
CS 16: Connectivity

cec 462

Connectivity and
Biconnectivity

CS 16: Connectivity

cec 463

Connected Components

Connected Graph: any two
vertices connected by a path

connected not connected

Connected Component:
maximal connected subgraph of
agraph

CS 16: Connectivity

cec 464

Equivalence Relations

A relation on a set S is a set R of ordered pairs
of elements of S defined by some property

Example:
• S = {1,2,3,4}

• R= {(i,j) ∈ S× S such that i < j}
= {(1,2),(1,3),(1,4),(2,3),(2,4),{3,4)}

An equivalence relation is a relation with the
following properties:

• (x,x) ∈ R, ∀ x ∈ S (reflexive)

• (x,y) ∈ R ⇒ (y,x) ∈ R (symmetric)

• (x,y), (y,z) ∈ R ⇒ (x,z)∈ R (transitive)

The relationC on the set of vertices of a graph:

• (u,v) ∈ C ⇔ u andv are in the same
 connected component

is an equivalence relation.

CS 16: Connectivity

cec 465

DFS on a DisconnectedGraph

1
2

4 7

After dfs(1) terminates:

k 1 2 3 4 5 6 7
val[k] 1 4 0 2 0 0 3

3

65

3

65

1
2

4 7

3

65

3

65

1 4

2 3

0

0
0

CS 16: Connectivity

cec 466

3

65

1
2

4 7

DFS of a Disconnected Graph
• RecursiveDFSprocedure visits all vertices

of a connected component.
• A for loop is added to visit all the graph

 for all k from 1 to N
 if val[k] = 0

 dfs(k)

CS 16: Connectivity

cec 467

Representing Connected
Components

Array comp [1..N]
comp[k] = i if vertex k is in
 i-th connectedcomponent

1

2 8

4

6

3

5 7

1 2 3

vertex k 1 2 3 4 5 6 7 8
comp[k] 1 1 2 3 2 3 2 1

CS 16: Connectivity

cec 468

NewDFS Algorithm

Inside DFS:

replace id = id + 1;
 val [k] = id;

with comp[k] = id;

Outside DFS:

for all k from 1 to N for each vertex
if comp [k] = 0 if not in comp

id = id + 1; new component
dfs(k);

CS 16: Connectivity

cec 469

DFS Algorithm for Connected
Components

Pseudocoded dfs (int k);

comp[k] = vertex.id;
vertex = adj[k];

Vertex vertex
while (vertex != null)

if (val[vertex.num] == 0)
dfs (vertex.num);
vertex = vertex.next;

. . .

for all k from 1 to N
if (comp[k] == 0)

id = id + 1;
dfs (k);

TIME COMPLEXITY: O (N + M)

CS 16: Connectivity

cec 470

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN

Cutvertices

Cutvertex (separation vertex):
its removal disconnects the graph

If the Chicagoairport is closed, then there is no
way to get from Providence to beautiful Denver,
Colorado!

• Cutvertex: ORD

CS 16: Connectivity

cec 471

Biconnectivity
Biconnected graph: has no cutvertices

New flights:
LGA-ATL andDFW-LAX
make the graph biconnected.

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

ORD

MSN

DEN

CS 16: Connectivity

cec 472

MIA

SEA

SFO

ATL

PVD

LGA

STL
LAXLAX

DFW

MSN

DEN

Properties of Biconnected
Graphs

• There are two disjoint paths between any
two vertices.

• There is a simple cycle through any two
vertices.

By convention, two nodes connected by an edge
form a biconnected graph, but this does not verify
the above properties.

ORD

CS 16: Connectivity

cec 473

MIA

SEA

SFO

ATL

PVD

LGA

STLLAXLAX

DFW

ORD

MSN

DEN

Biconnected Components
Biconnected component (block):

maximal biconnected subgraph

Biconnected components are
edge-disjoint but share cutvertices.

CS 16: Connectivity

cec 474

Finding Cutvertices:

Brute Force Algorithm

for each vertex v
 remove v;

test resulting graph for connectivity;
 put back v;

Time Complexity:
• N connectivity tests
• each taking time O (N + M)

Total time:
• O (N2 + NM)

CS 16: Connectivity

cec 475

DFS Numbering
We recall that depth-first-search partitions the
edges intotree edges andback edges

• (u,v) tree edge ⇔ val [u] < val [v]

• (u,v) back edge ⇔ val[u] > val[v]

F C B2
6 7

A1

D 4 G 5

E 3

We shall characterize cutvertices using the
DFS numbering and two properties ...

CS 16: Connectivity

cec 476

Root Property
The root of the DFS tree is a cutvertex if it has
two or more outgoing tree edges.

• no cross/horizontal edges
• must retrace back up
• stays within subtree to root, must go

through root to other subtree

root

CS 16: Connectivity

cec 477

root

Complicated Property

A vertex v which is not the root of the DFS tree
is a cutvertex if v has a child w such that no
back edge starting in the subtree of w reaches
an ancestor of v.

v

w

root

CS 16: Connectivity

cec 478

Definitions
• low(v): vertex with the lowest val (i.e.,

“highest” in the DFS tree) reachable fromv
by using a directed path that usesat most
one back edge

• Min (v) = val(low(v))

v low(v) Min(v)

A A 1

B A 1

C B 2

D B 2

E B 2

F A 1

1

6

5
D E

4

C
3

F

B
2

A

CS 16: Connectivity

cec 479

DFS Algorithm for Finding
Cutvertices

1. PerformDFS on the graph

2. Test ifrootof DFStreehas two or more tree
edges (root property)

3. For each other vertexv, test if there is atree
edge (v,w) such that Min(w) ≥ val[v]
(complicated property)

Min(v) = val(low(v)) is the minimum of:

• val[v]

• minimum ofMin(w) for all treeedges (v,w)

• minimum ofval[z] for all back edges (v,z)

Implement thisrecursively and you are done!!!!

CS 16: Connectivity

cec 480

Finding the Biconnected
Components

• DFS visits the vertices and edges of each
biconnected component consecutively

• Use a stack to keep track of the bicon-
nected component currently being tra-
versed

CS 16: Connectivity

cec 481

MIA

SEA

SFO

ATL

PVD

LGA

STLLAXLAX

DFW

MSN

DEN

LAXSAN

SJU STT

ORD

