
1Strings and Pattern Matching

STRINGS AND PATTERN
MATCHING

• Brute Force, Rabin-Karp, Knuth-Morris-Pratt

What’s up?

I’m looking for some string.

That’s quite a trick considering
that you have no eyes.

Oh yeah? Have you seen your writing?
It looks like an EKG!

2Strings and Pattern Matching

String Searching
• The previous slide is not a great example of what is

meant by “String Searching.” Nor is it meant to
ridicule people without eyes....

• The object ofstring searching is to find the location
of a specific text pattern within a larger body of text
(e.g., a sentence, a paragraph, a book, etc.).

• As with most algorithms, the main considerations
for string searching are speed and efficiency.

• There are a number of string searching algorithms in
existence today, but the two we shall review are
Brute Force andRabin-Karp.

3Strings and Pattern Matching

Brute Force
• TheBrute Force algorithm compares the pattern to

the text, one character at a time, until unmatching
characters are found:

- Compared characters are italicized.
- Correct matches are in boldface type.

• The algorithm can be designed to stop on either the
first occurrence of the pattern, or upon reaching the
end of the text.

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWOROADS DIVERGED IN A YELLOW WOOD

ROADS

4Strings and Pattern Matching

Brute Force Pseudo-Code
• Here’s the pseudo-code

do
if (text letter == pattern letter)

compare next letter of pattern to next
letter of text

else
move pattern down text by one letter

while (entire pattern found or end of text)

t etththeheehthtehtheththehehtht
t he
t etththeheehthtehtheththehehtht

t he
te t t htheheehthtehtheththehehtht

t he
tet th t heheehthtehtheththehehtht

th e
tett htheheehthtehtheththehehtht

t he
tetth the heehthtehtheththehehtht

the

5Strings and Pattern Matching

Brute Force-Complexity
• Given a pattern M characters in length, and a text N

characters in length...

• Worst case: compares pattern to each substring of
text of length M. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

....
N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH

5 comparisons made AAAAH

• Total number of comparisons: M (N-M+1)

• Worst case time complexity:Ο(MN)

6Strings and Pattern Matching

Brute Force-Complexity(cont.)
• Given a pattern M characters in length, and a text N

characters in length...

• Best case if pattern found: Finds pattern in first M
positions of text. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAA 5 comparisons made

• Total number of comparisons: M

• Best case time complexity:Ο(M)

7Strings and Pattern Matching

Brute Force-Complexity(cont.)
• Given a pattern M characters in length, and a text N

characters in length...

• Best case if pattern not found: Always mismatch
on first character. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
1 comparison made OOOOH

• Total number of comparisons: N

• Best case time complexity:Ο(N)

8Strings and Pattern Matching

Rabin-Karp
• The Rabin-Karp string searching algorithm uses a

hash function to speed up the search.

Rabin & Karp’s

Fresh from Syria

Heavenly
Homemade
 Hashish

9Strings and Pattern Matching

Rabin-Karp
• The Rabin-Karp string searching algorithm

calculates ahash valuefor the pattern, and for each
M-character subsequence of text to be compared.

• If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

• If the hash values are equal, the algorithm will do a
Brute Force comparisonbetween the pattern and the
M-character sequence.

• In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when
hash values match.

• Perhaps a figure will clarify some things...

10Strings and Pattern Matching

Rabin-Karp Example
Hash value of “AAAAA” is 37

Hash value of “AAAAH” is 100

1) AAAAA AAAAAAAAAAAAAAAAAAAAAAH
AAAAH
37≠100 1 comparison made

2) AAAAAA AAAAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparison made
3) AAAAAAA AAAAAAAAAAAAAAAAAAAAH

AAAAH
37≠100 1 comparison made

4) AAAAAAAA AAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparison made

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
AAAAH

6 comparisons made 100=100

11Strings and Pattern Matching

Rabin-Karp Pseudo-Code
pattern is M characters long

hash_p=hash value of pattern
hash_t=hash value of first M letters in

body of text

do
if (hash_p == hash_t)

brute force comparison of pattern
and selected section of text

hash_t = hash value of next section of
 text, one character over

while (end of textor
 brute force comparison == true)

12Strings and Pattern Matching

Rabin-Karp
• Common Rabin-Karp questions:

“What is the hash function used to calculate
values for character sequences?”

