Advanced Analysis:

 Amortization and Recurrecne Relations- amortized time complexity
- accounting method
- Java vectors
- Recurrence Relations

Amortized Running Time

- Amortized running time considers interactions between operations by studying the total running time of a series of operations.
- Example: a Clearable Stack: supports the usual stack methods plus operation
> clearStack():Empty the stack by removing all all its elements
> Input: None; Output: None

clearStack takes $\mathrm{O}(\mathrm{n})$ time in the worst case

- Proposition: A series of n operations on an initially empty clearable stack implemented with an array takes overall $\mathrm{O}(\mathrm{n})$ time

- Justification:

- Let $\mathrm{M}_{0} \ldots, \mathrm{M}_{\mathrm{n}-1}$ be the series of operations and $\mathrm{M}_{\mathrm{i} 0} \ldots, \mathrm{M}_{\mathrm{ik}-1}$ be the k -th clearStack operations in the series
- We define $\mathrm{i}_{-1}=-1$
- The run time of operation M_{ij} is $\mathrm{O}\left(\mathrm{i}_{\mathrm{j}}-\mathrm{i}_{\mathrm{j}-1}\right)$ since at most $\mathrm{i}_{\mathrm{j}}-\mathrm{i}_{\mathrm{j}-1}$ elements can be on the stack

Amortized Running Time (cont)

- Thus the running time of all the clearStack operations is

$$
O\left(\sum_{j=0}^{k-1}\left(i_{j}-i_{j-1}\right)\right)
$$

which is a telescoping sum.

- So the run time is $\mathrm{O}(\mathrm{n})$
- Definition: the amortized running time of an operation within a series of operations is the worstcase running time of the entire series of operations divided by the number of operations.

Accounting Method

- The accounting method performs an amoritzation analysis with a system of credits and debits
- Let's view the computer as vending machine that requires one cyber-dollar for a constant amount of computing time.
- An operation consists of a series of constant-time primitive operations that cost one cyber-dollar each.
- We will overcharge an operation that executes few primitives and use the profit to pay for operations that execute many primitives.
- We will need to set up a scheme for charging operations. This is known as the amoritization scheme.

Amortization Scheme Example for a ClearableStack

- Assume one cyber-dollar is enough to pay for the push, pop, top, size, or isEmpty and for the time spent by the clearStack to dereference one element.
- We will charge 2 cyber-dollars though.
- So we undercharge clearStack but overcharge the other operations. When a clearStack operation is executed, the cyber-dollars stored in the stack are used to pay for derefencing the items.

Java Vectors

- The java.util.vector class provides a convenient expandable data type in Java.
- A vector is a wrapper around an array that holds a variable called capacityIncrement. When the user inserts the $n+1^{\text {st }}$ element into a vector of size n, the size of the array is increased by capacityIncrement if it is positive, or doubled if capacityIncrement is 0 .
- Consider the case of capacity Increment $=0$:
- Copying an array into a larger array takes $\mathrm{O}(n)$ time, but this only happens for $\log (n)$ insertions.
- Each insertion has $\mathrm{O}(1)$ amortized running time

Java Vectors (contd.)

- Justification:

The array doubles in size with the insertion of every $2^{\text {ith }}$ element ($1^{\text {st }}, 2^{\text {nd }}, 4^{\text {th }}$, etc.)
Worst case: we insert exactly $n=2^{i}$ elements, so the last operation involves copying the entire array over again.
We have n insertions, and n elements copied in the last insertion. We also have i-1 previous expansions of the array, which perform the following number of element-copy operations:

$$
\sum_{k=1}^{i-1} 2^{k}=2^{i}-1=n-1
$$

- The overall time complexity is proportional to $3 n-1$, which is $\mathrm{O}(n)$
- But what if the capacityIncrement is, say, 3?

Do we still have the same amortization?

- No! Copying an array into a larger array is $\mathrm{O}(n)$, but this happens once every $n /$ capacitylncrement insertions.
- Each insertion is amortized to $\mathrm{O}(n)$

Java Vectors (contd.)

