DIGRAPHS

What's a Digraph?

a) A small burrowing animal with long sharp teeth and a unquenchable lust for the blood of computer science majors
b) A distressed graph
c) A directed graph

Each edge goes in one direction
Edge (a,b) goes from a to b , but not b to a

You're saying, "Yo, how about an example of how we might be enlightened by the use of digraphs!!" - Well, if you insist. . .

Applications

Maps: digraphs handle one-way streets (especially helpful in Providence)

Another Application

Scheduling: edge (a, b) means task a must be completed before b can be started

DAG's

dag: (noun) dÂ-g

1. Di-Acyl-Glycerol - My favorite snack!
2."\$ best friend"
person's
2. directed acyclic graph

Say What?!

directed graph with no directed cycles

Depth-First Search

Same algorithm as for undirected graphs

On a connected digraph, may yield unconnected DFS trees (i.e., a DFS forest)

Reachability

DFS tree rooted at v : vertices reachable from V via directed paths

Strongly Connected Digraphs

Each vertex can reach all other vertices

Strongly Connected Components

$\{\mathbf{a}, \mathbf{c}, \mathrm{g}\}$
$\{\mathbf{f}, \mathbf{d}, \mathrm{e}, \mathrm{b}\}$

Transitive Closure

Digraph \mathbf{G}^{*} is obtained from \mathbf{G} using the rule:
If there is a directed path in \mathbf{G} from a to b , then add the edge (a, b) to \mathbf{G}^{*}

G

G*

Computing the Transitive Closure

We can perform DFS starting at each vertex Time: $\mathbf{O}(\mathbf{n}(\mathbf{n}+\mathbf{m}))$

Alternatively ... Floyd-Warshall Algorithm:

Example

Floyd-Warshall Algorithm

- this algorithms assumes that methods areAdjacent and insertDirectedEdge take $\mathrm{O}(1)$ time (e.g., adjacency matrix structure)

Algorithm FloydWarshall(G)

let $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$ be an arbitrary ordering of the vertices $\mathrm{G}_{0}=\mathrm{G}$
for $\mathrm{k}=1$ to n do
// consider all possible routing vertices v_{k}
$\mathrm{G}_{\mathrm{k}}=\mathrm{G}_{\mathrm{k}-1}$
for each (i, $\mathrm{j}=1, \ldots, \mathrm{n}$) ($\mathrm{i}!=\mathrm{j}$) $(\mathrm{i}, \mathrm{j}!=\mathrm{k})$ do // for each pair of vertices v_{i} and v_{j}
if $\mathrm{G}_{\mathrm{k}-1} \cdot \operatorname{areAdjacent}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right)$ and $\mathrm{G}_{\mathrm{k}-1} \cdot \operatorname{areAdjacent}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{\mathrm{j}}\right)$ then G_{k}. insertDirectedEdge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right.$, null $)$ return G_{0}

- digraph G_{k} is the subdigraph of the transitive closure of G induced by paths with intermediate vertices in the set $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$
- running time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Example

- digraph G

Example

- digraph G^{*}

Topological Sorting

For each edge (\mathbf{u}, \mathbf{v}), vertex \mathbf{u} is visited before vertex v

Topological Sorting

Topological sorting may not be unique

ABCD $o r$
A C B D

> - You make the call!

Topological Sorting

Labels are increasing along a directed path

A digraph has a topological sorting if and only if it is acyclic (i.e., a dag)

Algorithm for Topological Sorting

method TopologicalSort

if there are more vertices
let v be a source;
// a vertex w/o incoming edges
label and remove v;
TopologicalSort,

Algorithm (continued)

Simulate deletion of sources using indegree counters

TopSort(Vertex v);
label v;
foreach edge(v, w)

$$
\begin{aligned}
& \operatorname{indeg}(w)=\operatorname{indeg}(w)-1 ; \\
& \text { if indeg }(w)=0 \\
& \operatorname{TopSort}(w)
\end{aligned}
$$

1. Compute indeg(v) for all vertices
2. Foreach vertex \mathbf{v} do if \mathbf{v} not labeled and $\operatorname{indeg}(\mathbf{v})=0$ then TopSort(v)

Example

Reverse Topological Sorting

RevTopSort(Vertex v)
mark v;
foreach edge(v, w) if v not marked

RevTopSort(w);
label v;

