
1Graphs

GRAPHS

• Definitions

• The Graph ADT

• Data structures for graphs

LAX

PVD

LAX

DFW

FTL

STL

HNL

2Graphs

What is a Graph?
• A graph G = (V,E) is composed of:

V: set ofvertices

E: set ofedges connecting thevertices in V

• An edge e = (u,v) is a pair ofvertices

• Example:

a b

c

d e

V= {a,b,c,d,e}

E=
{(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}

3Graphs

Applications
• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

CS16

start

LAX

PVD

LAX

DFW

FTL

STL

HNL

4Graphs

mo’ better examples
A Spike Lee Joint Production

• scheduling (project planning)

wake up

eat

work

cs16 meditation

more cs16

play

make cookies
for cs16 HTA

sleep

dream of cs16

cs16 program

A typical student day

cxhextris

5Graphs

Graph Terminology
• adjacent vertices: connected by an edge

• degree (of avertex): # of adjacent vertices

path: sequence of vertices v1,v2,. . .vk such that
consecutive vertices vi and vi+1 are adjacent.

a b

c

d e

a b

c

d e

a b e d c b e d c

3

3 3

3

2
Σ deg(v) = 2(# edges)
v∈V

• Since adjacent vertices
each count the
adjoining edge, it will
be counted twice

6Graphs

More Graph Terminology
• simple path: no repeated vertices

• cycle: simple path, except that the last vertex is the
same as the first vertex

a b

c

d e

b e c

a c d a

a b

c

d e

7Graphs

Even More Terminology
• connected graph: any two vertices are connected by

some path

• subgraph: subset of vertices and edges forming a
graph

• connected component:maximal connected
subgraph. E.g., the graph below has 3 connected
components.

connected not connected

8Graphs

¡Caramba! Another
Terminology Slide!

• (free) tree- connected graph without cycles

• forest - collection of trees

tree

forest

tree

tree

tree

9Graphs

Connectivity
Let n = #vertices

m = #edges

- complete graph - all pairs of vertices are adjacent

m= (1/2)Σdeg(v) = (1/2)Σ(n - 1) =n(n-1)/2
v∈V v∈V

• Each of then vertices is incident ton - 1 edges,
however, we would have counted each edge twice!!!
Therefore, intuitively,m = n(n-1)/2.

• Therefore, if a graph isnot complete,
m < n(n-1)/2

n = 5
m = (5 ∗ 4)/2 = 10

10Graphs

More Connectivity
n = #vertices
m = #edges

• For a treem = n - 1

• If m < n - 1, G is not connected

n = 5
m = 4

n = 5
m = 3

11Graphs

Spanning Tree
• A spanning tree of G is a subgraph which

- is a tree
- contains all vertices ofG

• Failure on any edge disconnects system (least fault
tolerant)

G spanning tree of G

12Graphs

AT&T vs. RT&T
(Roberto Tamassia & Telephone)

• Roberto wants to call the TA’s to suggest an
extension for the next program...

• One fault will disconnect part of graph!!

• A cycle would be more fault tolerant and only
requiresn edges

TA

TA

TA

TA

TA

But Plant-Ops
‘accidentally’ cuts
a phone cable!!!

13Graphs

Euler and the Bridges of
Koenigsberg

• Consider if you were a UPS driver, and you didn’t
want to retrace your steps.

• In 1736, Euler proved that this is not possible

A

B

C

DPregal River

Can one walk across each bridge
exactly once and return at the
starting point?

Gilligan’s Isle?

14Graphs

Graph Model(with parallel
edges)

• Eulerian Tour: path that traverses every edge
exactly once and returns to the first vertex

• Euler’s Theorem:A graph has a Eulerian Tour if and
only if all vertices have even degree

• Do you find such ideas interesting?

• Would you enjoy spending a whole semester doing
such proofs?

Well, look into CS22!
if you dare...

C

A

B

D

15Graphs

The Graph ADT
• TheGraph ADT is apositional container whose

positions are the vertices and the edges ofthe graph.

- size() Return the number of vertices plus the
number of edges ofG.

- isEmpty()
- elements()
- positions()
- swap()
- replaceElement()

Notation: GraphG; Verticesv, w; Edgee; Objecto
- numVertices()

Return the number of vertices ofG.
- numEdges()

Return the number of edges ofG.
- vertices() Return an enumeration of the vertices

of G.
- edges() Return an enumeration of the edges of

G.

16Graphs

The Graph ADT (contd.)
- directedEdges()

Return an enumeration of all directed
edges inG.

- undirectedEdges()
Return an enumeration of all
undirected edges inG.

- incidentEdges(v)
Return an enumeration of all edges
incident onv.

- inIncidentEdges(v)
Return an enumeration of all the
incoming edges tov.

- outIncidentEdges(v)
Return an enumeration of all the
outgoing edges fromv.

- opposite(v, e)
Return an endpoint ofe distinct fromv

- degree(v)
Return the degree ofv.

- inDegree(v)
Return the in-degree ofv.

- outDegree(v)
Return the out-degree ofv.

17Graphs

More Methods ...
- adjacentVertices(v)

Return an enumeration of the vertices
adjacent tov.

- inAdjacentVertices(v)
Return an enumeration of the vertices
adjacent tov along incoming edges.

- outAdjacentVertices(v)
Return an enumeration of the vertices
adjacent tov along outgoing edges.

