STRINGS AND PATTERN
M ATCHING

» Brute Force, Rabin-Karp, Knuth-Morris-Pratt

What's up”
I’'m looking for some string.
That’s quite a trick considerin
that you have no eyes.

Oh yeah? Have you seen your writing?
It looks like an EKG!

Strings and Pattern Matching

String Searching

e The previous slide is not a great example of whatjis
meant by “String Searching.” Nor is it meant to
ridicule people without eyes....

e The object oktring searchings to find the location
of a specific text pattern within a larger body of teit
(e.g., a sentence, a paragraph, a book, etc.).

« As with most algorithms, the main considerations
for string searching are speed and efficiency.

* There are a number of string searching algorithms}ir
existence today, but the two we shall review are
Brute ForceandRabin-Karp

Strings and Pattern Matching 2

Brute Force

 TheBrute Forcealgorithm compares the pattern to
the text, one character at a time, until unmatching
characters are found:

WD ROADS DIVERGED IN A YELLOW WOOD

ROADS
TVO ROADS DIVERGED IN A YELLOW WOOD

FROADS
TWOROADS DIVERGED IN A YELLOW WOOQOD

ROADS
TWO ROADS DIVERGED IN A YELLOW WOQOD

ROADS
TWO ROAD®DIVERGED IN A YELLOW WOOQOD

ROADS

- Compared characters are italicized.
- Correct matches are in boldface type.

* The algorithm can be designed to stop on either the
first occurrence of the pattern, or upon reaching the
end of the text.

Strings and Pattern Matching 3

Brute Force Pseudo-Code

e Here’s the pseudo-code
do
If (text letter == pattern letter)
compare next letter of pattern to next
letter of text
else
move pattern down text by one letter
while (entire pattern found or end of text)

t etththeheehthtehtheththehehtht

[he
t etththeheehthtehtheththehehtht

[he
te t t htheheehthtehtheththehehtht

[he
tet th t heheehthtehtheththehehtht

th e
tett htheheehthtehtheththehehtht

f he

tetth eehthtehtheththehehtht
he

Strings and Pattern Matching

Brute Force-Complexity

e Given a pattern M characters in length, and a text

characters in length...

e \Worst case compares pattern to each substring ¢
text of length M. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made
2) AAAALAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAA1 5 comparisons made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
5 comparisons made AAAAH

e Total number of comparisons: M (N-M+1)

* WWorst case time complexitf?(MN)

Strings and Pattern Matching 5

Brute Force-Complexity(cont.)

e Given a pattern M characters in length, and a text
characters in length...

» Best case If pattern foundFinds pattern in first M
positions of text. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAA 5 comparisons made

e Total number of comparisons: M

» Best case time complexitia(M)

Strings and Pattern Matching 6

Brute Force-Complexity(cont.)

e Given a pattern M characters in length, and a text
characters in length...

» Best case If pattern not found Always mismatch
on first character. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made
2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
1 comparison made OOOOH

e Total number of comparisons: N

» Best case time complexit@(N)

Strings and Pattern Matching 7

Rabin-Karp

e The Rabin-Karp string searching algorithm uses ¢
hash function to speed up the search.

-

Rabin & Karp’s

Heavenly

Homemad
Hashish

Fresh from Syria

Strings and Pattern Matching 8

Rabin-Karp

 The Rabin-Karp string searching algorithm
calculates dnash valuefor the pattern, and for each
M-character subsequence of text to be compared.

e If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

* If the hash values are equal, the algorithm will do|a
Brute Force comparisdometween the pattern and the
M-character sequence.

* In this way, there is only one comparison per text
subsequence, and Brute Force is only needed whe
hash values match.

» Perhaps a figure will clarify some things...

