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What’s a Digraph?

a) A small burrowing animal with long sharp
teeth and a unquenchable lust for the blood of
computer science majors

b) A distressed graph

c) A directed graph

Each edge goes in one direction

Edge(a,b) goesfrom a to b, but not b to a

You’re saying, “Yo, how about an example of
how we might be enlightened by the use of
digraphs!!”− Well, if you insist. . .
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b
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Applications
Maps: digraphs handle one-way streets

(especially helpful in Providence)
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Another Application

Scheduling: edge(a,b) means taska must be
completed beforeb can be started
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Old programmers never die -
they just fall into black holes
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dag: (noun) dÂ-g
1. Di-Acyl-Glycerol − My favorite snack!
2.“man’s best friend”

3. directed acyclic graph

DAG’s

person’s

Say What?!

directed graph with no directed cycles
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Depth-First Search

Same algorithm as for undirectedgraphs

On a connected digraph, may yield
unconnected DFS trees (i.e., a DFS forest)

a b

c

d e

f

a

b

c

d

e

f



7Digraphs

Reachability

DFStree rooted at v: vertices reachable from
v via directed paths
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Strongly Connected Digraphs

Each vertex can reach all other vertices
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Strongly Connected
Components
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Transitive Closure

Digraph G* is obtained from G using the rule:

If there is a directed path inG from a to b,
thenadd the edge (a,b) to G*

G G*
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Computing the Transitive
Closure

We can perform DFS starting at each vertex
Time: O(n(n+m))

Alternatively ... Floyd-Warshall Algorithm:

If there’s a
way to get
from a to b,
and fromb to
c, then there’s
a way to get
from a to c
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Example
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Floyd-Warshall Algorithm
• this algorithms assumes that methodsareAdjacent

andinsertDirectedEdge take O(1) time (e.g.,
adjacency matrix structure)

Algorithm  FloydWarshall(G)
let v1 ... vn be an arbitrary ordering of the vertices
G0 = G
for  k = 1 to n do

// consider all possible routing verticesvk
Gk = Gk-1
for each (i, j = 1, ..., n) (i != j) (i, j != k) do

// for each pair of verticesvi andvj
if  Gk-1.areAdjacent(vi,vk) and

Gk-1.areAdjacent(vk,vj) then
Gk.insertDirectedEdge(vi,vj,null)

return G0

• digraphGk is the subdigraph of the transitive closure
of G induced by paths with intermediate vertices in
the set{ v1, ..., vk }

• running time: O(n3)
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Example
• digraph G
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Example
• digraph G*
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Topological Sorting

For each edge (u,v ), vertexu is visited before
vertex v
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Topological Sorting

Topological sorting maynot be
unique

A
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D

A B C D

A C B D
or

− You make the call!
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A

B C

D E

Topological Sorting

Labels are increasing along a directed path

A digraph has a topological sortingif and
only if it is acyclic (i.e., a dag)
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A
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Algorithm for Topological
Sorting

method TopologicalSort
if  there are more vertices

let v be a source;
// a vertex w/o incoming edges

label and removev;
TopologicalSort;
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Algorithm (continued)
Simulate deletion of sources using indegree
counters

1. Compute indeg(v) for all vertices
2. Foreach vertexv do

if v not labeled and indeg(v) = 0
thenTopSort(v)

TopSort(Vertex v);
label v;
foreach edge(v,w)

indeg(w) = indeg(w)− 1;
if  indeg(w) = 0

TopSort(w);
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Example
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Reverse Topological Sorting

RevTopSort(Vertex v)
mark v;
foreach  edge(v,w)

if  v not marked
RevTopSort(w);

label v;


