
CS 16: Closest Points April

dnc 410

Closest Pair

One-Shot Problem

Given a set P of N points, find
p,q ∈ P, such that the distance
d(p, q) is minimum.

Algorithms for determining the
closest pair:

1. Brute Force O(N2)
2. Divide and Conquer O(N log N)
3. Sweep-Line O(N log N)

CS 16: Closest Points April

dnc 411

Brute Force Algorithm

Compute all the distances
d(p,q) and select the minimum
distance.

(x1, y1)

(x2, y2)

p2

p1

d(p1, p2) = (x2 - x1)2 + (y2 - y1)2

Time Complexity: O(N2)

CS 16: Closest Points April

dnc 412

Divide and Conquer
Algorithm

Idea: A better method! Sort
points on the x-coordinate and
divide them in half. Closest pair
is either in one of the halves or
has a member in each half.

Pl Pr

CS 16: Closest Points April

dnc 413

Divide and Conquer
Algorithm

Phase 1 : Sort the points by
their x-coordinate:
 p1 p2 ... pN/2 ... pN/2+1 ... pN

Pl Pr

x1 x2 xN/2 xN

CS 16: Closest Points April

dnc 414

Divide and Conquer
Algorithm

Phase 2 :
Recursively compute closest
pairs and minimum distances,
dl, dr in

Pl = { P1, p2, ... , PN/2 }
Pr = { PN/2+1, ... , PN }

Find the closest pair and
closest distance in central
strip of width2d, where

d = min(dl, dr)
in other words...

CS 16: Closest Points April

dnc 415

Divide and Conquer
Subproblem

• Find the closest (,) pair
in a strip of width2d,
knowing that no (,) or
(,) pair is closer thand.

2d

CS 16: Closest Points April

dnc 416

Subproblem Solution

• For each pointp in the strip,
check distances d(p, q),
wherep andq are of differ-
ent colors and:

y(p) – d ≤ y(q) ≤ y(p)

p

d

d

• There are no more than four
such points!

CS 16: Closest Points April

dnc 417

Time Complexity

If we sort by y-coord each time:

T(N) = 2 T(N/2)+ N log N
T(1) = 1

T(N) = 2 T(N/2) + N log N
= 4 T(N/4) + 2 (N/2) log (N/2)+ N log N
= 4 T(N/4)+ N (log N− 1) + N log N

...

= 2KT(N/2K) +
N(logN + (logN -1)+...+ (log N - K +1))

...

stop when N/2K = 1 K= log N

= N + N (1 + 2 + 3 + ... + log N)

= N + N ((log N+ 1) log N) / 2

= O(N log2 N)

(1)

(2)

(K)

(log N)

CS 16: Closest Points April

dnc 418

Improved Algorithm

Idea:

• Sortall the points byy-
coordinate once

• Before recursive calls,
partition the sorted list into
two sorted sublists for the
left and right halves

• After computation of closest
pair,merge back sorted
sublists

CS 16: Closest Points April

dnc 419

Time Complexity of Improved
Algorithm

Phase 1:
Sort by x and y coordinate:
O(N log N)

Phase 2:
Partition: O(N)
Recur: 2 T(N/2)
Subproblem: O(N)
Merge: O(N)

T(N) = 2 T(N/2) + N =
 = O(N log N)

Total Time: O(N log N)

CS 16: Closest Points April

dnc 420

Closest Points

Repetitive Mode Problem

• Given a set S of sites, answer
queries as to what is the
closest site to pointq.

q

I.e. which post office is closest?

CS 16: Closest Points April

dnc 421

Voronoi Diagram

S = { s1, s2, ... , sN }
Set of all points in the plane
calledsites.

Voronoi region ofsi:
V(si)=
{ p: d(p, si) ≤ d(p, sj), ∀ j ≠ i }

Voronoi diagram of S:
Vor(S)= partition of plane
into the regions V(si)

CS 16: Closest Points April

dnc 422

Voronoi Diagram Example

CS 16: Closest Points April

dnc 423

Constructing a Voronoi
Diagram

hij : perpendicular bisector of
segment (si, sj)

Hij : half-plane delimited byhij
and containingsi

Hij= { p: p is closer tosi thansj}

sj

si

hij

Hij

CS 16: Closest Points April

dnc 424

Constructing a Voronoi
Diagram

V(Si) = ∩ Hij ... Convex!
N

j ≥ 1
j ≠ i

CS 16: Closest Points April

dnc 425

Voronoi Diagram and
Convex Hull

Sites in unbounded regions of
the Voronoi Diagram are exactly
those on theconvex hull!

CS 16: Closest Points April

dnc 426

Constructing Voronoi
Diagrams

There is a divide and conquer
algorithm for constructing
Voronoi diagrams with
O(N log N)time complexity

It’s too difficult for CS 16, but
don’t give up.

Your natural desire to learn more
on algorithms and geometry can
be fulfilled.

CS 16: Closest Points April

dnc 427

Geometry is Big Fun!

Want to know more about
geometric algorithms and
explore 3rd, 4th, and higher
dimensions?

TakeCS 252: Computational
 Geometry

 (offered in Sem. II, 1998)