“Isn’t it time consuming to hash
every one of the M-character
sequences in the text body?”

“Is this going to be on the final?”

• To answer some of these questions, we’ll have to get
mathematical.

13Strings and Pattern Matching

Rabin-Karp Math
• Consider an M-character sequence as an M-digit

number inbaseb, whereb is the number of letters in
the alphabet. The text subsequence t[i .. i+M-1] is
mapped to the number

x(i) = t[i] ⋅bM-1 + t[i+1] ⋅bM-2 +...+ t[i+M-1]

• Furthermore, given x(i) we can compute x(i+1) for
the next subsequence t[i+1 .. i+M] in constant time,
as follows:

x(i+1) = t[i+1] ⋅bM-1 + t[i+2] ⋅bM-2 +...+ t[i+M]

x(i+1) = x(i)⋅b Shift left one digit

- t[i] ⋅b M Subtract leftmost digit

+ t[i+M] Add new rightmost digit

• In this way, we never explicitly compute a new
value. We simply adjust the existing value as we
move over one character.

14Strings and Pattern Matching

Rabin-Karp Mods
• If M is large, then the resulting value (~bM) will be

enormous. For this reason, we hash the value by
taking itmod aprime numberq.

• Themod function (% in Java) is particularly useful
in this case due to several of its inherent properties:
- [(x mod q) + (y mod q)] mod q = (x+y) mod q
- (x mod q) mod q = x mod q

• For these reasons:

h(i) = ((t[i] ⋅ bM-1 modq) +
(t[i+1] ⋅ bM-2 modq) + ... +
(t[i+M-1] mod q)) modq

h(i+1) =(h(i)⋅ b modq
Shift left one digit

-t[i] ⋅ bM modq
Subtract leftmost digit

+t[i+M] mod q)
Add new rightmost digit

modq

15Strings and Pattern Matching

Rabin-Karp Pseudo-Code
pattern is M characters long

hash_p=hash value of pattern

hash_t=hash value of first M letters in
 body of text

do
if (hash_p== hash_t)

brute force comparison of pattern
and selected section of text

hash_t = hash value of next section of
 text, one character over

while (end of textor
 brute force comparison ==true)

16Strings and Pattern Matching

Rabin-Karp Complexity
• If a sufficiently large prime number is used for the

hash function, the hashed values of two different
patterns will usually be distinct.

• If this is the case, searching takes O(N) time, where
N is the number of characters in the larger body of
text.

• It is always possible to construct a scenario with a
worst case complexity ofO(MN). This, however, is
likely to happen only if the prime number used for
hashing is small.

17Strings and Pattern Matching

The Knuth-Morris-Pratt
Algorithm

• TheKnuth-Morris-Pratt (KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

• A failure function(f) is computed that indicates how
much of the last comparison can be reused if it fais.

• Specifically, f is defined to be the longest prefix of
the pattern P[0,..,j] that is also a suffix of P[1,..,j]
- Note:not a suffix of P[0,..,j]

• Example:
- value of the KMP failure function:

• This shows how much of the beginning of the string
matches up to the portion immediately preceding a
failed comparison.
- if the comparison fails at (4), we know the a,b in

positions 2,3 is identical to positions 0,1

j 0 1 2 3 4 5

P[j] a b a b a c

f(j) 0 0 1 2 3 0

18Strings and Pattern Matching

The KMP Algorithm (contd.)
• Time Complexity Analysis

• definek = i - j

• In every iteration through the while loop, one of
three things happens.
- 1) if T[i] = P[j], theni increases by 1, as doesj

k remains the same.
- 2) if T[i] != P[j] andj > 0, theni does not change

andk increases by at least 1, sincek changes
from i - j to i - f(j-1)

- 3) if T[i] != P[j] andj = 0, theni increases by 1 and
k increases by 1 sincej remains the same.

• Thus, each time through the loop, eitheri or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes thatf has already been
computed.

