GEOMETRIC INTERSECTION

- Determining if there are intersections between graphical objects
- Finding all intersecting pairs

Applications

- Integrated circuit design:

- Computer graphics (hidden line removal):

Range Searching

- Given a set of points on a line, answer queries of the type:

Report all points x such that $\mathrm{x}_{1} \leq \mathrm{x} \leq \mathrm{x}_{2}$

- But what if we also want to insert and delete points?
- We'll need a dynamic structure. One which supports these three operations.
- insert (x)
- remove (x)
- range_search (x1, x2)
- That's right. It's Red-Black Tree time.

On-Line Range Searching

- Store points in a red-black tree
- Query by searching for x_{1} and x_{2} (take both directions)

Example

Time Complexity

- All of the nodes of the K points reported are visited.
- $\boldsymbol{O}(\log \mathrm{N})$ nodes may be visited whose points are not reported.
- Query Time: $\boldsymbol{O}(\log \mathrm{N}+\mathrm{K})$

Intersection of Horizontal and Vertical Segments

- Given:

- $\mathrm{H}=$ horizontal segments
- V= vertical segments
$-\mathrm{S}=\mathrm{H} \cup \mathrm{V}$
- $\mathrm{N}=$ total number of segments
- Report all pairs of intersecting segments. (Assuming no coincident horizontal or vertical segments.)

The Brute Force Algorithm

> for each h in H for each v in V if h intersects v report (h, v)

- This algorithm runs in time $\mathrm{O}\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- But the number of intersections could be $\ll \mathrm{N}^{2}$.
- We want an output sensitive algorithm: Time $=f(\mathrm{~N}, \mathrm{~K})$, where K is the number of intersections.

Plane Sweep Technique

- Horizontal sweep-line L that translates from bottom to top
- Status(L), the set of vertical segments intersected by L, sorted from left to right
- A vertical segment is inserted into $\operatorname{Status}(\mathrm{L})$ when L sweeps through its bottom endpoint
- A vertical segment is deleted from $\operatorname{Status}(\mathrm{L})$ when L sweeps through its top endpoint

Evolution of Status in Plane Sweep

Status(L)

()
$(\mathrm{v} 2)$
$(\mathrm{v} 2 \mathrm{v} 4)$
$(\mathrm{v} 1 \mathrm{v} 2 \mathrm{v} 4)$
$(\mathrm{v} 1 \mathrm{v} 4)$
$(\mathrm{v} 1 \mathrm{v} 3 \mathrm{v} 4)$
(v3 v4)
(v4)
()

Range Query in Sweep

Events in Plane Sweep

- Bottom endpoint of \mathbf{v}
- Action: insert v into Status(L)
- Top endpoint of \mathbf{v}
- Action:
delete v from $\operatorname{Status}(\mathrm{L})$
- Horizontal segment h
- Action:
range query on Status(L) with x-range of h

Data Structures

- Status:
- Stores vertical segments
- Supports insert, delete, and range queries
- Solution: AVLtree or red-black tree (key is xcoordinate)
- Event Schedule:
- Stores y-coordinates of segment endpoints, i.e., the order in which segments are added and deleted
- Supports sequential scanning
- Solution: sequence realized with a sorted array or linked list

Example

L

Time Complexity

- Events:
- vertical segment, bottom endpoint
- number of occurences: $\mathrm{N}_{\mathrm{V}} \leq \mathrm{N}$
- action: insertion into status
- time: $\mathrm{O}(\log \mathrm{N})$
- vertical segment, top endpoint
- number of occurences: $\mathrm{N}_{\mathrm{V}} \leq \mathrm{N}$
- action: deletion from status
- time: $\mathrm{O}(\log \mathrm{N})$
- horizontal segment h
- number of occurences: $\mathrm{N}_{\mathrm{H}} \leq \mathrm{N}$
- action: range searching
- time: $\mathrm{O}\left(\log \mathrm{N}+\mathrm{K}_{\mathrm{h}}\right)$ $\mathrm{K}_{\mathrm{h}}=(\#$ vertical segments intersecting h$)$
- Total time complexity:

$$
\mathrm{O}\left(\mathrm{~N} \log \mathrm{~N}+\sum_{\mathrm{h}} \mathrm{~K}_{\mathrm{h}}\right)=\mathrm{O}(\mathrm{~N} \log \mathrm{~N}+\mathrm{K})
$$

