Strings and Pattern Matching

- Brute Force, Rabin-Karp, Knuth-Morris-Pratt

What's up?
 That's quite a trick considering that you have no eyes.

I'm looking for some string.

Oh yeah? Have you seen your writing? It looks like an EKG!

String Searching

- The previous slide is not a great example of what is meant by "String Searching." Nor is it meant to ridicule people without eyes....
- The object of string searching is to find the location of a specific text pattern within a larger body of text (e.g., a sentence, a paragraph, a book, etc.).
- As with most algorithms, the main considerations for string searching are speed and efficiency.
- There are a number of string searching algorithms in existence today, but the two we shall review are Brute Force and Rabin-Karp.

Brute Force

- The Brute Force algorithm compares the pattern to the text, one character at a time, until unmatching characters are found:

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS

- Compared characters are italicized.
- Correct matches are in boldface type.
- The algorithm can be designed to stop on either the first occurrence of the pattern, or upon reaching the end of the text.

Brute Force Pseudo-Code

- Here's the pseudo-code do

if (text letter == pattern letter)

compare next letter of pattern to next
letter of text
else
move pattern down text by one letter
while (entire pattern found or end of text)
> tetththeheehthtehtheththehehtht the
> tetththeheehthtehtheththehehtht the
> tetththeheehthtehtheththehehtht the
> tetththeheehthtehtheththehehtht the
> tetththeheehthtehtheththehehtht
> the
> tetthEheheehthtehtheththehehtht the

Brute Force-Complexity

- Given a pattern M characters in length, and a text N characters in length...
- Worst case: compares pattern to each substring of text of length M. For example, $M=5$.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $A A A A H \quad 5$ comparisons made

2) $A H ~$ $A A A A H \quad 5$ comparisons made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $A A A A H \quad 5$ comparisons made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $A A A A H \quad 5$ comparisons made
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $A A A A H \quad 5$ comparisons made
N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 5 comparisons made $A A A A H$

- Total number of comparisons: $\mathrm{M}(\mathrm{N}-\mathrm{M}+1)$
- Worst case time complexity: $\mathrm{O}(\mathrm{MN})$

Brute Force-Complexity(cont.)

- Given a pattern M characters in length, and a text N characters in length...
- Best case if pattern found: Finds pattern in first M positions of text. For example, $M=5$.

1) $A H ~$ $A A A A A \quad 5$ comparisons made

- Total number of comparisons: M
- Best case time complexity: $\mathrm{O}(\mathrm{M})$

Brute Force-Complexity(cont.)

- Given a pattern M characters in length, and a text N characters in length...
- Best case if pattern not found: Always mismatch on first character. For example, $\mathrm{M}=5$.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH O OOOH 1 comparison made
2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $O O O O H \quad 1$ comparison made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $O O O O H \quad 1$ comparison made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $O O O O H \quad 1$ comparison made
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH $O O O O H \quad 1$ comparison made
N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
$\mathbf{1}$ comparison made $O \mathrm{OOOH}$

- Total number of comparisons: N
- Best case time complexity: $\mathrm{O}(\mathrm{N})$

Rabin-Karp

- The Rabin-Karp string searching algorithm uses a hash function to speed up the search.

Rabin-Karp

- The Rabin-Karp string searching algorithm calculates a hash value for the pattern, and for each M-character subsequence of text to be compared.
- If the hash values are unequal, the algorithm will calculate the hash value for next M-character sequence.
- If the hash values are equal, the algorithm will do a Brute Force comparison between the pattern and the M-character sequence.
- In this way, there is only one comparison per text subsequence, and Brute Force is only needed when hash values match.
- Perhaps a figure will clarify some things...

Rabin-Karp Example

Hash value of "AAAAA" is 37
Hash value of "AAAAH" is 100

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH
$37 \neq 100 \quad 1$ comparison made
2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH
$37 \neq 100 \quad 1$ comparison made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH
$37 \neq 100 \quad 1$ comparison made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH
$37 \neq 100 \quad 1$ comparison made
N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH
6 comparisons made $100=100$

Rabin-Karp Pseudo-Code

pattern is M characters long
hash_p=hash value of pattern
hash_t=hash value of first M letters in body of text
do
if (hash_p == hash_t) brute force comparison of pattern and selected section of text
hash_t = hash value of next section of text, one character over
while (end of text or
brute force comparison $==$ true)

Rabin-Karp

- Common Rabin-Karp questions:
"What is the hash function used to calculate values for character sequences?"
"Isn't it time consuming to hash every one of the M-character sequences in the text body?"
"Is this going to be on the final?"
- To answer some of these questions, we'll have to get mathematical.

