
CS 16: Radix Sort

dnc 147

RADIX SORT
Radix Sort

ROADSTRIX

CS 16: Radix Sort

dnc 148

Radix Sort

• Unlike other sorting methods, radix sort
considers the structure of the keys

• Assume keys are represented in a base M
number system (M= radix), i.e., if M= 2,
the keys are represented in binary

• Sorting is done by comparing bits in the
same position

• Extension to keys that are alphanumeric
strings

1 0 0 19 =
8 4 2 1 weight

(b = 4)

3 2 1 0 bit #

CS 16: Radix Sort

dnc 149

Radix Exchange Sort
Examine bits fromleft to right:

1. Sort array with respect to leftmost bit

1
1
0
1
0

0
0
1
1
1

2. Partition array

0
0
1
1
1

0
0

1
1
1

3. Recursion
• recursively sort top subarray,

ignoring leftmost bit
• recursively sort bottom subarray,

ignoring leftmost bit

Time: O(b N)

(top
subarray)

(bottom
subarray)

CS 16: Radix Sort

dnc 150

Radix Exchange Sort
How do we do the sort from the previous page?
Same idea aspartition inQuicksort.

repeat
scan top-down to find key starting with 1;
scan bottom-up to find key starting with 0;
exchange keys;

until scan indices cross;

0
1

1
0
1

scan from top

scan from bottom
first

0

1

0

1
1

second
exchange

exchange

1
1

0

0

1

1

0
1 0

1

scan from top

scan from bottom

CS 16: Radix Sort

dnc 151

Radix Exchange Sort

array before sort

array after sort
on leftmost bit

array after recursive
sort on second from

leftmost bit

2b-1

CS 16: Radix Sort

dnc 152

Radix Exchange Sort vs.
Quicksort

Similarities
• both partition array
• both recursively sort sub-arrays

Differences
• Method of partitioning

• radix exchange divides array based on
greater than or less than 2b-1

• quicksort partitions based on greater
than or less than some element of the ar-
ray

• Time complexity
• Radix exchange O (bN)
• Quicksort average case O (N log N)
• Quicksort worst case O (N2)

CS 16: Radix Sort

dnc 153

Straight Radix Sort

for k := 0 to b−1
sort the array in a stable way,
looking only at bit k

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

Examines bits fromright to left

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

First,
sort
these

Next, sort
these digits

Last, sort
these.

Note order of these bits after sort.

CS 16: Radix Sort

dnc 154

I forgot what it means to “sort
in a stable way”!!!

In a stable sort, the initial relative order of equal
keys is unchanged.

For example, observe the first step of the sort
from the previous page:

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

Note that the relative order of those keys ending
with 0 is unchanged, and the same is true for ele-
ments ending in 1

CS 16: Radix Sort

dnc 155

The Algorithm is Correct
(right?)

• We show that any two keys are in the cor-
rect relative order at the end of the algo-
rithm

• Given two keys, let k be the leftmost bit-
position where they differ

0 1 0 1 1

0 1 1 0 1

k

• At stepk the two keys are put in the correct
relative order

• Because ofstability, the successive steps do
not change the relative order of the two
keys

CS 16: Radix Sort

dnc 156

For Instance,

Consider a sort on an array with these two keys:

0 1 0 1 1

0 1 1 0 1

k

It makes no difference what order
they are in when the sort begins.

0 1 0 1 1

0 1 1 0 1

0 1 1 0 1

0 1 0 1 1
When the sort visits bitk,
the keys are put in the cor-
rect relative order.

0 1 1 0 1

0 1 0 1 1 Because the sort is stable, the
order of the two keys will not
be changed when bits >k are
compared.

CS 16: Radix Sort

dnc 157

Voila!

Radix sorting can be applied
to decimal numbers

First, sort
these digits

Next, sort
these digits

Last, sort
these.

Note order of these bits after sort.

0 1 5
0 1 6
0 3 1
0 3 2
1 2 3
1 6 9
2 2 4
2 5 2

0 3 2
2 2 4
0 1 6
0 1 5
0 3 1
1 6 9
1 2 3
2 5 2

0 3 1
0 3 2
2 5 2
1 2 3
2 2 4
0 1 5
0 1 6
1 6 9

0 1 6
1 2 3
2 2 4
0 3 1
0 3 2
2 5 2
1 6 9

0 1 5

CS 16: Radix Sort

dnc 158

Straight Radix Sort

Time Complexity

for k := 0 to b-1
sort the array in astableway,
looking only at bit k

Suppose we can perform the stable sort above in
O(N) time. The total time complexity would be

O(bN).
As you might have guessed, we can perform a
stable sort based on the keys’kth digit in O(N)
time.

The method, you ask? Why it’sBucket Sort, of
course.

CS 16: Radix Sort

dnc 159

Bucket Sort

• N numbers
• Each number∈ {1, 2, 3, ... M}
• Stable
• Time: O (N+ M)

For example, M= 3 and our array is:

2 1 3 1 2

(note that there are two “2”s and two “1”s)

First, we create M “buckets”

1

2

3M =

CS 16: Radix Sort

dnc 160

Each element of the array is put in one of the M
“buckets”

2 1 3 1 2

Bucket Sort

1

2

3

1

1

2

3

1 3 1 2

2

2

3

1

2

3

1 2

2

1

3

1

2

4

5

1

2

3

2

1

3

1

2

Now each element is
in the proper bucket:

CS 16: Radix Sort

dnc 161

Bucket Sort

1

2

3

2

1

3

1

2

Now, pull the elements from the buckets into the
array

1 1 2 2 3

1

1

2

3

2

3

1

2

1

2
3 4

5

At last, the sorted array (sorted in astable way):