• However,f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction isO(m)

• Total Time Complexity:O(n + m)

19Strings and Pattern Matching

The KMP Algorithm (contd.)
• the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)
Input:StringsT (text) withn characters andP

(pattern) withm characters.
Output:Starting index of the first substring ofT

matchingP, or an indication thatP is not a
substring ofT.

f ← KMPFailureFunction(P) {build failure function}
i ← 0
j ← 0
while i < n do

if P[j] = T[i] then
if j = m - 1 then

returni - m - 1 {a match}
i ← i + 1
j ← j + 1

else if j > 0 then{no match, but we have advanced}
j ← f(j-1) {j indexes just after matching prefix in P}

else
i ← i + 1

return “There is no substring ofT matchingP”

20Strings and Pattern Matching

The KMP Algorithm (contd.)
• The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input:StringP (pattern) withm characters
Ouput:The faliure functionf for P, which mapsj to

the length of the longest prefix ofP that is a suffix
of P[1,..,j]

i ← 1
j ← 0
while i ≤ m-1 do

if P[j] = T[j] then
{we have matchedj + 1 characters}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else ifj > 0 then
{ j indexes just after a prefix ofP that matches}
j ← f(j-1)

else
{there is no match}
f(i) ← 0
i ← i + 1

21Strings and Pattern Matching

The KMP Algorithm (contd.)
• A graphical representation of the KMP string

searching algorithm

baaa b c

aaaaaaaa bbbb cccc aa

1 2 3 4 5 6

7

8 9 10 11 12

13

14 15 16 17 18

baaa b c

baaa b c

baaa b c

baaa b c
19

no comparison
needed here

22Strings and Pattern Matching

Regular Expressions
• notation for describing a set of strings, possibly of

infinite size

• ε denotes the empty string

• ab + c denotes the set {ab, c}

• a* denotes the set {ε, a, aa, aaa, ...}

• Examples
- (a+b)* all the strings from the alphabet {a,b}
- b*(ab*a)*b* strings with an even number of a’s
- (a+b)*sun(a+b)* strings containing the pattern

“sun”
- (a+b)(a+b)(a+b)a 4-letter strings ending in a

23Strings and Pattern Matching

Finite State Automaton
• “machine” for processing strings

0 1

bb

a

a

321
aba

0

6

4
b

b

a

a
2 3

5

1
εε

ε

ε

ε

ε
a,b

24Strings and Pattern Matching

Composition of FSA’s
ε

a

α
ε

β

ε

εε

α βε

α

ε

ε

25Strings and Pattern Matching

Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input : StringOuput: None

remove(X): Remove string X from S
Input : StringOutput : None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input : StringOutput : Enumeration of
strings

26Strings and Pattern Matching

Tries (cont.)
• Let S be a set of strings from the alphabetΣ such

that no string inS is a prefix to another string. A
standard trie for S is an ordered treeT that:
- Each edge ofT is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabetΣ
- The path from the root ofT to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabetΣ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

27Strings and Pattern Matching

Tries (cont.)
• An internal node can have 1 tod children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root ofT to an internal nodev at
depth i corresponds to ani-character prefix of a
string ofS.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.

28Strings and Pattern Matching

Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) wherem is the sum of the the
lengths of strings inSto O(n) wheren is the number
of strings inS.

29Strings and Pattern Matching

Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5

30Strings and Pattern Matching

Prefix Queries on a Trie

Algorithm prefixQuery(T, X):
Input : Trie T for a set S of strings and a query stringX
Output : The nodevof Tsuch that the labeled nodes of

the subtree ofT rooted atv store the strings
of S with a longest prefix in common withX

v←T.root()
i←0 { i is an index into the stringX}
repeat

for each childw of v do
let e be theedge (v,w)
Y←string(e) { Y is the substring associated withe}
l←Y.length() {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the nextl charac

ters ofX}
if Z = Y then

v←w
i←i+1{move to W, incrementingi past Z}
break out of thefor loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot therepeat loop

until v is externalor v≠w
return v

31Strings and Pattern Matching

Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.

32Strings and Pattern Matching

Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)

33Strings and Pattern Matching

Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)

34Strings and Pattern Matching

Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.

35Strings and Pattern Matching

Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r 6n4c6_0i 5_0t 9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15

36Strings and Pattern Matching

File Compression
• text files are usually stored by representing each

character with an 8-bitASCII code (typeman ascii in
a Unix shell to see theASCII encoding)

• theASCII encoding is an example offixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java

- encoding:a = “0”, j = “11”, v = “10”

- encoded text:110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text:010000 (6 bits)
- is this java, jvv, jaaaa ...