Strings and Pattern Matching 9

Rabin-Karp Example

Hash value of “AAAAA” is 37
Hash value of “AAAAH” is 100

1) AAAAA A AAAAAAAAAAAAAAAAAAAAAH
AAAAH
37#£100 1 comparison made
2) AAAAAA AAAAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparison made
3) AAAAAAA AAAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparison made
4) AAAAAAAA AAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparison made

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
AAAAH
6 comparisons made 100=100

Strings and Pattern Matching 10

Rabin-Karp Pseudo-Code

pattern is M characters long

~hash value of pattern
hash *hash value of first M letters In
body of text

do
If (== hash }
brute force comparison of pattern
and selected section of text
hash t= hash value of next section of
text, one character over
while (end of texor
brute force comparison == true)

Strings and Pattern Matching 11

Rabin-Karp
« Common Rabin-Karp questions:

“What is the hash function used to calculate
values for character sequences?”

“Isn’t it time consuming to hash
every one of the M-character
sequences in the text body?”

“Is this going to be on the final?”

e To answer some of these questions, we’ll have to ¢
mathematical.

Strings and Pattern Matching 12

Rabin-Karp Math

e Consider an M-character sequence as an M-digit
number inbaseb, whereb is the number of letters in
the alphabet. The text subsequence t[i .. I+M-1] is
mapped to the number

x(i) = t[i] BM + t[i+1] BM2 +.. +[i+M-1]

e Furthermore, given x(i) we can compute Xx(i+1) fo
the next subsequence t[i+1 .. i+M] in constant time,
as follows:

x(i+1) = t[i+1] ML + t[i+2] BM-2 +.. +{[i+M]

—_

x(i+1) =x(i) B Shift left one digit
-t[ijmM Subtract leftmost digit
+ t[i+M] Add new rightmost digit

* In this way, we never explicitly compute a new
value. We simply adjust the existing value as we
move over one character.

Strings and Pattern Matching 13

Rabin-Karp Mods

 If M is large, then the resulting value (~bM) will be:
enormous. For this reason, we hash the value by

taking itmod aprime numbenq,.

 Themod function (% in Java) Is particularly useful

In this case due to several of its inherent properti¢

- [(x mod q) + (y mod g)] mod g = (x+y) mod g
- (x mod g) mod g =x mod g

e For these reasons:

(i) = ((tf] B! modq) +
(t[i+1] (™2 modq) + ... +
(t[i+M-1] mod q)) modq

h(i+1) =(h()) (b modq
Shift left one digit
-t[i] (o™ modg
Subtract leftmost digit
+t[I+M] mod q)
Add new rightmost digit
modq

| ™4

Strings and Pattern Matching 14

Rabin-Karp Pseudo-Code

pattern is M characters long
=hash value of pattern

hash t=hash value of first M letters in
body of text

do
If (== hash }
brute force comparison of pattern
and selected section of text
hash t= hash value of next section of
text, one character over
while (end of texor
brute force comparison #ae)

Strings and Pattern Matching 15

Rabin-Karp Complexity

e If a sufficiently large prime number is used for the
hash functionthe hashed values of two different
patterns will usually be distinct.

o If this is the case, searching take@\) time, where
N Is the number of characters in the larger body of
text.

e It Is always possible to construct a scenario with &
worst case complexity dd(MN). This, however, is
likely to happen only if the prime number used for
hashing is small.

Strings and Pattern Matching 16

The Knuth-Morris-Pratt
Algorithm

e The Knuth-Morris-Prat{KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

o A failure function(f) is computed that indicates ho
much of the last comparison can be reused if it fais

« Specifically,f is defined to be the longest prefix of
the pattern PJO,..,j] that is also a suffix of P[1,..,]]

- Note:not a suffix of PJO,..,|]

e Example:
- value of the KMP failure function:
j 0 1 2 3 4 5
P[j] a b a b a C
f() 0 0 1 2 3

e This shows how much of the beginning of the string
matches up to the portion immediately preceding|a
failed comparison.

- If the comparison fails at (4), we know the a,b in
positions 2,3 is identical to positions 0,1

Strings and Pattern Matching 17

The KMP Algorithm (contd.)

 Time Complexity Analysis
e definek =1 -|

 In every iteration through the while loop, one of
three things happens.

- 1) if T[i] = P[j], theni increases by 1, as dges
Kk remains the same.

- 2) if T[1] '= P[j] andj > O, then does not change
andk increases by at least 1, sinkehanges
fromi-jtoi-1(j-1)

- 3) if T[i] '= P[j] andj =0, theni increases by 1 and
K increases by 1 singgemains the same.

