ADVANCED ANALYSIS:
AMORTIZATION AND RECURRECNE
RELATIONS

e amortized time complexity
e accounting method
e Java vectors

e Recurrence Relations

Advanced Analysis: Amortization 1

Amortized Running Time

« Amortized running time considers interactions
between operations by studying the total running
time of a series of operations.

« Example: aClearable Stack: supports the usual
stack methods plus operation

clearStack(Empty the stack by removing all
all its elements
Input: None; Output: None

clearStackakes O(n) time in the worst case

e Proposition: A series of n operations on an initially
empty clearable stack implemented with an array
takes overall O(n) time

e Justification:

- Let Mg..., M,_1 be the series of operations and
M;i...., Mi,.1 be the k-titlearStacloperations in
the series

- We definey =-1
- The run time of operation lis O(j; -i; 1) since at
most | - lj.; elements can be on the stack

Advanced Analysis: Amortization 2

Amortized Running Time (cont)

- Thus the running time of all thedearStack
operations Is

ol

-1
SOMURLIE S
%0

which is a telescoping sum.
- So the run time is O(n)

e Definition: theamortized running time of an
operation within a series of operations is the worst-
case running time of the entire series of operations
divided by the number of operations.

Advanced Analysis: Amortization 3

Accounting Method

 Theaccounting method performs an amoritzation
analysis with a system of credits and debits

 Let's view the computer as vending machine that
requires one cyber-dollar for a constant amount af
computing time.

e An operation consists of a series of constant-time
primitive operations that cost one cyber-dollar each.

* We will overcharge an operation that executes feyw
primitives and use the profit to pay for operations
that execute many primitives.

« We will need to set up a scheme for charging
operations. This is known as the amoritization
scheme.

Advanced Analysis: Amortization 4

Amortization Scheme Example
for a ClearableStack

e Assume one cyber-dollar is enough to pay for the
push, pop, top, size, or isEmpty and for the time
spent by the clearStack to dereference one eleme

* We will charge 2 cyber-dollars though.

e S0 we undercharge clearStack but overcharge th
other operations. When a clearStack operation is
executed, the cyber-dollars stored in the stack are
used to pay for derefencing the items.

0O 1.2 3 4 5 6 7 8 910 1112 13 14 15

1

—

\v

Advanced Analysis: Amortization 5

Java Vectors

* Thejava.util.vector class provides a convenient
expandable data type in Java.

« A vector is a wrapper around an array that holds a
variable calleatapacityincrement. When the user
inserts thex+15' element into a vector of size n, the
size of the array Is increased d&yacityincrement if
It Is positive, or doubled Kapacityincrement is O.

e Consider the case ofipacityincrement =0:

- Copying an array into a larger array takes
O(n) time, but this only happens for lag(
Insertions.

- Each insertion has O(1) amortized running time

1 2 3 4 5 6 7 8 910 1112 13 14 15 16

Advanced Analysis: Amortization 6

Java Vectors (contd.)

« Justification:
The array doubles | |n size with the insertion of every
2'th element (&, 2'9 4 etc.)

Worst casewe msert exactly1 2' elements, so the
last operation involves copying the entire array ove
again.

We haven insertions, ana elements copied in the
last insertion. We also have i-1 previous expansign:
of the array, which perform the following number of
element-copy operations:

| —1 :
2 K=ol _1=n_1

* The overall time complexity is proportional tm3,
which is Of)

e But what If thecapacityincrement IS, say, 37?
Do we still have the same amortization?

- No! Copying an array into a larger array ia{)(
but this happens once evawyapacitylncrement
Insertions.

- Each insertion is amortized to 19)(

Advanced Analysis: Amortization 7

Java Vectors (contd.)

o Justification{Cc = capacitylncrement)

Let us assume that the original vector size is O.
The vector increases in size by the insertion of every
(ic)M element (& d", 2*cth etc.)
Worst casewe insert exacthy = ic elements, so the
last operation involves copying the entire array.
We haven insertions, ana elements copied on the
last insertion.
We also have i-1 other array copies, for a total of:

1 -1 -1 ¥

y ck=c y k= c'('gl)
k=0 k=0

previous element copies.

e The overall time complexity is proportional to
n(n-1/(2c)), which is O¢?)

Advanced Analysis: Amortization 8

Recurrence Relations

Advanced Analysis: Amortization

The Pizza Slicing Problem

How many pieces of pizza can you get with
N straight cuts ?

Q¢ &

1 cut 2 Cuts 3 cuts
2 slices 4 slices 6 slices

N cuts But ... who said you should cut
2N slices through the center every time?