Rabin-Karp Math

- Consider an M-character sequence as an M-digit number in base \boldsymbol{b}, where \boldsymbol{b} is the number of letters in the alphabet. The text subsequence $\mathrm{t}[\mathrm{i} . . \mathrm{i}+\mathrm{M}-1]$ is mapped to the number
$\boldsymbol{x}(\mathrm{i})=\boldsymbol{t}[\mathrm{i}] \cdot \boldsymbol{b}^{\mathrm{M}-1}+\boldsymbol{t}[\mathrm{i}+1] \cdot \boldsymbol{b}^{\mathrm{M}-2}+\ldots+\boldsymbol{t}[\mathrm{i}+\mathrm{M}-1]$
- Furthermore, given $x(i)$ we can compute $x(i+1)$ for the next subsequence $t[i+1$.. $i+M]$ in constant time, as follows:

$$
\begin{array}{ll}
\boldsymbol{x}(\mathrm{i}+1)=\boldsymbol{t}[\mathrm{i}+1] \cdot \boldsymbol{b}^{\mathrm{M}-1}+\boldsymbol{t}[\mathrm{i}+2] \cdot \boldsymbol{b}^{\mathrm{M}-2}+\ldots+\boldsymbol{t}[\mathrm{i}+\mathrm{M}] \\
\boldsymbol{x}(\mathrm{i}+1)=\boldsymbol{x}(\mathrm{i}) \cdot \boldsymbol{b} & \text { Shift left one digit } \\
-\boldsymbol{t}[\mathrm{i}] \cdot \boldsymbol{b}^{\mathrm{M}} & \text { Subtract leftmost digit } \\
+\boldsymbol{t}[\mathrm{i}+\mathrm{M}] & \text { Add new rightmost digit }
\end{array}
$$

- In this way, we never explicitly compute a new value. We simply adjust the existing value as we move over one character.

Rabin-Karp Mods

- If M is large, then the resulting value ($\sim \mathrm{bM}$) will be enormous. For this reason, we hash the value by taking it mod a prime number \boldsymbol{q}.
- The mod function (\% in Java) is particularly useful in this case due to several of its inherent properties:
$-[(x \bmod q)+(y \bmod q)] \bmod q=(x+y) \bmod q$
$-(x \bmod q) \bmod q=x \bmod q$
- For these reasons:

$$
\begin{aligned}
& \boldsymbol{h}(\mathrm{i})=\left(\left(t[\mathrm{i}] \cdot \boldsymbol{b}^{\mathrm{M}-1} \bmod \boldsymbol{q}\right)+\right. \\
& \left(t[\mathrm{i}+1] \cdot \boldsymbol{b}^{\mathrm{M}-2} \bmod \boldsymbol{q}\right)+\ldots+ \\
& (t[\mathrm{i}+\mathrm{M}-1] \bmod \boldsymbol{q})) \bmod \boldsymbol{q}
\end{aligned}
$$

$\boldsymbol{h}(\mathrm{i}+1)=(\boldsymbol{h}(\mathrm{i}) \cdot \boldsymbol{b} \bmod \boldsymbol{q}$
Shift left one digit
$-t[i] \cdot \boldsymbol{b}^{\mathrm{M}} \bmod \boldsymbol{q}$
Subtract leftmost digit
$+t[i+\mathrm{M}] \bmod \boldsymbol{q})$
Add new rightmost digit
$\bmod \boldsymbol{q}$

Rabin-Karp Pseudo-Code

pattern is M characters long
hash_p=hash value of pattern
hash_t =hash value of first M letters in body of text
do
if (hash_p == hash_t)
brute force comparison of pattern and selected section of text
hash_t = hash value of next section of text, one character over
while (end of text or
brute force comparison $==$ true)

Rabin-Karp Complexity

- If a sufficiently large prime number is used for the hash function, the hashed values of two different patterns will usually be distinct.
- If this is the case, searching takes $\mathrm{O}(\mathrm{N})$ time, where N is the number of characters in the larger body of text.
- It is always possible to construct a scenario with a worst case complexity of $\mathrm{O}(\mathrm{MN})$. This, however, is likely to happen only if the prime number used for hashing is small.