37Strings and Pattern Matching

Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies theprefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” doesnot satisfy the prefix

rule (the code ofa is a prefix of the codes ofj andv)

• we use anencoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

38Strings and Pattern Matching

Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

A B R A C A D A B R A

See? Decodes like magic...

39Strings and Pattern Matching

Trie this!

E NKCS BTW

RO

0

0

0000

0

0

0

1

1111

1

11

1

1000011111001001100011101111000101010011010100

40Strings and Pattern Matching

Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:

D BC

R

0 1

0

00 1

1

1

ABRACADABRA
01011011010000101001011011010

29 bits

ABRACADABRA
001011000100001100101100

24 bits

A

B RA

D

0 1

0

00 1

1

1

C

41Strings and Pattern Matching

Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

2 2 1 1

24

2 2 1 1

24

5 6

frequency

character

ABRACADABRA

A B R

C D

B R C D

A

A

B R C D

A

42Strings and Pattern Matching

Huffman Encoding Trie (contd.)

B R D

A

0

1

0 1

0

0

11

C

5

11

4 2

6

2 2 1 1

2 2 1 1

24

5 6
A

B R C D

43Strings and Pattern Matching

Final Huffman Encoding Trie

B R D

A

0

1

0 1

0

0

11

C

A B R A C A D A B R A
0 100 101 0 110 0 111 0 100 101 0

23 bits

5

11

4 2

6

2 2 1 1

44Strings and Pattern Matching

Another Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

frequency

character
ABRACADABRA

A B R

C D

A

A

1 1

2

C D

2
R

4
2
B

45Strings and Pattern Matching

Another Huffman Encoding Trie

5

A

1 1

2

C D

2
R

4
2
B

1 1

2

C D

2
R

42
B

65

A

46Strings and Pattern Matching

Another Huffman Encoding Trie

11

5

A

1 1

2

C D

2
R

42
B

65

A

1 1

2

C D

2
R

42
B

6

47Strings and Pattern Matching

Another Huffman Encoding Trie

11

1 1

2

C D

2
R

42
B

65

A

0 1

1

1

1

0

0

0

A B R A C A D A B R A
0 10 110 0 1100 0 1111 0 10 110 0

23 bits

48Strings and Pattern Matching

Construction Algorithm
• with a Huffman encoding trie, the encoded text has

minimal length

Algorithm Huffman(X):
Input : StringX of lengthn
Output : Encoding trie forX

Compute thefrequencyf(c) of each characterc of X.
Initialize apriority queueQ.

for each characterc in X do
Create a single-node treeT storingc
Q.insertItem(f(c), T)

while Q.size() > 1do
f1 ← Q.minKey()
T1 ← Q.removeMinElement()
f2 ← Q.minKey()
T2 ← Q.removeMinElement()
Create a new treeT with left subtreeT1 and right

subtreeT2.
Q.insertItem(f1 + f2)

return treeQ.removeMinElement()

• runing time for a text of length n with k distinct
characters: O(n + k log k)

49Strings and Pattern Matching

Image Compression
• we can use Huffman encoding also for binary files

(bitmaps, executables, etc.)

• common groups of bits are stored at the leaves

• Example of an encoding suitable for b/w bitmaps

000

0

0

1

11

1

010 101

111

0 1

001 100

0

0 1

011 110

0

0 1

	Strings and Pattern Matching
	• Brute Force, Rabin-Karp, Knuth-Morris-Pratt
	String Searching
	• The previous slide is not a great example of what is meant by “String Searching.” Nor is it mea...
	• The object of string searching is to find the location of a specific text pattern within a larg...
	• As with most algorithms, the main considerations for string searching are speed and efficiency.
	• There are a number of string searching algorithms in existence today, but the two we shall revi...

