GRAPH TRAVERSALS

- Depth-First Search
- Breadth-First Search

Exploring a Labyrinth Without Getting Lost

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost.
- We start at vertex s, tying the end of our string to the point and painting s "visited". Next we label s as our current vertex called u.
- Now we travel along an arbitrary edge (u, v).
- If edge (u, v) leads us to an already visited vertex v we return to u.
- If vertex v is unvisited, we unroll our string and move to v, paint v "visited", set v as our current vertex, and repeat the previous steps.
- Eventually, we will get to a point where all incident edges on u lead to visited vertices. We then backtrack by unrolling our string to a previously visited vertex v. Then v becomes our current vertex and we repeat the previous steps.

Exploring a Labyrinth Without Getting Lost (cont.)

- Then, if we all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure.
- When we backtrack to vertex s and there are no more unexplored edges incident on s, we have finished our DFS search.

Depth-First Search

Algorithm DFS(v);

Input: A vertex v in a graph
Output: A labeling of the edges as "discovery" edges and "backedges"
for each edge e incident on v do
if edge e is unexplored then
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
recursively call DFS(w)
else
label e as a backedge

Depth-First Search(cont.)

a)

c)

b)

d)

Depth-First Search(cont.)

e)

f)

DFS Properties

- Proposition 9.12 : Let G be an undirected graph on which a DFS traversal starting at a vertex s has been preformed. Then:

1) The traversal visits all vertices in the connected component of s
2) The discovery edges form a spanning tree of the connected component of s

- Justification of 1):
- Let's use a contradiction argument: suppose there is at least on vertex v not visited and let w be the first unvisited vertex on some path from s to v.
- Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
- But when we visited u we must have looked at edge (u, w). Therefore w must have been visited.
- and justification
- Justification of 2):
- We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery edges, i.e. discovery edges form a tree.
- This is a spanning tree because DFS visits each vertex in the connected component of s

Running Time Analysis

- Remember:
- DFS is called on each vertex exactly once.
- For every edge is examined exactly twice, once from each of its vertices
- For n_{s} vertices and m_{s} edges in the connected component of the vertex s, a DFS starting at s runs in $\mathrm{O}\left(n_{s}+m_{s}\right)$ time if:
- The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
- Marking the vertex as explored and testing to see if a vertex has been explored takes $\mathrm{O}(1)$
- We have a way of systematically considering the edges incident on the current vertex so we do not examine the same edge twice.

Marking Vertices

- Let's look at ways to mark vertices in a way that satisfies the above condition.
- Extend vertex positions to store a variable for marking
- Use a hash table mechanism which satisfies the above condition is the probabilistic sense, because is supports the mark and test operations in $\mathrm{O}(1)$ expected time

The Template Method Pattern

- the template method pattern provides a generic computation mechanism that can be specialized by redefining certain steps
- to apply this pattern, we design a class that
- implements the skeleton of an algorithm
- invokes auxiliary methods that can be redefined by its subclasses to perform useful computations
- Benefits
- makes the correctness of the specialized computations rely on that of the skeleton algorithm
- demonstrates the power of class inheritance
- provides code reuse
- encourages the development of generic code

- Examples

- generic traversal of a binary tree (which includes preorder, inorder, and postorder) and its applications
- generic depth-first search of an undirected graph and its applications

Generic Depth First Search

public abstract class DFS \{
protected Object dfsVisit(Vertex v) \{ protected InspectableGraph graph; protected Object visitResult;
initResult();
startVisit(v);
mark(v);
for (Enumeration inEdges = graph.incidentEdges(v); inEdges.hasMoreElements();) \{
Edge nextEdge = (Edge) inEdges.nextElement();
if (!isMarked(nextEdge)) \{ // found an unexplored edge mark(nextEdge);
Vertex w = graph.opposite(v, nextEdge);
if (!isMarked(w)) \{ // discovery edge
mark(nextEdge);
traverseDiscovery(nextEdge, v);
if (!isDone())
visitResult = dfsVisit(w); \}
else // back edge traverseBack(nextEdge, v);
\}
finishVisit(v);
return result();

Auxiliary Methods of the Generic DFS

public Object execute(InspectableGraph g, Vertex start, Object info) \{
graph = g;
return null;
$\}$
protected void initResult() \{\}
protected void startVisit(Vertex v) \{\}
protected void traverseDiscovery(Edge e, Vertex from) $\}$
protected void traverseBack(Edge e, Vertex from) $\}$
protected boolean isDone() \{ return false; \}
protected void finishVisit(Vertex v) \{\}
protected Object result() \{ return new Object(); \}

