
1Graph Traversals

GRAPH TRAVERSALS

• Depth-First Search

• Breadth-First Search

M N O P

I J K L

E F G H

A B C D

2Graph Traversals

Exploring a Labyrinth Without
Getting Lost

• A depth-first search (DFS) in an undirected graph
G is like wandering in a labyrinth with a string and a
can of red paint without getting lost.

• We start at vertexs, tying the end of our string to the
point and paintings “visited”. Next we labelsas our
current vertex calledu.

• Now we travel along an arbitrary edge (u,v).

• If edge (u,v) leads us to an already visited vertexv
we return tou.

• If vertexv is unvisited, we unroll our string and
move tov, paintv “visited”, setv as our current
vertex, and repeat the previous steps.

• Eventually, we will get to a point where all incident
edges onu lead to visited vertices. We then
backtrack by unrolling our string to a previously
visited vertexv. Thenv becomes our current vertex
and we repeat the previous steps.

3Graph Traversals

Exploring a Labyrinth Without
Getting Lost (cont.)

• Then, if we all incident edges on v lead to visited
vertices, we backtrack as we did before. We
continue to backtrack along the path we have
traveled, finding and exploring unexplored edges,
and repeating the procedure.

• When we backtrack to vertexs and there are no
more unexplored edges incident ons, we have
finished our DFS search.

4Graph Traversals

Depth-First Search

Algorithm DFS(v);
Input : A vertexv in a graph
Output : A labeling of the edges as “discovery” edges

and “backedges”
for each edgee incident onv do

if edgee is unexploredthen
let w be the other endpoint ofe
if vertexw is unexploredthen

labele as a discovery edge
recursively callDFS(w)

else
labele as a backedge

5Graph Traversals

Depth-First Search(cont.)

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A C D

a) b)

c)

M N O P

I J K L

E F G H

A B C D

d)

B

M N O P

I J K L

E F G H

A B C D

6Graph Traversals

Depth-First Search(cont.)

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

e) f)

7Graph Traversals

DFS Properties
• Proposition 9.12 : Let G be an undirected graph on

which a DFS traversal starting at a vertexshas been
preformed. Then:

1) The traversal visits all vertices in the
 connected component ofs

2) The discovery edges form a spanning tree of
 the connected component ofs

• Justification of 1):
- Let’s use a contradiction argument: suppose there

is at least on vertexv not visited and letw be the
first unvisited vertex on some path froms to v.

- Becausew was the first unvisited vertex on the
path, there is a neighboru that has been visited.

- But when we visitedu we must have looked at
edge(u, w). Thereforew must have been visited.

- and justification

• Justification of 2):
- We only mark edges from when we go to unvisited

vertices. So we never form a cycle of discovery
edges, i.e. discovery edges form a tree.

- This is a spanning tree because DFS visits each
vertex in the connected component ofs

8Graph Traversals

Running Time Analysis
• Remember:

- DFS is called on each vertex exactly once.
- For every edge is examined exactly twice, once

from each of its vertices

• For ns vertices andms edges in the connected
component of the vertexs, a DFS starting atsruns in
O(ns +ms) time if:
- The graph is represented in a data structure, like

the adjacency list, where vertex and edge methods
take constant time

- Marking the vertex as explored and testing to see
if a vertex has been explored takes O(1)

- We have a way of systematically considering the
edges incident on the current vertex so we do not
examine the same edge twice.

9Graph Traversals

Marking Vertices
• Let’s look at ways to mark vertices in a way that

satisfies the above condition.

• Extend vertex positions to store a variable for
marking

• Use a hash table mechanism which satisfies the
above condition is the probabilistic sense, because is
supports the mark and test operations in O(1)
expected time

10Graph Traversals

The Template Method Pattern
• the template method pattern provides ageneric

computation mechanism that can be specialized by
redefining certain steps

• to apply this pattern, we design a class that
- implements theskeleton of an algorithm
- invokes auxiliary methods that can be redefined by

its subclasses to perform useful computations

• Benefits
- makes the correctness of the specialized

computations rely on that of the skeleton
algorithm

- demonstrates the power of class inheritance
- provides code reuse
- encourages the development of generic code

• Examples
- generic traversal of a binary tree(which includes

preorder, inorder, and postorder) and its
applications

- generic depth-first search of an undirected graph
and its applications

11Graph Traversals

Generic Depth First Search
public abstract class DFS {
protected Object dfsVisit(Vertex v) {

protected InspectableGraph graph;
protected Object visitResult;
initResult();
startVisit(v);

 mark(v);
for (Enumeration inEdges = graph.incidentEdges(v);
 inEdges.hasMoreElements();) {

 Edge nextEdge = (Edge) inEdges.nextElement();
if (!isMarked(nextEdge)) { // found an unexplored edge

 mark(nextEdge);
 Vertex w = graph.opposite(v, nextEdge);

if (!isMarked(w)) { // discovery edge
 mark(nextEdge);

traverseDiscovery(nextEdge, v);
if (!isDone())

visitResult = dfsVisit(w); }
else // back edge
traverseBack(nextEdge, v);

 }
 }

finishVisit(v);
return result();

 }

12Graph Traversals

Auxiliary Methods of the
Generic DFS

public Object execute(InspectableGraph g, Vertex start,
 Object info) {

 graph = g;

return null;