	The Knuth-Morris-Pratt Algorithm
	• The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm ...
	• A failure function (f) is computed that indicates how much of the last comparison can be reused...
	• Specifically, f is defined to be the longest prefix of the pattern P[0,..,j] that is also a suf...
	- Note: not a suffix of P[0,..,j]

	• Example:
	- value of the KMP failure function:

	• This shows how much of the beginning of the string matches up to the portion immediately preced...
	- if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1

	Regular Expressions
	• notation for describing a set of strings, possibly of infinite size
	• e denotes the empty string
	• ab + c denotes the set {ab, c}
	• a* denotes the set {e, a, aa, aaa, ...}
	• Examples
	- (a+b)* all the strings from the alphabet {a,b}
	- b*(ab*a)*b* strings with an even number of a’s
	- (a+b)*sun(a+b)* strings containing the pattern “sun”
	- (a+b)(a+b)(a+b)a 4-letter strings ending in a

	The KMP Algorithm (contd.)
	• Time Complexity Analysis
	• define k = i - j
	• In every iteration through the while loop, one of three things happens.
	- 1) if T[i] = P[j], then i increases by 1, as does j k remains the same.
	- 2) if T[i] != P[j] and j > 0, then i does not change and k increases by at least 1, since k cha...
	- 3) if T[i] != P[j] and j = 0, then i increases by 1 and k increases by 1 since j remains the same.

	• Thus, each time through the loop, either i or k increases by at least 1, so the greatest possib...
	• This of course assumes that f has already been computed.
	• However, f is computed in much the same manner as KMPMatch so the time complexity argument is a...
	• Total Time Complexity: O(n + m)

	Finite State Automaton
	• “machine” for processing strings

	The KMP Algorithm (contd.)
	• the KMP string matching algorithm: Pseudo-Code
	Algorithm KMPMatch(T,P)
	Input: Strings T (text) with n characters and P (pattern) with m characters.
	Output: Starting index of the first substring of T matching P, or an indication that P is not a s...
	f ¨ KMPFailureFunction(P) {build failure function}
	i ¨ 0
	j ¨ 0
	while i < n do
	if P[j] = T[i] then
	if j = m - 1 then
	return i - m - 1 {a match}
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then {no match, but we have advanced}
	j ¨ f(j-1) {j indexes just after matching prefix in P}
	else
	i ¨ i + 1
	return “There is no substring of T matching P”

	The KMP Algorithm (contd.)
	• The KMP failure function: Pseudo-Code
	Algorithm KMPFailureFunction(P);
	Input: String P (pattern) with m characters
	Ouput: The faliure function f for P, which maps j to the length of the longest prefix of P that i...
	i ¨ 1
	j ¨ 0
	while i £ m-1 do
	if P[j] = T[j] then
	{we have matched j + 1 characters}
	f(i) ¨ j + 1
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then
	{j indexes just after a prefix of P that matches}
	j ¨ f(j-1)
	else
	{there is no match}
	f(i) ¨ 0
	i ¨ i + 1

	The KMP Algorithm (contd.)
	• A graphical representation of the KMP string searching algorithm

	Composition of FSA’s
	Brute Force
	• The Brute Force algorithm compares the pattern to the text, one character at a time, until unma...
	- Compared characters are italicized.
	- Correct matches are in boldface type.

	• The algorithm can be designed to stop on either the first occurrence of the pattern, or upon re...

	Brute Force Pseudo-Code
	• Here’s the pseudo-code
	do
	if (text letter == pattern letter)
	compare next letter of pattern to next
	letter of text
	else
	move pattern down text by one letter
	while (entire pattern found or end of text)

	Brute Force-Complexity
	• Given a pattern M characters in length, and a text N characters in length...
	• Worst case: compares pattern to each substring of text of length M. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 ...
	• Total numbe r of comparisons: M (N-M+1)
	• Worst case time complexity: O(MN)

	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern found: Finds pattern in first M positions of text. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAA 5 comparisons made
	• Total number of comparisons: M
	• Best case time complexity: O(M)

	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern not found: Always mismatch on first character. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 c...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 1 comparison made OOOOH
	• Total number of comparisons: N
	• Best case time complexity: O(N)

	Rabin-Karp
	• The Rabin-Karp string searching algorithm uses a hash function to speed up the search.

