Rules:
• move one disk at a time

• never place larger disk above smaller one

Recursive solution:
• transferN − 1 disks from A to B

• move largest disk from A to C

• transferN − 1 disks from B to C

Total number of moves:
• T(N) = 2 T(N − 1) + 1

A

B

C

15Advanced Analysis: Amortization

Solution of the Recurrence for
Towers of Hanoi

Recurrence relation:
• T(N) = 2 T(N − 1) + 1

• T(1) = 1

Solution by unfolding:

 T(N) = 2 (2 T(N − 2) + 1) + 1 =
= 4 Τ(N − 2) + 2 + 1=
= 4 (2 Τ(N − 3) + 1) + 2 + 1 =
= 8 Τ(N − 3) + 4 + 2 + 1 =
...
= 2i T(N − i) + 2i−1 + 2i−2 + ... + 21 + 20

the expansion stops when i= N − 1

 T(N) = 2N−1 + 2N−2 + 2N−3 + ... + 21 + 20

This is ageometric sum, so that we have:

T(N) = 2N − 1 = Ο(2N)

16Advanced Analysis: Amortization

Another Recurrence

The expansion stops fori = log N, so that

T(N) = N + N log N

T(N) =

=

=

=

=

2 2T
N
4
---- 

  N
2
----+ 

  N+

4T
N
4
---- 

  2N+

4 2T
N
8
---- 

  N
4
----+ 

  2N+

8T
N
8
---- 

  3N+

…

2
i
T

N

2
i

 
 
 

iN+

…

T 1() 1=

N 2≥T N() 2T
N
2
---- 

  N+= for

T(1) = 1

17Advanced Analysis: Amortization

Solving Recurrences by “Guess
and Prove”

T 1() 1=

N 2≥T N() 2T
N
2
---- 

  N+=

T N() N N Nlog+=

T N() 2T
N
2
---- 

  N+ 2 N
2

N
2
---- N

2
----log+ 

  N+= =

T 1() 1 1log+ 1= =

T N() N N Nlog 1–() N+ + N N Nlog+= =

for

Step 1: Take awild guess that

Step 2: Prove it byinduction:

Basis

Inductive Step

18Advanced Analysis: Amortization

A More Difficult Example

T N() 2T N() 1+=

2T N1 2/() 1+

2 2T N1 4/() 1+() 1+

4T N1 4/() 1 2+ +

8T N1 8/() 1 2 4+ + +

…

2iT N

1

2i

 
 
 
 

20 21 … 2i 1–+ + + +

The expansion stops for
i.e., i = loglogN

T 2() 0=

N

1

2i

2=

T N() 20 21 … 2 Nloglog 1–+ + + Nlog –= =

19Advanced Analysis: Amortization

Proofs by Induction

We want to show that propertyP is true for all
integersn ≥ n0

Basis:
prove thatP is true forn0.

Inductive Step:

prove that

if P is true for allk such that n0 ≤ k ≤ n − 1

then P is also true forn

20Advanced Analysis: Amortization

An Example of Proof by
Induction

S n() i
i 1=

n
∑ n

n 1+()
2

-----------------= =

Basis:
S 1() 1

1 1+()
2

----------------- 1= =

Inductive Step:

 Assume S k() k
k 1+()

2
-----------------= for 1 ≤ k ≤ n−1

Easy, Right?

n 1–() n 1– 1+()
2

-------------------------- n+ n2 n– 2n+()
2

--------------------------------=

n
n 1+()

2

S n() i
i 1=

n
∑ i n+

i 1=

n 1–
∑ S n 1–() n+= = =

=

=

for n ≥ 1