}

protected void initResult() {}

protected void startVisit(Vertex v) {}

protected void traverseDiscovery(Edge e, Vertex from) {}

protected void traverseBack(Edge e, Vertex from) {}

protected boolean isDone() { return false; }

protected void finishVisit(Vertex v) {}

protected Object result() { return new Object(); }

13Graph Traversals

Specializing the Generic DFS
• classFindPath specializesDFS to return a path from

vertexstart to vertextarget.

public class FindPathDFS extends DFS {
protected Sequence path;
protected boolean done;
protected Vertex target;
public Object execute(InspectableGraph g, Vertex start,

 Object info) {
 super.execute(g, start, info);

path = new NodeSequence();
 done = false;

target = (Vertex) info;
dfsVisit(start);
return path.elements();

 }
protected void startVisit(Vertex v) {

path.insertFirst(v);
if (v == target) { done = true; }

 }
protected void finishVisit(Vertex v) {

 if (!done) path.remove(path.first());
 }

protected boolean isDone() { return done; }
}

14Graph Traversals

Other Specializations of the
Generic DFS

• FindAllVertices specializes DFS to return an
enumeration of the vertices in the connecteed
component containing thestart vertex.

public class FindAllVerticesDFS extends DFS {

protected Sequence vertices;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);

vertices = new NodeSequence();

dfsVisit(start);

return vertices.elements();

}

public void startVisit(Vertex v) {

vertices.insertLast(v);

}

}

15Graph Traversals

More Specializations of the
Generic DFS

• ConnectivityTest uses a specializedDFS to test if a
graph is connected.

public class ConnectivityTest {
protected static DFS tester = new FindAllVerticesDFS();
public static boolean isConnected(InspectableGraph g)
{

if (g.numVertices() == 0) return true; //empty is
//connected

Vertex start = (Vertex)g.vertices().nextElement();
Enumeration compVerts =

(Enumeration)tester.execute(g, start, null);
// count how many elements are in the enumeration
int count = 0;
while (compVerts.hasMoreElements()) {

compVerts.nextElement();
count++;

}
if (count == g.numVertices()) return true;
return false;

}
}

16Graph Traversals

Another Specialization of the
Generic DFS

• FindCycle specializesDFS to determine if the
connected component of thestart vertex contains a
cycle, and if so return it.

public class FindCycleDFS extends DFS {

protected Sequence path;

protected boolean done;

protected Vertex cycleStart;

public Object execute(InspectableGraph g, Vertex start,
Object info) {

super.execute(g, start, info);

path = new NodeSequence();

done = false;

dfsVisit(start);

//copy the vertices up to cycleStart from the path to
//the cycle sequence.

Sequence theCycle = new NodeSequence();

Enumeration pathVerts = path.elements();

17Graph Traversals

while (pathVerts.hasMoreElements()) {

Vertex v = (Vertex)pathVerts.nextElement();

theCycle.insertFirst(v);

if (v == cycleStart) {

break;

}

}

return theCycle.elements();

}

protected void startVisit(Vertex v) {path.insertFirst(v);}

protected void finishVisit(Vertex v) {

if (done) {path.remove(path.first());}

}

//When a back edge is found, the graph has a cycle

protected void traverseBack(Edge e, Vertex from) {

Enumeration pathVerts = path.elements();

cycleStart = graph.opposite(from, e);

done = true;

}

protected boolean isDone() {return done;}

}

18Graph Traversals

Breadth-First Search
• Like DFS, aBreadth-First Search (BFS) traverses a

connected component of a graph, and in doing so
defines a spanning tree with several useful properties

- The starting vertexs has level 0, and, as in DFS,
defines that point as an “anchor.”

- In the first round, the string is unrolled the length
of one edge, and all of the edges that are only one
edge away from the anchor are visited.

- These edges are placed into level 1
- In the second round, all the new edges that can be

reached by unrolling the string 2 edges are visited
and placed in level 2.

- This continues until every vertex has been
assigned a level.

- The label of any vertexv corresponds to the length
of the shortest path froms to v.

19Graph Traversals

BFS - A Graphical
Representation

a) b)

c) d)

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

20Graph Traversals

More BFS
e) f)

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

21Graph Traversals

BFS Pseudo-Code

Algorithm BFS(s):
Input : A vertexs in a graph
Output : A labeling of the edges as “discovery” edges

and “cross edges”
initialize container L0 to contain vertexs
i ← 0
while Li is not emptydo

create container Li+1 to initially be empty
for each vertexv in Li do

if edgee incident onv do
let w be the other endpoint ofe
if vertexw is unexploredthen

label eas a discovery edge
insertw into Li+1

else
labele as a cross edge

i ← i + 1

22Graph Traversals

Properties of BFS
• Proposition: Let G be an undirected graph on which

a a BFS traversal starting at vertexs has been
performed. Then
- The traversal visits all vertices in the connected

component ofs.
- The discovery-edges form a spanning treeT,

which we call the BFS tree, of the connected
component ofs

- For each vertexv at leveli, the path of the BFS tree
T betweens andv hasi edges, and any other path
of G betweens andv has at leasti edges.

- If (u, v) is an edge that is not in the BFS tree, then
the level numbers ofu andv differ by at most one.

• Proposition: Let G be a graph withn vertices andm
edges. A BFS traversal ofG takes time O(n + m).
Also, there exist O(n + m) time algorithms based on
BFS for the following problems:
- Testing whetherG is connected.
- Computing a spanning tree ofG
- Computing the connected components ofG
- Computing, for every vertexv of G, the minimum

number of edges of any path betweens andv.