The Knuth-Morris-Pratt Algorithm

- The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm by keeping track of information gained from previous comparisons.
- A failure function (f) is computed that indicates how much of the last comparison can be reused if it fais.
- Specifically, f is defined to be the longest prefix of the pattern $\mathrm{P}[0, . ., \mathrm{j}]$ that is also a suffix of $\mathrm{P}[1, . ., \mathrm{j}]$
- Note: not a suffix of P[0,..,j]
- Example:
- value of the KMP failure function:

j	0	1	2	3	4	5
$P[j]$	a	b	a	b	a	c
$f(j)$	0	0	1	2	3	0

- This shows how much of the beginning of the string matches up to the portion immediately preceding a failed comparison.
- if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1

The KMP Algorithm (contd.)

- Time Complexity Analysis
- define $k=i-j$
- In every iteration through the while loop, one of three things happens.
- 1) if $T[i]=P[j]$, then i increases by 1 , as does j k remains the same.
- 2) if $T[i]!=P[j]$ and $j>0$, then i does not change and k increases by at least 1 , since k changes from $i-j$ to $i-f(j-1)$
- 3) if $T[i]!=P[j]$ and $j=0$, then i increases by 1 and k increases by 1 since j remains the same.
- Thus, each time through the loop, either i or k increases by at least 1 , so the greatest possible number of loops is $2 n$
- This of course assumes that f has already been computed.
- However, f is computed in much the same manner as KMPMatch so the time complexity argument is analogous. KMPFailureFunction is $\boldsymbol{O}(m)$
- Total Time Complexity: $\boldsymbol{O}(n+m)$

The KMP Algorithm (contd.)

- the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T, P)

Input: Strings T (text) with n characters and P (pattern) with m characters.
Output: Starting index of the first substring of T matching P, or an indication that P is not a substring of T.
$f \leftarrow$ KMPFailureFunction (P) \{build failure function\}
$i \leftarrow 0$
$j \leftarrow 0$
while $i<n$ do

$$
\text { if } P[j]=T[i] \text { then }
$$

$$
\text { if } j=m-1 \text { then }
$$

return $i-m-1$ \{a match $\}$
$i \leftarrow i+1$
$j \leftarrow j+1$
else if $j>0$ then $\{$ no match, but we have advanced\} $j \leftarrow f(j-1)\{\mathrm{j}$ indexes just after matching prefix in P$\}$ else

$$
i \leftarrow i+1
$$

return "There is no substring of T matching P "

The KMP Algorithm (contd.)

- The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction (P);
Input: String P (pattern) with m characters
Ouput: The faliure function f for P, which maps j to the length of the longest prefix of P that is a suffix of $P[1, . ., j]$
$i \leftarrow 1$
$j \leftarrow 0$
while $i \leq m-1$ do
if $P[j]=\mathrm{T}[j]$ then
\{we have matched $j+1$ characters $\}$
$f(i) \leftarrow j+1$
$i \leftarrow i+1$
$j \leftarrow j+1$
else if $j>0$ then
$\{j$ indexes just after a prefix of P that matches \}
$j \leftarrow f(j-1)$
else
\{there is no match\}

$$
\begin{aligned}
& f(i) \leftarrow 0 \\
& i \leftarrow i+1
\end{aligned}
$$

The KMP Algorithm (contd.)