* Thus, each time through the loop, eitherk
Increases by at least 1, so the greatest possible
number of loops IS

e This of course assumes tlidtas already been
computed.

 However,fis computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction@m)

e Total Time ComplexityO(n + m)

Strings and Pattern Matching 18

The KMP Algorithm (contd.)

« the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)
Input: StringsT (text) withn characters and
(pattern) withm characters.
Output:Starting index of the first substring ©f
matchingP, or an indication tha® is not a
substring ofT.

f —« KMPFailureFunctio(P) {build failure function}
| 0
whilei <ndo
If P[j] = T[i] then
If] =m- 1then
returni - m- 1{a match}
| «1+1
J—J+1
else ifj > Othen{no match, but we have advanced}
] « f(J-1) {j indexes just after matching prefix in P}
else
| 1 +1
return“There is no substring af matchingP”

Strings and Pattern Matching 19

The KMP Algorithm (contd.)

e The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunctio(P);
Input: String P (pattern) withm characters
Ouput:The faliure functiorf for P, which mapg to
the length of the longest prefix Bfthat is a suffix
of P[1,..]

j <0
whilei <m-1do
If P[j] = T[j] then
{we have matche@+ 1 characters}
fi) «]+ 1
| «1+1
J—J+1
else ifj > Othen
{] Indexes just after a prefix fthat matches}
J < 1(-1)
else
{there is no match}
fi) < O
| —1+1

Strings and Pattern Matching 20

The KMP Algorithm (contd.)

« A graphical representation of the KMP string
searching algorithm

alblalc|lalalblalc|]cla|blalclalbla]l a
1 2 3 4| 5| 6
al blal clalb

7

al blal clalb

no comparison
needed here 13

14 15 16 17 1819

Strings and Pattern Matching

Regular Expressions

notation for describing a set of strings, possibly o
Infinite size

¢ denotes the empty string

ab + c denotes the set {ab, c}

a* denotes the set{a, aa, aaa,.}.

Examples

- (a+b)* all the strings from the alphabet {a,b}

- b*(ab*a)*b* strings with an even number of a’s

- (a+b)*sun(a+b)* strings containing the pattern
‘sun”

- (a+b)(a+b)(a+b)a 4-letter strings ending in a

]

Strings and Pattern Matching 22

Finite State Automaton

* “machine” for processing strings

a

ol ©
J & O

b b

Strings and Pattern Matching

23

Composition of FSA’s

Strings and Pattern Matching

24

Tries

e A trieis a tree-based date structure for storing
strings in order to make pattern matching faster.

* Tries can be used to perfogmefix queries for
iInformation retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

« Atrie supports the following operationsonaset S
strings:

iInsert(X) Insert the string X into S
Input : StringOuput: None

remove(X) Remove string X from S
Input : StringOutput: None

prefixes(X) Return all the strings in S that have a
longest prefix of X
Input : StringOutput: Enumeration of
strings

Of

Strings and Pattern Matching 25

Tries (cont.)

e Let Sbe a set of strings from the alphahetuch
that no string irb is a prefix to another string. A
standard tridor Sis an ordered treé that:

- Each edge of is labeled with a character fram

- The ordering of edges out of an internal node is
determined by the alphahet

- The path from the root of to any node represents
a prefix inZ that is equal to the concantenation ¢f
the characters encountered while traversing the
path.

* For example, the standard trie over the alphabet
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

Strings and Pattern Matching 26

Tries (cont.)

 An internal node can have 1dahildren when d is
the size of the alphabet. Our example is essentially
binary tree.

A path from the root of to an internal node at
depthi corresponds to ancharacter prefix of a
string of S

* We can implement a trie with an ordered tree by
storing the character associated with an edge at th
child node below it.

Strings and Pattern Matching 27

Compressed Tries

e A compressed tries like a standard trie but makes
sure that each trie had a degree of at least 2. Singl
child nodes are compressed into an single edge.