- areAdjacent(v,w)
Return whether verticesv and w are
adjacent.

- endVertices(e)
Return an array of size 2 storing the
end vertices ofe.

- origin(e)
Return the end vertex from whiche
leaves.

- destination(e)
Return the end vertex at whiche
arrives.

- isDirected(e)
Return true iffe is directed.

18Graphs

Update Methods
- makeUndirected(e)

Sete to be an undirected edge.
- reverseDirection(e)

Switch the origin and destination
vertices ofe.

- setDirectionFrom(e, v)
Sets the direction ofeaway fromv, one
of its end vertices.

- setDirectionTo(e, v)
Sets the direction ofe towardv, one of
its end vertices.

- insertEdge(v, w, o)
Insert and return an undirected edge
betweenv andw, storingo at this
position.

- insertDirectedEdge(v, w, o)
Insert and return a directed edge
betweenv andw, storingo at this
position.

- insertVertex(o)
Insert and return a new (isolated)
vertex storingo at this position.

- removeEdge(e)
Remove edgee.

19Graphs

Data Structures for Graphs
• A Graph! How can we represent it?

• To start with, we store theverticesand theedgesinto
two containers, and we store with each edge object
references to its endvertices

• Additional structures can be used to perform
efficiently the methods of the Graph ADT

JFK

BOS

MIA

ORD

LAX
DFW

SFO

TW 45

AA 411

AA 1387

A
A

 9
03

D
L

24
7

AA 523

N
W

 3
5

U
A

 8
77

D
L

 3
35

AA 49

UA 120
JFK

BOS

MIA

ORD

LAX
DFW

SFO

20Graphs

Edge List
• Theedge list structure simply stores the vertices and

the edges into unsorted sequences.

• Easy to implement.

• Finding the edges incident on a given vertex is
inefficient since it requires examining the entire
edge sequence

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V

21Graphs

Performance of the Edge List
Structure

Operation Time

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination,
isDirected, degree, inDegree, outDegree

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,
areAdjacent

O(m)

insertVertex, insertEdge, insertDirected-
Edge, removeEdge, makeUndirected,
reverseDirection, setDirectionFrom, setDi-
rectionTo

O(1)

removeVertex O(m)

22Graphs

Adjacency List
(traditional)

• adjacency list of a vertex v:
sequence of vertices adjacent tov

• represent the graph by the adjacency lists of all the
vertices

• Space =Θ(N + Σdeg(v)) = Θ(N + M)

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

a

b

c

d

e

23Graphs

Adjacency List
(modern)

• Theadjacency list structure extends the edge list
structure by addingincidence containers to each
vertex.

• The space requirement is O(n + m).

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387
E

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 411

UA 120 AA1387

AA 523

UA 877

DL335

AA 49

NW 35 AA1387

AA 903

TW 45

DL 247

AA 903

AA523

AA 411

UA 120

DL 335

UA 877 TW 45

DFWBOS ORDMIA SFOJFKLAXV

24Graphs

Performance of the Adjacency
List Structure

Operation Time

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destina-
tion, isDirected, degree, inDegree, out-
Degree

O(1)

incidentEdges(v), inIncidentEdges(v),
outIncidentEdges(v), adjacentVerti-
ces(v), inAdjacentVertices(v), outAdja-
centVertices(v)

O(deg(v))

areAdjacent(u, v) O(min(deg(u),
deg(v)))

insertVertex, insertEdge, insertDirected-
Edge, removeEdge, makeUndirected,
reverseDirection,

O(1)

removeVertex(v) O(deg(v))

25Graphs

Adjacency Matrix
(traditional)

• matrix M with entries for all pairs of vertices

• M[i,j] = true means that there is an edge (i,j) in the
graph.

• M[i,j] = false means that there is no edge (i,j) in the
graph.

• There is an entry for every possible edge, therefore:
Space =Θ(N2)

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

d e

a b c d e
a
b
c
d
e

26Graphs

Adjacency Matrix
(modern)

• The adjacency matrix structures augments the edge
list structure with a matrix where each row and
column corresponds to a vertex.

BOS DFW JFK LAX MIA ORD SFO
0 1 2 3 4 5 6

• The space requirement is O(n2 + m)

0 1 2 3 4 5 6

0 Ø Ø NW
35

Ø DL
247

Ø Ø

1 Ø Ø Ø AA
49

Ø DL
335

Ø

2 Ø AA
1387

Ø Ø AA
903

Ø TW
45

3 Ø Ø Ø Ø Ø UA
120

Ø

4 Ø AA
523

Ø AA
411

Ø Ø Ø

5 Ø UA
877

Ø Ø Ø Ø Ø

6 Ø Ø Ø Ø Ø Ø Ø

27Graphs

Performance of the Adjacency
Matrix Structure
Operation Time

size, isEmpty, replaceElement, swap O(1)

numVertices, numEdges O(1)

vertices O(n)

edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)

endVertices, opposite, origin, destination,
isDirected, degree, inDegree, outDegree

O(1)

incidentEdges, inIncidentEdges, outInci-
dentEdges, adjacentVertices, inAdja-
centVertices, outAdjacentVertices,

O(n)

areAdjacent O(1)

insertEdge, insertDirectedEdge, remov-
eEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

insertVertex, removeVertex O(n2)