	Rabin-Karp
	• The Rabin-Karp string searching algorithm calculates a hash value for the pattern, and for each...
	• If the hash values are unequal, the algorithm will calculate the hash value for next M-characte...
	• If the hash values are equal, the algorithm will do a Brute Force comparison between the patter...
	• In this way, there is only one comparison per text subsequence, and Brute Force is only needed ...
	• Perhaps a figure will clarify some things...

	Rabin-Karp Example
	Hash value of “AAAAA” is 37
	Hash value of “AAAAH” is 100
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 37¹100 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AA...
	...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 6 comparisons made 100=100

	Rabin-Karp Pseudo-Code
	pattern is M characters long
	hash_p = hash value of pattern hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)

	Rabin-Karp
	• Com mon Rabin-Karp questions:
	“What is the hash function used to calculate valu es for character sequences?”
	“Isn’t it time consuming to hash e very one of the M-character sequences in the text body?”
	“Is this going to be on the final?”
	• To answer some of these questions, we’ll have to get mathematical.

	Rabin-Karp Math
	• Consider an M-character sequence as an M-digit number in base b, where b is the number of lette...
	x(i) = t[i]×bM-1 + t[i+1]×bM-2 +...+ t[i+M-1]
	• Furthermore, given x(i) we can compute x(i+1) for the next subsequence t[i+1 .. i+M] in constan...

	x(i+1) = t[i+1]×bM-1 + t[i+2]×bM-2 +...+ t[i+M]
	x(i+1) = x(i)×b Shift left one digit
	- t[i]×b M Subtract leftmost digit
	+ t[i+M] Add new rightmost digit
	• In this way, we never explicitly compute a new value. We simply adjust the existing value as we...

	Rabin-Karp Mods
	• If M is large, then the resulting value (~bM) will be enormous. For this reason, we hash the va...
	• The mod function (% in Java) is particularly useful in this case due to several of its inherent...
	- [(x mod q) + (y mod q)] mod q = (x+y) mod q
	- (x mod q) mod q = x mod q

	• For these reasons:
	h(i) = ((t[i]× bM-1 mod q) + (t[i+1]× bM-2 mod q) + ... + (t[i+M-1] mod q)) mod q
	h(i+1) = (h(i)× b mod q Shift left one digit -t[i]× bM mod q Subtract leftmost digit +t[i+M] mod...

	Rabin-Karp Pseudo-Code
	pattern is M characters long
	hash_p = hash value of pattern
	hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)

	Rabin-Karp Complexity
	• If a sufficiently large prime number is used for the hash function, the hashed values of two di...
	• If this is the case, searching takes O(N) time, where N is the number of characters in the larg...
	• It is always possible to construct a scenario with a worst case complexity of O(MN). This, howe...

	Tries
	• A trie is a tree-based date structure for storing strings in order to make pattern matching fas...
	• Tries can be used to perform prefix queries for information retrieval. Prefix queries search fo...
	• A trie supports the following operations on a set S of strings:
	insert(X): Insert the string X into S Input: String Ouput: None
	remove(X): Remove string X from S Input: String Output: None
	prefixes(X): Return all the strings in S that have a longest prefix of X Input: String Output: En...

	Compressed Tries
	• A compressed trie is like a standard trie but makes sure that each trie had a degree of at leas...
	• A critical node is a node v such that v is labeled with a string from S, v has at least 2 child...
	• To convert a standard trie to a compressed trie we replace an edge (v0, v1) each chain on nodes...
	- v0 and v1 are critical but v1 is critical for 0<i<k
	- each v1 has only one child

	• Each internal node in a compressed tire has at least two children and each external is associat...

	Prefix Queries on a Trie
	Algorithm prefixQuery(T, X):
	Input: Trie T for a set S of strings and a query string X
	Output: The node v of T such that the labeled nodes of the subtree of T rooted at v store the str...
	i¨0 {i is an index into the string X}
	repeat
	for each child w of v do
	let e be the e dge (v,w)
	Y¨string(e) {Y is the substring associated with e}
	l¨Y.length() {l=1 if T is a standard trie}
	Z¨X.substring(i, i+l-1) {Z holds the next l charac ters of X}
	if Z = Y then
	v¨w
	i¨i+1 {move to W, incrementing i past Z}
	break out of the for loop
	else if a proper prefix of Z matched a proper prefix of Y then
	v¨w
	break out ot the repeat loop
	until v is external or v¹ùw
	return v

	Insertion and Deletion
	• Insertion: We first perform a prefix query for string X. Let us examine the ways a prefix query...
	- The query terminates at node v. Let X1 be the prefix of X that matched in the trie up to node v...
	- The query terminates at an edge e=(v, w) because a prefix of X match prefix(v) and a proper pre...