- Justification:(c = capacityIncrement)

Let us assume that the original vector size is 0 . The vector increases in size by the insertion of every (ic) ${ }^{\text {th }}$ element ($1^{\text {st }}, \mathrm{c}^{\text {th }}, 2 * \mathrm{c}^{\text {th }}$, etc.)
Worst case: we insert exactly $n=$ ic elements, so the last operation involves copying the entire array. We have n insertions, and n elements copied on the last insertion.
We also have i-1 other array copies, for a total of:

$$
\sum_{k=0}^{i-1} c k=c \sum_{k=0}^{i-1} k=c \frac{i(i-1)}{2}
$$

previous element copies.

- The overall time complexity is proportional to $n(n-1 /(2 \mathrm{c}))$, which is $\mathrm{O}\left(n^{2}\right)$

Recurrence Relations

The Pizza Slicing Problem

How many pieces of pizza can you get with N straight cuts?

2 cuts
4 slices

3 cuts
6 slices

N cuts
2 N slices

But ... who said you should cut through the center every time?

A Better Slicing Method ...

When cutting, intersect all previous cuts and avoid previous intersection points!

4 cuts
11 slices!!

5 cuts
16 slices!!

So ... How Many Pieces?

 3 cuts
 7 slices

4 cuts
11 slices

5 cuts
16 slices

The N-th cut creates N new pieces.
Hence, the total number of pieces given by N cuts, denoted $\mathrm{P}(\mathrm{N})$, is given by the following two rules:

- $\mathrm{P}(1)=2$
- $\mathrm{P}(\mathrm{N})=\mathrm{P}(\mathrm{N}-1)+\mathrm{N}$

Recursive definition of $\mathrm{P}(\mathrm{N})$!

Recurrence Relations

- The pizza-cutting problem is an example of recurrence relation, where a function $f(N)$ is recursively defined.
(Base Case)

$$
f(1)=2
$$

(Recursive Case) $f(N)=f(N-1)+N \quad$ for $N \geq 2$

- The standard method for solving recurrence relations, called"unfolding", makes repeated substitutions applying the recursive rule until the base case is reached.

$$
\begin{aligned}
& f(N)=f(N-1)+N \\
& f(N)=f(N-2)+(N-1)+N \\
& f(N)=f(N-3)+(N-2)+(N-1)+N
\end{aligned}
$$

$f(N)=f(N-i)+(N-i+1)+\ldots+(N-1)+N$
The base case is reached when $\boldsymbol{i}=N-1$

$$
\begin{gathered}
f(N)=2+2+3+\ldots+(N-2)+(N-1)+N \\
f(N)=N \frac{(N+1)}{2}+1=O\left(N^{2}\right)
\end{gathered}
$$

Towers of Hanoi

Goal: transfer all N disks from peg A to peg C Rules:

- move one disk at a time
- never place larger disk above smaller one

Recursive solution:

- transfer $N-1$ disks from A to B
- move largest disk from A to C
- transfer $N-1$ disks from B to C

Total number of moves:

- $\mathrm{T}(N)=2 \mathrm{~T}(N-1)+1$

Solution of the Recurrence for Towers of Hanoi

Recurrence relation:

$$
\begin{aligned}
& \text { - } \mathrm{T}(N)=2 \mathrm{~T}(N-1)+1 \\
& \text { - } \mathrm{T}(1)=1
\end{aligned}
$$

