Radix Sort

- Unlike other sorting methods, radix sort considers the structure of the keys
- Assume keys are represented in a base M number system ($M=$ radix), i.e., if $M=2$, the keys are represented in binary

$$
\mathbf{9}=\begin{array}{|c|c|c|c|}
\begin{array}{|c|ccc}
8 & 4 & 2 & 1 \\
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\hline & 2 & 1 & 0
\end{array} & \begin{array}{c}
\text { weight } \\
(\mathrm{b}=4) \\
\text { bit \# }
\end{array}
\end{array}
$$

- Sorting is done by comparing bits in the same position
- Extension to keys that are alphanumeric strings

Radix Exchange Sort

Examine bits from left to right:

1. Sort array with respect to leftmost bit

2. Partition array

3. Recursion

- recursively sort top subarray, ignoring leftmost bit
- recursively sort bottom subarray, ignoring leftmost bit

$$
\text { Time: } \mathbf{O}(\mathrm{b} \mathbf{N})
$$

Radix Exchange Sort

How do we do the sort from the previous page? Same idea as partition in Quicksort.
repeat
scan top-down to find key starting with 1; scan bottom-up to find key starting with 0; exchange keys;
until scan indices cross;
scan from top

scan from top

scan from bottom

Radix Exchange Sort vs. Quicksort

Similarities

- both partition array
- both recursively sort sub-arrays

Differences

- Method of partitioning
- radix exchange divides array based on greater than or less than $2^{\text {b-1 }}$
- quicksort partitions based on greater than or less than some element of the array
- Time complexity
- Radix exchange

O (bN)

- Quicksort average case $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- Quicksort worst case
$\mathrm{O}\left(\mathrm{N}^{2}\right)$

Straight Radix Sort

Examines bits from right to left
for $k:=0$ to $b-1$
sort the array in a stable way, looking only at bit k

First, sort these	Next, sort these digits	Last, sort these.

0	1	0
0	0	0
1	0	1
0	0	1
1	1	1
0	1	1
1	0	0
1	1	0

Note order of these bits after sort.

I forgot what it means to "sort in a stable way"!!!

In a stable sort, the initial relative order of equal keys is unchanged.

For example, observe the first step of the sort from the previous page:

0	1	0
0	0	0
1	0	1
0	0	1
1	1	1
0	1	1
1	0	0
1	1	0

0	1	0
0	0	0
1	0	0
1	1	0
1	0	1
0	0	1
1	1	1
0	1	1

Note that the relative order of those keys ending with 0 is unchanged, and the same is true for elements ending in 1

The Algorithm is Correct (right?)

- We show that any two keys are in the correct relative order at the end of the algorithm
- Given two keys, let k be the leftmost bitposition where they differ

- At step k the two keys are put in the correct relative order
- Because of stability, the successive steps do not change the relative order of the two keys

For Instance,

Consider a sort on an array with these two keys:

k

It makes no difference what order they are in when the sort begins.

Radix sorting can be applied to decimal numbers

$\begin{array}{lll}\text { First, sort } & \begin{array}{l}\text { Next, sort }\end{array} & \begin{array}{l}\text { Last, } \\ \text { these digits }\end{array} \\ \text { these digits }\end{array}$ these.

Note order of these bits after sort.

Straight Radix Sort Time Complexity

for $k:=0$ to $b-1$
sort the array in a stable way, looking only at bit k

Suppose we can perform the stable sort above in $\mathrm{O}(\mathrm{N})$ time. The total time complexity would be

$$
\mathrm{O}(\mathbf{b N}) .
$$

As you might have guessed, we can perform a stable sort based on the keys' $\boldsymbol{k}^{\text {th }}$ digit in $\mathrm{O}(\mathrm{N})$ time.

The method, you ask? Why it's Bucket Sort, of course.

Bucket Sort

- N numbers
- Each number $\in\{1,2,3, \ldots \mathrm{M}\}$
- Stable
- Time: O ($\mathrm{N}+\mathrm{M}$)

For example, $\mathrm{M}=3$ and our array is:

2	1	3	1	2

(note that there are two " 2 "s and two " 1 "s)

First, we create M "buckets"

$\mathrm{M}=3$

Bucket Sort

Each element of the array is put in one of the M "buckets"

Bucket Sort

Now, pull the elements from the buckets into the array

$2 \square 2 \rightarrow 2$
$3 \longrightarrow 3$

At last, the sorted array (sorted in a stable way):