- A graphical representation of the KMP string searching algorithm
no comparison needed here

Regular Expressions

- notation for describing a set of strings, possibly of infinite size
- ε denotes the empty string
- $\mathbf{a b}+\mathbf{c}$ denotes the set $\{\mathrm{ab}, \mathrm{c}\}$
- a* denotes the set $\{\varepsilon$, a, aa, aaa, ... $\}$
- Examples
- (a+b)* all the strings from the alphabet $\{a, b\}$
- b*(ab*a)*b* strings with an even number of a's
- $(a+b) * \operatorname{sun}(a+b) *$ strings containing the pattern "sun"
- (a+b)(a+b)(a+b)a 4-letter strings ending in a

Finite State Automaton

- "machine" for processing strings

Composition of FSA's

Tries

- A trie is a tree-based date structure for storing strings in order to make pattern matching faster.
- Tries can be used to perform prefix queries for information retrieval. Prefix queries search for the longest prefix of a given string X that matches a prefix of some string in the trie.
- A trie supports the following operations on a set S of strings:
insert(X): Insert the string X into S
Input: String Ouput: None
remove(X): Remove string X from S
Input: String Output: None
prefixes(X): Return all the strings in S that have a longest prefix of X
Input: String Output: Enumeration of strings

Tries (cont.)

- Let S be a set of strings from the alphabet Σ such that no string in S is a prefix to another string. A standard trie for S is an ordered tree T that:
- Each edge of T is labeled with a character from Σ
- The ordering of edges out of an internal node is determined by the alphabet Σ
- The path from the root of T to any node represents a prefix in Σ that is equal to the concantenation of the characters encountered while traversing the path.
- For example, the standard trie over the alphabet $\Sigma=$ $\{a, b\}$ for the set $\{a a b a b, a b a a b$, babbb, bbaaa, bbab\}

Tries (cont.)

- An internal node can have 1 to d children when d is the size of the alphabet. Our example is essentially a binary tree.
- A path from the root of T to an internal node v at depth i corresponds to an i-character prefix of a string of S.
- We can implement a trie with an ordered tree by storing the character associated with an edge at the child node below it.

Compressed Tries

- A compressed trie is like a standard trie but makes sure that each trie had a degree of at least 2 . Single child nodes are compressed into an single edge.
- A critical node is a node v such that v is labeled with a string from S, v has at least 2 children, or v is the root.
- To convert a standard trie to a compressed trie we replace an edge $\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right)$ each chain on nodes $\left(\mathrm{v}_{0}\right.$, $v_{1} \ldots v_{k}$) for $k 2$ such that
$-v_{0}$ and v_{1} are critical but v_{1} is critical for $0<i<k$ - each v_{1} has only one child
- Each internal node in a compressed tire has at least two children and each external is associated with a string. The compression reduces the total space for the trie from $\mathrm{O}(m)$ where m is the sum of the the lengths of strings in S to $\mathrm{O}(n)$ where n is the number of strings in S.

Compressed Tries (cont.)

- An example:

Prefix Queries on a Trie

Algorithm prefixQuery (T, X) :
Input: Trie T for a set S of strings and a query string X Output: The node v of T such that the labeled nodes of the subtree of T rooted at v store the strings of S with a longest prefix in common with X $v \leftarrow T$.root() $i \leftarrow 0 \quad\{i$ is an index into the string $X\}$ repea t
for each child w of v do
let e be the e dge (v, w)
$Y \leftarrow \operatorname{string}(e)\{Y$ is the substring associated with $e\}$
$l \leftarrow Y$.length() $\{l=1$ if T is a standard trie $\}$
Z"X.substring $(i, i+l-1)\{Z$ holds the next l charac ters of $X\}$
if $\mathrm{Z}=\mathrm{Y}$ then
$\nu \leftarrow \mathrm{W}$
$i \leftarrow i+1$ \{ move to W , incrementing i past Z$\}$ break out of the for loop
else if a proper prefix of Z matched a proper prefix of Y then
$V \leftarrow \mathrm{~W}$
break out ot the repeat loop
until v is external or $v \neq \mathrm{W}$
return v

Insertion and Deletion

- Insertion: We first perform a prefix query for string X . Let us examine the ways a prefix query may end in terms of insertion.
- The query terminates at node v. Let X_{1} be the prefix of X that matched in the trie up to node v and X_{2} be the rest of X. If X_{2} is an empt string we label v with X and the end. Otherwise we creat a new external node w and label it with X .
- The query terminates at an edge $\mathrm{e}=(\mathrm{v}, \mathrm{w})$ because a prefix of X match prefix (v) and a proper prefix of string Y associated with e. Let Y_{1} be the part of Y that X mathed to and Y_{2} the rest of Y. Likewise for X_{1} and X_{2}. Then $X=X_{1}+X_{2}=\operatorname{prefix}(v)+Y_{1}+X_{2}$. We create a new node u and split the edges (v, u) and (u, w). If X2 is empty then w label u with X. Otherwise we creat a node z which is external and label it X.
- Insertion is $O(\mathrm{dn})$ when d is the size of the alphabet and n is the length of the string t insert.

