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Connectivity and
Biconnectivity
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Connected Components

Connected Graph:  any two
vertices connected by a path

connected not connected

Connected Component:
maximal connected subgraph of
agraph
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Equivalence Relations

A relation on a set S is a set R of ordered pairs
of elements of S defined by some property

Example:
• S = {1,2,3,4}

• R= {(i,j) ∈ S× S such that i < j}
= {(1,2),(1,3),(1,4),(2,3),(2,4),{3,4)}

An equivalence relation is a relation with the
following properties:

• (x,x) ∈ R, ∀ x ∈ S                   (reflexive)

• (x,y) ∈ R ⇒ (y,x) ∈ R (symmetric)

• (x,y), (y,z) ∈ R ⇒ (x,z)∈ R (transitive)

The relationC on the set of vertices of a graph:

• (u,v) ∈ C ⇔ u andv are in the same
                           connected component

is an equivalence relation.
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DFS on a DisconnectedGraph

1
2

4 7

After dfs(1) terminates:

k 1  2  3  4  5  6  7
val[k]  1  4  0  2  0  0  3
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DFS of a Disconnected Graph
• RecursiveDFSprocedure visits all vertices

of a connected component.
• A for  loop is added to visit all the graph

                for all k from 1 to N
                    if val[k] = 0

                  dfs(k)
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Representing Connected
Components

Array comp [1..N]
comp[k] = i if vertex k is in
                 i-th connectedcomponent

1

2 8

4

6

3

5 7

1 2 3

vertex k  1  2  3  4  5  6  7  8
comp[k] 1 1 2 3 2 3 2 1
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NewDFS Algorithm

Inside DFS:

replace id = id + 1;
                    val [k] = id;

with comp[k] = id;

Outside DFS:

for  all k from 1 to N for each vertex
if  comp [k] = 0 if not in comp

id = id + 1; new component
dfs(k);
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DFS Algorithm for Connected
Components

Pseudocoded dfs (int k);

comp[k] = vertex.id;
vertex  = adj[k];

Vertex vertex
while (vertex != null)

if  (val[vertex.num] == 0)
dfs (vertex.num);
vertex = vertex.next;

. . .

for  all k from 1 to N
if  (comp[k] == 0)

id = id + 1;
dfs (k);

TIME COMPLEXITY: O ( N + M)



CS 16: Connectivity

cec 470

MIA

SEA
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ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN

Cutvertices

Cutvertex (separation vertex):
its removal disconnects the graph

If the Chicagoairport is closed, then there is no
way to get from Providence to beautiful Denver,
Colorado!

• Cutvertex: ORD
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Biconnectivity
Biconnected graph: has no cutvertices

New flights:
LGA-ATL andDFW-LAX
make the graph biconnected.
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Properties of Biconnected
Graphs

• There are two disjoint paths between any
two vertices.

• There is a simple cycle through any two
vertices.

By convention, two nodes connected by an edge
form a biconnected graph, but this does not verify
the above properties.

ORD
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Biconnected Components
Biconnected component (block):

maximal biconnected subgraph

Biconnected components are
edge-disjoint but share cutvertices.
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Finding Cutvertices:

Brute Force Algorithm

for  each vertex v
   remove v;

test resulting graph for connectivity;
   put back v;

Time Complexity:
• N connectivity tests
• each taking time O (N + M )

Total time:
• O (N2 + NM )
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DFS Numbering
We recall that depth-first-search partitions the
edges intotree edges andback edges

• (u,v) tree edge    ⇔ val [u] < val [v]

• (u,v) back edge ⇔   val[u] > val[v]

F C B2
6 7

A1

D 4 G 5

E 3

We shall characterize cutvertices using the
DFS numbering and two properties ...
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Root Property
The root of the DFS tree is a cutvertex if it has
two or more outgoing tree edges.

• no cross/horizontal edges
• must retrace back up
• stays within subtree to root, must go

through root to other subtree

root
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root

Complicated Property

A vertex v which is not the root of the DFS tree
is a cutvertex if v has a child w such that no
back edge starting in the subtree of w reaches
an ancestor of v.

v

w

root
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Definitions
• low(v): vertex with the lowest val (i.e.,

“highest” in the DFS tree) reachable fromv
by using a directed path that usesat most
one back edge

• Min (v) = val(low(v))

v low(v) Min(v)
________________

A       A 1

B A 1

C B 2

D B 2

E B 2

F A 1
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DFS Algorithm for Finding
Cutvertices

1. PerformDFS on the graph

2. Test ifrootof DFStreehas two or more tree
edges (root property)

3. For each other vertexv, test if there is atree
edge (v,w) such that Min(w) ≥ val[v]
(complicated property)

Min(v) = val(low(v)) is the minimum of:

• val[v]

• minimum ofMin(w) for all treeedges (v,w)

• minimum ofval[z] for all back edges (v,z)

Implement thisrecursively and you are done!!!!
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Finding the Biconnected
Components

• DFS visits the vertices and edges of each
biconnected component consecutively

• Use a stack to keep track of the  bicon-
nected component currently being tra-
versed
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