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RADIX SORT
Radix Sort

ROADSTRIX
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Radix Sort

• Unlike other sorting methods, radix sort
considers the structure of the keys

• Assume keys are represented in a base M
number system (M= radix), i.e., if M= 2,
the keys are represented in binary

• Sorting is done by comparing bits in the
same position

• Extension to keys that are alphanumeric
strings

1 0 0 19 =
8 4 2 1 weight

(b = 4)

3 2 1 0 bit #
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Radix Exchange Sort
Examine bits fromleft to right:

1.  Sort array with respect to leftmost bit

1
1
0
1
0

0
0
1
1
1

2.  Partition array

0
0
1
1
1

0
0

1
1
1

3. Recursion
• recursively sort top subarray,

ignoring leftmost bit
• recursively sort bottom subarray,

ignoring leftmost bit

Time:  O(b N)

(top
subarray)

(bottom
subarray)
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Radix Exchange Sort
How do we do the sort from the previous page?
Same idea aspartition inQuicksort.

repeat
scan top-down to find key starting with 1;
scan bottom-up to find key starting with 0;
exchange keys;

until  scan indices cross;

0
1

1
0
1

scan from top

scan from bottom
first

0

1

0

1
1

second
exchange

exchange

1
1

0

0

1

1

0
1 0

1

scan from top

scan from bottom
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Radix Exchange Sort

array before sort

array after sort
on leftmost bit

array after recursive
sort on second from

leftmost bit

2b-1
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Radix Exchange Sort vs.
Quicksort

Similarities
• both partition array
• both recursively sort sub-arrays

Differences
• Method of partitioning

• radix exchange divides array based on
greater than or less than 2b-1

• quicksort partitions based on greater
than or less than some element of the ar-
ray

• Time complexity
• Radix exchange              O (bN)
• Quicksort average case   O (N log N)
• Quicksort worst case      O (N2)
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Straight Radix Sort

for  k := 0  to  b−1
sort the array in a stable way,
looking only at bit k

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

Examines bits fromright to left

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

First,
sort
these

Next, sort
these digits

Last, sort
these.

Note order of these bits after sort.
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I forgot what it means to “sort
in a stable way”!!!

In a stable sort, the initial relative order of equal
keys is unchanged.

For example, observe the first step of the sort
from the previous page:

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

Note that the relative order of those keys ending
with 0 is unchanged, and the same is true for ele-
ments ending in 1
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The Algorithm is Correct
(right?)

• We show that any two keys are in the cor-
rect relative order at the end of the algo-
rithm

• Given two keys, let k be the leftmost bit-
position where they differ

0 1 0 1 1

0 1 1 0 1

k

• At stepk the two keys are put in the correct
relative order

• Because ofstability, the successive steps do
not change the relative order of the two
keys
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For Instance,

Consider a sort on an array with these two keys:

0 1 0 1 1

0 1 1 0 1

k

It makes no difference what order
they are in when the sort begins.

0 1 0 1 1

0 1 1 0 1

0 1 1 0 1

0 1 0 1 1
When the sort visits bitk,
the keys are put in the cor-
rect relative order.

0 1 1 0 1

0 1 0 1 1 Because the sort is stable, the
order of the two keys will not
be changed when bits >k are
compared.
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Voila!

Radix sorting can be applied
to decimal numbers

First, sort
these digits

Next, sort
these digits

Last, sort
these.

Note order of these bits after sort.

0 1 5
0 1 6
0 3 1
0 3 2
1 2 3
1 6 9
2 2 4
2 5 2

0 3 2
2 2 4
0 1 6
0 1 5
0 3 1
1 6 9
1 2 3
2 5 2

0 3 1
0 3 2
2 5 2
1 2 3
2 2 4
0 1 5
0 1 6
1 6 9

0 1 6
1 2 3
2 2 4
0 3 1
0 3 2
2 5 2
1 6 9

0 1 5
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Straight Radix Sort

Time Complexity

for  k := 0  to b-1
sort the array in astableway,
looking only at bit k

Suppose we can perform the stable sort above in
O(N) time.  The total time complexity would be

O(bN).
As you might have guessed, we can perform a
stable sort based on the keys’kth digit in O(N)
time.

The method, you ask?  Why it’sBucket Sort, of
course.
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Bucket Sort

• N numbers
• Each number∈ {1, 2, 3, ... M}
• Stable
• Time:  O (N+ M)

For example, M= 3 and our array is:

2 1 3 1 2

(note that there are two “2”s and two “1”s)

First, we create M “buckets”

1

2

3M =
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Each element of the array is put in one of the M
“buckets”

2 1 3 1 2

Bucket Sort

1

2

3

1

1

2

3

1 3 1 2

2

2

3

1

2

3

1 2

2

1

3

1

2

4

5

1

2

3

2

1

3

1

2

Now each element is
in the proper bucket:



CS 16: Radix Sort

dnc 161

Bucket Sort

1

2

3

2

1

3

1

2

Now, pull the elements from the buckets into the
array

1 1 2 2 3

1

1

2

3

2

3

1

2

1

2
3 4

5

At last, the sorted array (sorted in astable way):