A critical node IS a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

e To convert a standard trie to a compressed trie we
replace an edge fvv,) each chain on nodesy(v
Vq...Vy) for k 2 such that

- Vg and vy are critical but y s critical for O<i<k
- each \ has only one child

e Each internal node in a compressed tire has at legas
two children and each external is associated with|a
string. The compression reduces the total space fo
the trie from OfM) wherem is the sum of the the
lengths of strings iisto O(n) wheren is the number
of strings InS

Strings and Pattern Matching 28

Compressed Tries (cont.)

 An example:

Strings and Pattern Matching

29

Prefix Queries on a Trie

Algorithm prefixQueryT, X):
Input: Trie T for a set S of strings and a query stridg
Output: The noderof T such that the labeled nodes ¢
the subtree of rooted atv store the strings
of S with a longest prefix in common wikh
vV~ T.root()
-0 {iis anindex into the string}
reped
for each childv of vdo
let e be theedge {,w)
Y —string@) {Y is the substring associated weh
| - Ylength() {=1if T is a standard trie}
Z X.substringi, i+l-1) {Z holds the next charac
ters ofX}
If Z=Y then
VeW
| — 1+1{move to W, incrementingpast Z}
break out of thefor loop
else ifa proper prefix of Z matched a proper pref
of Y then
VeW
break out ot therepeatloop
until vis externabr vzw
return v

Strings and Pattern Matching 30

Insertion and Deletion

 Insertion: We first perform a prefix query for strin
X. Let us examine the ways a prefix query may enc
In terms of insertion.

- The query terminates at node v. Lethé the
prefix of X that matched in the trie up to node v
and X be the rest of X. If % is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) becal
a prefix of X match prefix(v) and a proper prefix af
string Y associated with e. LetYbe the part of Y
that X mathed to and Ythe rest of Y. Likewise for
Xq and X. Then X=X+X, = prefix(v) +Y;+Xo.
We create a new node u and split the edges(v, L
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external anc
label it X.

e Insertion is O(dn) when d is the size of the alphabe
and n is the length of the string t insert.

N

—
N’

Strings and Pattern Matching 31

Insertion and Deletion (cont.)

a b
a - b a © b
A A~ O search ~
b a b stops a b
here
D O Q O ®
a a b \ a a
@ Q ® @ @
b b b a b
u n 1 O n
1 2 3 4 5
() .
a b Insert(pbadb)
a - b a - b
O 0 Q O
b a b a b
D O Q O D
a a b a
O @ O) O
b b a/\b
H H 1 C @ n
1 2 3 4 b 5
H
6

Strings and Pattern Matching 32

Insertion and Deletion (cont.)

baab abbhb

3 aaa bab

baab abbh

bab

Strings and Pattern Matching 33

Lempel Ziv Encoding

e Constructing the trie:
- Let phrase 0 be the null string.
- Scan through the text

- If you come across a letter you haven't seen
before, add it to the top level of the trie.

- If you come across a letter you've already seen
scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodelndex, lastChar) into the
compressed string.

e Reconstructing the string:
- Every time you see a ‘0’ in the compressed string
add the next character in the compressed string
directly to the new string.

- For each non-zero nodelndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compresse
string.

d

Strings and Pattern Matching 34

Lempel Ziv Encoding (contd.)

« A graphical example:

Uncompressed text:)how now brown cow in town.

phra593012345 6 7 8 9 10 11 121314 15

Compressed text: 0hOoOw0O_On2w4bOr 6n4c6 0i 5 Ot 9.
Trie: (0)
h 0 W,

-/ \Nn
@ g © @ 6 O W 14

I

Strings and Pattern Matching 35

File Compression

o text files are usually stored by representing each
character with an 8-brscii code (typenan ascii In
a Unix shell to see thescil encoding)

e theAsClIl encoding is an example fed-length
encoding, where each character is represented wijtt
the same number of bits

 In order to reduce the space required to store a tex
file, we can exploit the fact that some characters ar
more likely to occur than others

e variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used charactefs
and more bits to rarely used characters.

e Example:
- text:java
- encodinga =“0", j=“11", v = “10”
- encoded text110100 (6 bits)

e How to decode?
- a="0",j="01", v="00"
- encoded text10000 (6 bits)
- Is thisjava, jvv, jaaaa ...