Specializing the Generic DFS

- class FindPath specializes DFS to return a path from vertex start to vertex target.
public class FindPathDFS extends DFS \{ protected Sequence path; protected boolean done;
protected Vertex target;
public Object execute(InspectableGraph g, Vertex start, Object info) \{
super.execute(g, start, info);
path = new NodeSequence();
done = false;
target = (Vertex) info;
dfsVisit(start);
return path.elements();
\}
protected void startVisit(Vertex v) \{
path.insertFirst(v);
if $(\mathrm{v}==$ target $)\{$ done $=$ true; $\}$
\}
protected void finishVisit(Vertex v) \{
if (!done) path.remove(path.first());
\}
protected boolean isDone() \{ return done; \}
\}

Other Specializations of the Generic DFS

- FindAllVertices specializes DFS to return an enumeration of the vertices in the connecteed component containing the start vertex.

public class FindAllVerticesDFS extends DFS \{

 protected Sequence vertices;public Object execute(InspectableGraph g, Vertex start, Object info) \{
super.execute(g, start, info);
vertices = new NodeSequence(); dfsVisit(start);
return vertices.elements();
$\}$
public void startVisit(Vertex v) \{ vertices.insertLast(v);

More Specializations of the Generic DFS

- ConnectivityTest uses a specialized DFS to test if a graph is connected.
public class ConnectivityTest \{
protected static DFS tester = new FindAllVerticesDFS(); public static boolean isConnected(InspectableGraph g) ;
if (g.numVertices ()$==0$) return true; //empty is //connected
Vertex start = (Vertex)g.vertices().nextElement();
Enumeration compVerts =
(Enumeration)tester.execute(g, start, null);
// count how many elements are in the enumeration int count = 0 ;
while (compVerts.hasMoreElements()) \{ compVerts.nextElement(); count++;
\}
if (count == g.numVertices()) return true;
return false;

Another Specialization of the Generic DFS

- FindCycle specializes DFS to determine if the connected component of the start vertex contains a cycle, and if so return it.
public class FindCycleDFS extends DFS \{
protected Sequence path;
protected boolean done;
protected Vertex cycleStart;
public Object execute(InspectableGraph g, Vertex start, Object info) \{
super.execute(g, start, info);
path = new NodeSequence();
done = false;
dfsVisit(start);
//copy the vertices up to cycleStart from the path to //the cycle sequence.
Sequence theCycle = new NodeSequence();
Enumeration pathVerts = path.elements();
while (pathVerts.hasMoreElements()) \{
Vertex $v=($ Vertex $)$ pathVerts.nextElement(); theCycle.insertFirst(v);
if ($\mathrm{v}==$ cycleStart) \{
break;
$\}$
$\}$
return theCycle.elements();
\}
protected void startVisit(Vertex v) \{path.insertFirst(v);\}
protected void finishVisit(Vertex v) \{
if (done) \{path.remove(path.first());\}
\}
//When a back edge is found, the graph has a cycle protected void traverseBack(Edge e, Vertex from) \{

Enumeration pathVerts = path.elements();
cycleStart = graph.opposite(from, e);
done = true;
\}
protected boolean isDone() \{return done;\}

Breadth-First Search

- Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties
- The starting vertex s has level 0 , and, as in DFS, defines that point as an "anchor."
- In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
- These edges are placed into level 1
- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
- This continues until every vertex has been assigned a level.
- The label of any vertex v corresponds to the length of the shortest path from s to v.

BFS - A Graphical Representation

a)
b)

c)

| 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$

$$
<1+2
$$

Graph Traversals

More BFS

BFS Pseudo-Code

Algorithm BFS(s):
Input: A vertex s in a graph
Output: A labeling of the edges as "discovery" edges and "cross edges"
initialize container L_{0} to contain vertex s
$i \leftarrow 0$
while L_{i} is not empty do
create container $\mathrm{L}_{\mathrm{i}+1}$ to initially be empty for each vertex v in L_{i} do
if edge e incident on v do
let w be the other endpoint of e
if vertex w is unexplored then
label e as a discovery edge
insert w into $\mathrm{L}_{\mathrm{i}+1}$
else
label e as a cross edge
$i \leftarrow i+1$

Properties of BFS

- Proposition: Let G be an undirected graph on which a a BFS traversal starting at vertex s has been performed. Then
- The traversal visits all vertices in the connected component of s.
- The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected component of s
- For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any other path of G between s and v has at least i edges.
- If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and v differ by at most one.
- Proposition: Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $\mathrm{O}(n+m)$.
Also, there exist $\mathrm{O}(n+m)$ time algorithms based on BFS for the following problems:
- Testing whether G is connected.
- Computing a spanning tree of G
- Computing the connected components of G
- Computing, for every vertex v of G, the minimum number of edges of any path between s and v.

