Quick-Sort

- To understand quick-sort, let's look at a high-level description of the algorithm
- 1) Divide : If the sequence S has 2 or more elements, select an element x from S to you pivot. Any arbitrary element, like the last, will do. Remove all the elements of S and divide them into 3 sequences:
- L, holds S 's elements less than x
- E, holds S 's elements equal to x
- G, holds S 's elements greater than x
- 2) Recurse: Recursively sort L and G
- 3) Conquer: Finally, to put elements back into S in order, first inserts the elements of L, then those of E, and those of G.
- Here are some pretty diagrams....

Quick-Sort Tree

Quick-Sort Tree (cont.)

Quick-Sort Tree (cont.)

Quick-Sort Tree (cont.)

Quick-Sort Tree (cont.)

Quick-Sort Tree (cont.)

Analysis of Running Time

- Consider a quick-sort tree T :
- Let $\mathrm{s}_{i}(n)$ denote the sum of the input sizes of the nodes at depth i in T.
- We know that $\mathrm{s}_{0}(n)=n$ since the root of T is associated with the entire input set.
- Also, $\mathrm{s}_{1}(n)=n-1$ since the pivot is not propagated.
- Thus: either $\mathrm{s}_{2}(n)=n-3$, or $n-2$ (if one of the nodes has a zero input size).
- The worst case running time of a quick-sort is then:

$$
\boldsymbol{O}\left(\begin{array}{l}
n-1 \\
i=0
\end{array} \mathrm{~s}_{i}(n)\right)
$$

Which reduces to:

$$
\boldsymbol{O}\left(\sum_{i=0}^{n-1}(n-i)\right)=\boldsymbol{O}\left(\sum_{i=1}^{n} i\right)=\boldsymbol{O}\left(n^{2}\right)
$$

- Thus quick-sort runs in time $\boldsymbol{O}\left(n^{2}\right)$ in the worst case.

Analysis of Running Time (contd.)

- Now to look at the best case running time:
- We can see that quicksort behaves optimally if, whenever a sequence S is divided into subsequences L and G , they are of equal size.
- More precisely:
- $\mathrm{s}_{0}(n)=n$
- $\mathrm{s}_{1}(n)=n-1$
$-\mathrm{s}_{2}(n)=n-(1+2)=n-3$
$-\mathrm{s}_{3}(n)=n-\left(1+2+2^{2}\right)=n-7$
$-\mathrm{s}_{i}(n)=n-\left(1+2+2^{2}+\ldots+2^{i}-1\right)=n-2^{i}+1$
- This implies that T has height $\boldsymbol{O}(\log n)$
- Best Case Time Complexity: $\boldsymbol{O}(n \log n)$

Randomized Quick-Sort

- The main drawback to quick-sort is that it achieves its worst-case time complexity on data sets that are common in practice: sequences that are already sorted (or mostly sorted)
- To avoid this, we modify quick-sort so that it selects the pivot as a random element of the sequence
- The expected time of a randomized quick-sort on a sequence of size n is $\boldsymbol{O}(n \log n)$.
- Justification: we say that an invocation of quicksort, on an input sequence of size m is "good" if neither L nor G is less than $m / 4$.
- there are $m / 2$ "good" pivots and $m / 2$ "bad" ones
- The probablility that an invocation is "good" is $1 / 2$
- Suppose we choose a good pivot at node v : the algorithm recurs on sequences with size at most (3/4) m each
- On average, the height of the tree representing a randomized quick-sort is at most $2 \log _{4 / 3} n$
- Total time complexity: $\boldsymbol{O}(n \log n)$

In-Place Quick-Sort

- Divide step: l scans the sequence from the left, and r from the right.

- A swap is performed when l is at an element larger than the pivot and r is at one smaller than the pivot.

31
 63
 45
 17

In Place Quick Sort (contd.)

- A final swap with the pivot completes the divide step

In Place Quick Sort (contd.)

- pseude-code fragment 8.7

How Fast Can We Sort?

- Proposition: The running time of any comparisonbased algorithm for sorting an n-element sequence S is $\Omega(n \log n)$.

- Justification:

- The running time of a comparison-based sorting algorithm must be equal to or greater than the depth of the decision tree T associated with this algorithm.
- Each internal node of T is associated with a comparison that establishes the ordering of two elements of S.
- Thus every external node of T represents a distinct permutation of the elements of S.
- Hence T must have at least n ! external nodes which again implies T has a height of at least $\log (n!)$
- Since n ! has at least $\mathrm{n} / 2$ terms that are greater than or equal to $n / 2$, we can see:
- $\log (\mathrm{n}!) \log (\mathrm{n} / 2) \mathrm{n} / 2=(\mathrm{n} / 2) \log (\mathrm{n} / 2)$
- Total Time Complexity: $\Omega(n \log n)$.

How Fast Can We Sort? (contd.)

- A graphical representation of a comparison-based algorithm's decision tree.