Strings and Pattern Matching 36

Encoding Trie

 to prevent ambiguities in decoding, we require that
the encoding satisfies the=fix rule, that is, no code
IS a prefix of another code
- a="0",j="11", v = “10” satisfies the prefix rule

- a="0",j="01", v=""“00" doesnot satisfy the prefix
rule (the code o# is a prefix of the codes ¢ofandv)

e We use amrncoding trie to define an encoding that
satisfies the prefix rule

- the characters stored at the external nodes
- a left edge means O
- aright edge means 1

Strings and Pattern Matching 37

Example of Decoding

e trie:

e encoded text:
01011011010000101001011011010

Strings and Pattern Matching

38

Trie this!

Y\ o\t o\ o\
s||w]|T Ellc]|K]|N

1000011111001001100011101111000101010011010100

Strings and Pattern Matching 39

Optimal Compression

e An issue with encoding tries Is to insure that the
encoded text is as short as possible:

ABRACADABRA
01011011010000101001011011010
29 bits

ABRACADABRA
001011000100001100101100
24 bits

Strings and Pattern Matching 40

Huffman Encoding Trie

ABRACADABRA
character A B

Strings and Pattern Matching

41

Huffman Encoding Trie (contd.)

Strings and Pattern Matching 42

Final Huffman Encoding Trie

A B RA CADAIDB R A
O 10010101100 111 0 100 1010
23 bits

Strings and Pattern Matching

43

Another Huffman Encoding Trie

ABRACADABRA
character A D

frequency E

Strings and Pattern Matching 44

Another Huffman Encoding Trie

A B

Strings and Pattern Matching 45

Another Huffman Encoding Trie

Strings and Pattern Matching 46

Another Huffman Encoding Trie

A BRACAD AB R A
0 01111 0 10 1100
bits

Strings and Pattern Matching 47

Construction Algorithm

o with a Huffman encoding trie, the encoded text has
minimal length

Algorithm Huffman(X):
Input : String X of lengthn
Output: Encoding trie foiX

Compute thdrequencyf(c) of each characterof X.
Initialize apriority queueQ.

for each characterin X do
Create a single-node tréestoringc
Q.insertltem(f(c), T)

while Q.size() > 1do
f; — Q.minKey()
T; < Q.removeMinElement()
fr — Q.minKey()
T, « Q.removeMinElement()
Create a new treEwith left subtreel; and right

subtreerl,.
Q.insertltem(f; +f5)
return treeQ.removeMinElement()

 runing time for a text of length n with k distinct
characters: O(n + k log k)

Strings and Pattern Matching 48

Image Compression

e we can use Huffman encoding also for binary files
(bitmaps, executables, etc.)

e common groups of bits are stored at the leaves

« Example of an encoding suitable for b/w bitmaps

0 1
(. @
o/ \1 0 1
ooo] () 111 (]
o/ \1 0 1
o10] [101] @
o/ \1 o/ \1

Strings and Pattern Matching 49

	Strings and Pattern Matching
	• Brute Force, Rabin-Karp, Knuth-Morris-Pratt
	String Searching
	• The previous slide is not a great example of what is meant by “String Searching.” Nor is it mea...
	• The object of string searching is to find the location of a specific text pattern within a larg...
	• As with most algorithms, the main considerations for string searching are speed and efficiency.
	• There are a number of string searching algorithms in existence today, but the two we shall revi...

	The Knuth-Morris-Pratt Algorithm
	• The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm ...
	• A failure function (f) is computed that indicates how much of the last comparison can be reused...
	• Specifically, f is defined to be the longest prefix of the pattern P[0,..,j] that is also a suf...
	- Note: not a suffix of P[0,..,j]

	• Example:
	- value of the KMP failure function:

	• This shows how much of the beginning of the string matches up to the portion immediately preced...
	- if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1

	Regular Expressions
	• notation for describing a set of strings, possibly of infinite size
	• e denotes the empty string
	• ab + c denotes the set {ab, c}
	• a* denotes the set {e, a, aa, aaa, ...}
	• Examples
	- (a+b)* all the strings from the alphabet {a,b}
	- b*(ab*a)*b* strings with an even number of a’s
	- (a+b)*sun(a+b)* strings containing the pattern “sun”
	- (a+b)(a+b)(a+b)a 4-letter strings ending in a