Advanced Analysis: Amortization 10

A Better Slicing Method ...

When cutting, intersect all previous cuts and
avoid previous intersection points!

4 cuts
11 slices!!

5 cuts
16 slices!!

Advanced Analysis: Amortization 11

So ... How Many Pieces?

3 cuts 4 cuts 5 cuts
7 slices 11 slices 16 slices

TheN-th cut createdl new pieces.
Hence, the total number of pieces given by N cuts,
denoted”(N), is given by the following two rules:

. P(1)=2
* P(N)=P(N-1) + N

Recursive definition of P(N)!

Advanced Analysis: Amortization 12

Recurrence Relations

e The pizza-cutting problem is an example of
recurrence relation, where a functiof(N) is
recursively defined.

(Base Case) f(1) = 2
(Recursive Case)f (N) = f(N—-1)+N forN=2

* The standard method for solving recurrence
relations, calledinfolding’, makes repeated
substitutionsapplying the recursive rule until the
base cases reached.

f(N) = f(N=1)+N
f(N) = f(N=2)+(N—=1) +N
F(N) = f(N=3)+(N=2)+(N—=1) +N

f(N) = f(N=i)+(N=-i+1)+...+(N-=1)+N
The base case is reached whenN — 1

f(N) =2+2+3+...+(N-2)+(N-1) +N

f(N) = N(N;1)+1 - O(N2)

Advanced Analysis: Amortization 13

Towers of Hanol

0O

A

O

Goal: transfer allN disks from peg A to peg C

Rules:
e move one disk at a time

* never place larger disk above smaller one

Recursive solution:
e transferN — 1 disks from Ato B

 move largest disk from Ato C
 transferN — 1 disks from B to C

Total number of moves:
e TINN=2T(N-1)+1

Advanced Analysis: Amortization

14

Solution of the Recurrence for
Towers of Hanoil

Recurrence relation:
e TINN=2T(N-1)+1
e T(1)=1

Solution by unfolding:

TN)=2(2TN-2)+1)+1=
=4TIN-2)+2+ 1=
=4(2T(N-3)+1)+2+1=
=8T(N-3)+4+2+1=
S T(N-i)+ 21+ 224 _ + 2L+ 20

the expansion stops whea N -1
TN) =2N1 4+ N2 N3 34+ D

This i1s ageometric sumso that we have:

T(N)=2N-1=02N)

Advanced Analysis: Amortization 15

Another Recurrence

—
=
I
N
_l
=
[]
+
Z

mZn for N=>2

I
N
s
_l
&=
C 1]
+
NP=
L1
+
N
Z.

/T(l) =1
i N+ in
B'C

The expansion stops far=log N, so that
T(N) =N+ NlogN

Advanced Analysis: Amortization

16

Solving Recurrences by “Guess

and Prove”
T(N) = 2TEDE+N for N22

T(1) =1

Step 1. Take awild guessthat
T(N) = N+ NlogN

Step 2: Prove it byinduction:

Basis
T(1) =1+logl =1

Inductive Step

= orNO, n = oEN L Ny N[O
T(N) = 2TD2D+N = 2D§+ 2Iog§D+N

T(N) = N+ N(logN-1)+N = N+ NlogN

Advanced Analysis: Amortization 17

A More Difficult Example

T(N) = 2T(J/N) +1 T(2) =0

2T(N1/2) +1
202T(NV/ 4y + 1) +1
AT(INVH 1142
8T(N1/8)+1+2+4

1
' D;% 0 1 1 —1
i i —
2T§\I E+2 +2ly 4o

1

. i
The expansion stops foN2 = 2
l.e., i =loglogN

T(N) = 20+ 214+ 42loglogN—1 - |5gN.

Advanced Analysis: Amortization

18

Proofs by Induction

We want to show that proper®yis true for all
Integeran = ng

Basis
prove that is true forn,,.

Inductive Step:

prove that

If Pis true for alk such thatnp<k<sn-1

then P Is also true fon

Advanced Analysis: Amortization

19

An Example of Proof by

Induction
_ M (n+1)
S(n = 3y 1 =n— forn>1
i =1

Basis

S(1) = 1(—1—J25—1—) = 1 Easy, Right?

Inductive Step:
_(k+1)
Assume S(K = k*———= forl<k<n-1

2
n n—1
Sn)= y 1=y i+n =3(n-1)+n
1 =1 1 =1
2
- (oLl - (one
_ r](n42r1)

Advanced Analysis: Amortization 20

