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Closest Pair

One-Shot Problem

Given a set P of N points, find
p,q ∈ P, such that the distance
d(p, q) is minimum.

Algorithms for determining the
closest pair:

1. Brute Force O( N2 )
2. Divide and Conquer O(N log N)
3. Sweep-Line O(N log N)
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Brute Force Algorithm

Compute all the distances
d(p,q) and select the minimum
distance.

(x1, y1)

(x2, y2)

p2

p1

d(p1, p2) =     (x2 - x1)2 + (y2 - y1)2

Time Complexity: O( N2 )
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Divide and Conquer
Algorithm

Idea: A better method! Sort
points on the x-coordinate and
divide them in half. Closest pair
is either in one of the halves or
has a member in each half.

Pl Pr
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Divide and Conquer
Algorithm

Phase 1 : Sort the points by
their x-coordinate:
  p1 p2 ... pN/2 ... pN/2+1 ... pN

Pl Pr

x1 x2 xN/2 xN



CS 16: Closest Points April

dnc 414

Divide and Conquer
Algorithm

Phase 2 :
Recursively compute closest
pairs and minimum distances,
dl, dr in

Pl = { P1, p2, ... , PN/2 }
Pr = { PN/2+1, ... , PN }

Find the closest pair and
closest distance in central
strip of width2d, where

d = min(dl, dr)
in other words...
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Divide and Conquer
Subproblem

• Find the closest (   ,    ) pair
in a strip of width2d,
knowing that no ( , ) or
(   ,   ) pair is closer thand.

2d
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Subproblem Solution

• For each pointp in the strip,
check distances d(p, q),
wherep andq are of differ-
ent colors and:

y(p) – d ≤ y(q) ≤ y(p)

p

d

d

• There are no more than four
such points!
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Time Complexity

If we sort by y-coord each time:

T(N) = 2 T(N/2)+ N log N
T(1) = 1

T(N) = 2 T(N/2) + N log N
= 4 T(N/4) + 2 (N/2) log (N/2)+ N log N
= 4 T(N/4)+ N (log N− 1) + N log N

...

= 2KT(N/2K) +
N(logN + (logN -1)+...+ (log N - K +1))

...

stop when N/2K = 1         K= log N

= N + N (1 + 2 + 3 + ... + log N)

= N + N ((log N+ 1) log N) / 2

= O( N log2 N )

(1)

(2)

(K)

(log N)
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Improved Algorithm

Idea:

• Sortall the points byy-
coordinate once

• Before recursive calls,
partition the sorted list into
two sorted sublists for the
left and right halves

• After computation of closest
pair,merge back sorted
sublists
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Time Complexity of Improved
Algorithm

Phase 1:
Sort by x and y coordinate:
O( N log N )

Phase 2:
Partition: O( N )
Recur: 2 T( N/2 )
Subproblem: O( N )
Merge: O( N )

T(N) = 2 T( N/2 ) + N =
 = O( N log N )

Total Time: O( N log N )
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Closest Points

Repetitive Mode Problem

• Given a set S of sites, answer
queries as to what is the
closest site to pointq.

q

I.e. which post office is closest?
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Voronoi Diagram

S = { s1, s2, ... , sN }
Set of all points in the plane
calledsites.

Voronoi region ofsi:
V( si )=
{ p: d(p, si) ≤ d(p, sj), ∀ j ≠ i }

Voronoi diagram of S:
Vor( S )= partition of plane
into the regions V(si )
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Voronoi Diagram Example
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Constructing a Voronoi
Diagram

hij : perpendicular bisector of
segment (si, sj)

Hij : half-plane delimited byhij
and containingsi

Hij= { p: p is closer tosi thansj}

sj

si

hij

Hij
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Constructing a Voronoi
Diagram

V( Si ) = ∩ Hij   ...  Convex!
N

j ≥ 1
j ≠ i
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Voronoi Diagram and
Convex Hull

Sites in unbounded regions of
the Voronoi Diagram are exactly
those on theconvex hull!
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Constructing Voronoi
Diagrams

There is a divide and conquer
algorithm for constructing
Voronoi diagrams with
O( N log N )time complexity

It’s too difficult for CS 16, but
don’t give up.

Your natural desire to learn more
on algorithms and geometry can
be fulfilled.
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Geometry is Big Fun!

Want to know more about
geometric algorithms and
explore 3rd, 4th, and higher
dimensions?

TakeCS 252: Computational
      Geometry

        (offered in Sem. II, 1998)