	• Insertion is O(dn) when d is the size of the alphabet and n is the length of the string t insert.

	Lempel Ziv Encoding
	• Constructing the trie:
	- Let phrase 0 be the null string.
	- Scan through the text
	- If you come across a letter you haven’t seen before, add it to the top level of the trie.
	- If you come across a letter you’ve already seen, scan down the trie until you can’t match any m...
	- Insert the pair (nodeIndex, lastChar) into the compressed string.

	• Reconstructing the string:
	- Every time you see a ‘0’ in the compressed string add the next character in the compressed stri...
	- For each non-zero nodeIndex, put the substring corresponding to that node into the new string, ...

	Lempel Ziv Encoding (contd.)
	• A graphical example:

	Huffman Encoding Trie
	Huffman Encoding Trie (contd.)
	Final Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Construction Algorithm
	• with a Huffman encoding trie, the encoded text has minimal length
	Algorithm Huffman(X):
	Input: String X of length n
	Output: Encoding trie for X
	Compute the frequency f(c) of each character c of X.
	Initialize a priority queue Q. for each character c in X do
	Create a single-node tree T storing c
	Q.insertItem(f(c), T)
	while Q.size() > 1 do
	f1 ¨ Q.minKey()
	T1 ¨ Q.removeMinElement()
	f2 ¨ Q.minKey()
	T2 ¨ Q.removeMinElement()
	Create a new tree T with left subtree T1 and right subtree T2.
	Q.insertItem(f1 + f2)
	return tree Q.removeMinElement()

	• runing time for a text of length n with k distinct characters: O(n + k log k)

	Tries (cont.)
	• Let S be a set of strings from the alphabet S such that no string in S is a prefix to another s...
	- Each edge of T is labeled with a character from S
	- The ordering of edges out of an internal node is determined by the alphabet S
	- The path from the root of T to any node represents a prefix in S that is equal to the concanten...

	• For example, the standard trie over the alphabet S = {a, b} for the set {aabab, abaab, babbb, b...

	Tries (cont.)
	• An internal node can have 1 to d children when d is the size of the alphabet. Our example is es...
	• A path from the root of T to an internal node v at depth i corresponds to an i-character prefix...
	• We can implement a trie with an ordered tree by storing the character associated with an edge a...

	Compressed Tries (cont.)
	• An example:

	File Compression
	• text files are usually stored by representing each character with an 8-bit ASCII code (type man...
	• the ASCII encoding is an example of fixed-length encoding, where each character is represented ...
	• in order to reduce the space required to store a text file, we can exploit the fact that some c...
	• variable-length encoding uses binary codes of different lengths for different characters; thus,...
	• Example:
	- text: java
	- encoding: a = “0”, j = “11”, v = “10”
	- encoded text: 110100 (6 bits)

	• How to decode?
	- a = “0”, j = “01”, v = “00”
	- encoded text: 010000 (6 bits)
	- is this java, jvv, jaaaa ...

	Encoding Trie
	• to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, tha...
	- a = “0”, j = “11”, v = “10” satisfies the prefix rule
	- a = “0”, j = “01”, v= “00” does not satisfy the prefix rule (the code of a is a prefix of the c...

	• we use an encoding trie to define an encoding that satisfies the prefix rule
	- the characters stored at the external nodes
	- a left edge means 0
	- a right edge means 1

	Insertion and Deletion (cont.)
	Example of Decoding
	• trie:
	• encoded text: 01011011010000101001011011010
	• text:

	Insertion and Deletion (cont.)
	Trie this!
	Optimal Compression
	• An issue with encoding tries is to insure that the encoded text is as short as possible:

	Image Compression
	• we can use Huffman encoding also for binary files (bitmaps, executables, etc.)
	• common groups of bits are stored at the leaves
	• Example of an encoding suitable for b/w bitmaps