Insertion and Deletion (cont.)

insert(bbaabb)

Lempel Ziv Encoding

- Constructing the trie:
- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven't seen before, add it to the top level of the trie.
- If you come across a letter you've already seen, scan down the trie until you can't match any more chracters, add a node to the trie representing the new string.
- Insert the pair (nodeIndex, lastChar) into the compressed string.
- Reconstructing the string:
- Every time you see a ' 0 ' in the compressed string add the next character in the compressed string directly to the new string.
- For each non-zero nodeIndex, put the substring corresponding to that node into the new string, followed by the next character in the compressed string.

Lempel Xiv Encoding (contd.)

- A graphical example:

Compressed text: $0 \mathbf{h} 000 \mathbf{w} 0 _0 \mathrm{n} 2 \mathbf{w} 4 \mathbf{b} 0 \mathbf{r} 6 \mathbf{n} 4 \mathbf{c} 6 _0 \mathbf{i} 5 _0 \mathbf{t} 9$.

File Compression

- text files are usually stored by representing each character with an 8-bit ASCII code (type man ascii in a Unix shell to see the ASCII encoding)
- the ASCII encoding is an example of fixed-length encoding, where each character is represented with the same number of bits
- in order to reduce the space required to store a text file, we can exploit the fact that some characters are more likely to occur than others
- variable-length encoding uses binary codes of different lengths for different characters; thus, we can assign fewer bits to frequently used characters, and more bits to rarely used characters.
- Example:
- text: java
- encoding: $a=" 0 ", j=" 11 ", v=" 10 "$
- encoded text: 110100 (6 bits)
- How to decode?
- a = "0", j = "01", v = "00"
- encoded text: 010000 (6 bits)
- is this java, jvv, jaaaa ...

Encoding Trie

- to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, that is, no code is a prefix of another code
- $a=" 0 ", j=" 11$ ", $v=" 10$ " satisfies the prefix rule
- $a=" 0 ", j=" 01$ ", $v=" 00$ " does not satisfy the prefix rule (the code of a is a prefix of the codes of j and v)
- we use an encoding trie to define an encoding that satisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

Example of Decoding

- trie:

- encoded text:

01011011010000101001011011010

- text:

Trie this!

1000011111001001100011101111000101010011010100

Optimal Compression

- An issue with encoding tries is to insure that the encoded text is as short as possible:

Huffman Encoding Trie

ABRACADABRA

Huffman Encoding Trie (contd.)

Final Huffman Encoding Trie

A B R A C A D A B R A
01001010110011101001010
23 bits

Another Huffman Encoding Trie

ABRACADABRA character A B R C D frequency	5	2	2	1	1

Another Huffman Encoding Trie

Another Huffman Encoding Trie

Another Huffman Encoding Trie

A B R A C A D A B R A 01011001100011110101100

23 bits

Construction Algorithm

- with a Huffman encoding trie, the encoded text has minimal length

Algorithm Huffman (X) :
Input: String X of length n
Output: Encoding trie for X
Compute the frequency $f(c)$ of each character c of X. Initialize a priority queue Q.
for each character c in X do
Create a single-node tree T storing c
Q.insertltem $(f(c), T)$
while $Q . \operatorname{size}()>1$ do
$f_{1} \leftarrow$ Q.minKey()
$T_{1} \leftarrow$ Q.removeMinElement()
$f_{2} \leftarrow Q$. minKey ()
$T_{2} \leftarrow Q$.removeMinElement()
Create a new tree T with left subtree T_{1} and right subtree T_{2}.
Q.insertltem $\left(f_{1}+f_{2}\right)$
return tree Q.removeMinElement()

- runing time for a text of length n with k distinct characters: $\mathrm{O}(\mathrm{n}+\mathrm{k} \log \mathrm{k})$

Image Compression

- we can use Huffman encoding also for binary files (bitmaps, executables, etc.)
- common groups of bits are stored at the leaves
- Example of an encoding suitable for b / w bitmaps