Solution by unfolding:

$$
\begin{aligned}
\mathrm{T}(N) & =2(2 \mathrm{~T}(N-2)+1)+1= \\
& =4 \mathrm{~T}(N-2)+2+1= \\
& =4(2 \mathrm{~T}(N-3)+1)+2+1= \\
& =8 \mathrm{~T}(N-3)+4+2+1= \\
& \cdots \\
& =2^{\mathrm{i}} \mathrm{~T}(N-\mathrm{i})+2^{\mathrm{i}-1}+2^{\mathrm{i}-2}+\ldots+2^{1}+2^{0}
\end{aligned}
$$

the expansion stops when $\mathrm{i}=\mathrm{N}-1$

$$
\mathrm{T}(N)=2^{N-1}+2^{N-2}+2^{N-3}+\ldots+2^{1}+2^{0}
$$

This is a geometric sum, so that we have:

$$
\mathrm{T}(N)=2^{N}-1=\mathrm{O}\left(2^{N}\right)
$$

Another Recurrence

$$
\begin{aligned}
T(N) & =2 T\left(\frac{N}{2}\right)+N \quad \text { for } N \geq 2 \\
T(1) & =1 \\
T(N) & =2\left(2 T\left(\frac{N}{4}\right)+\frac{N}{2}\right)+N \\
& =\quad 4 T\left(\frac{N}{4}\right)+2 N \\
& =4\left(2 T\left(\frac{N}{8}\right)+\frac{N}{4}\right)+2 N \\
& =\quad 8 T\left(\frac{N}{8}\right)+3 N \\
& =\quad 2^{i} T\left(\frac{N}{2}\right)+i N
\end{aligned}
$$

The expansion stops for $. i=\log N$, so that

$$
\mathrm{T}(N)=N+N \log N
$$

Solving Recurrences by "Guess and Prove"

$$
\begin{aligned}
T(N) & =2 T\left(\frac{N}{2}\right)+N \\
T(1) & =1
\end{aligned}
$$

Step 1: Take a wild guess that

$$
T(N)=N+N \log N
$$

Step 2: Prove it by induction:

Basis

$$
T(1)=1+\log 1=1
$$

Inductive Step

$$
\begin{aligned}
& T(N)=2 T\left(\frac{N}{2}\right)+N=2\left(\frac{N}{2}+\frac{N}{2} \log \frac{N}{2}\right)+N \\
& T(N)=N+N(\log N-1)+N=N+N \log N
\end{aligned}
$$

A More Difficult Example

$$
T(N)=2 T(\sqrt{N})+1 \quad T(2)=0
$$

$$
2 T\left(N^{1 / 2}\right)+1
$$

$$
2\left(2 T\left(N^{1 / 4}\right)+1\right)+1
$$

$$
4 T\left(N^{1 / 4}\right)+1+2
$$

$$
8 T\left(N^{1 / 8}\right)+1+2+4
$$

$$
2^{i} T\left(N^{\frac{1}{2^{i}}}\right)+2^{0}+2^{1}+\ldots+2^{i-1}
$$

The expansion stops for $N^{\frac{1}{2^{i}}}=2$ i.e., $i=\log \log N$
$T(N)=2^{0}+2^{1}+\ldots+2^{\log \log N-1}=\log N$.

Proofs by Induction

We want to show that property P is true for all integers $n \geq n_{0}$

Basis:

prove that P is true for n_{0}.

Inductive Step:
prove that
if P is true for all k such that $n_{0} \leq k \leq n-1$
then P is also true for n

An Example of Proof by Induction

$$
S(n)=\sum_{i=1}^{n} i=n \frac{(n+1)}{2} \quad \text { for } n \geq 1
$$

Basis:

$$
S(1)=1 \frac{(1+1)}{2}=1 \quad \text { Easy, Right? }
$$

Inductive Step:

$$
\begin{aligned}
& \text { Assume } S(k)=k \frac{(k+1)}{2} \text { for } 1 \leq k \leq \boldsymbol{n}-\mathbf{1} \\
& S(\boldsymbol{n})=\sum_{i=1}^{n} i=\sum_{i=1}^{n-1} i+n=S(n-1)+n \\
& =(n-1) \frac{(n-1+1)}{2}+n=\frac{\left(n^{2}-n+2 n\right)}{2} \\
& =n \frac{(n+1)}{2}
\end{aligned}
$$