	The KMP Algorithm (contd.)
	• Time Complexity Analysis
	• define k = i - j
	• In every iteration through the while loop, one of three things happens.
	- 1) if T[i] = P[j], then i increases by 1, as does j k remains the same.
	- 2) if T[i] != P[j] and j > 0, then i does not change and k increases by at least 1, since k cha...
	- 3) if T[i] != P[j] and j = 0, then i increases by 1 and k increases by 1 since j remains the same.

	• Thus, each time through the loop, either i or k increases by at least 1, so the greatest possib...
	• This of course assumes that f has already been computed.
	• However, f is computed in much the same manner as KMPMatch so the time complexity argument is a...
	• Total Time Complexity: O(n + m)

	Finite State Automaton
	• “machine” for processing strings

	The KMP Algorithm (contd.)
	• the KMP string matching algorithm: Pseudo-Code
	Algorithm KMPMatch(T,P)
	Input: Strings T (text) with n characters and P (pattern) with m characters.
	Output: Starting index of the first substring of T matching P, or an indication that P is not a s...
	f ¨ KMPFailureFunction(P) {build failure function}
	i ¨ 0
	j ¨ 0
	while i < n do
	if P[j] = T[i] then
	if j = m - 1 then
	return i - m - 1 {a match}
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then {no match, but we have advanced}
	j ¨ f(j-1) {j indexes just after matching prefix in P}
	else
	i ¨ i + 1
	return “There is no substring of T matching P”

	The KMP Algorithm (contd.)
	• The KMP failure function: Pseudo-Code
	Algorithm KMPFailureFunction(P);
	Input: String P (pattern) with m characters
	Ouput: The faliure function f for P, which maps j to the length of the longest prefix of P that i...
	i ¨ 1
	j ¨ 0
	while i £ m-1 do
	if P[j] = T[j] then
	{we have matched j + 1 characters}
	f(i) ¨ j + 1
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then
	{j indexes just after a prefix of P that matches}
	j ¨ f(j-1)
	else
	{there is no match}
	f(i) ¨ 0
	i ¨ i + 1

	The KMP Algorithm (contd.)
	• A graphical representation of the KMP string searching algorithm

	Composition of FSA’s
	Brute Force
	• The Brute Force algorithm compares the pattern to the text, one character at a time, until unma...
	- Compared characters are italicized.
	- Correct matches are in boldface type.

	• The algorithm can be designed to stop on either the first occurrence of the pattern, or upon re...

	Brute Force Pseudo-Code
	• Here’s the pseudo-code
	do
	if (text letter == pattern letter)
	compare next letter of pattern to next
	letter of text
	else
	move pattern down text by one letter
	while (entire pattern found or end of text)

	Brute Force-Complexity
	• Given a pattern M characters in length, and a text N characters in length...
	• Worst case: compares pattern to each substring of text of length M. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 ...
	• Total numbe r of comparisons: M (N-M+1)
	• Worst case time complexity: O(MN)

	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern found: Finds pattern in first M positions of text. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAA 5 comparisons made
	• Total number of comparisons: M
	• Best case time complexity: O(M)

	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern not found: Always mismatch on first character. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 c...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 1 comparison made OOOOH
	• Total number of comparisons: N
	• Best case time complexity: O(N)

	Rabin-Karp
	• The Rabin-Karp string searching algorithm uses a hash function to speed up the search.

	Rabin-Karp
	• The Rabin-Karp string searching algorithm calculates a hash value for the pattern, and for each...
	• If the hash values are unequal, the algorithm will calculate the hash value for next M-characte...
	• If the hash values are equal, the algorithm will do a Brute Force comparison between the patter...
	• In this way, there is only one comparison per text subsequence, and Brute Force is only needed ...
	• Perhaps a figure will clarify some things...

	Rabin-Karp Example
	Hash value of “AAAAA” is 37
	Hash value of “AAAAH” is 100
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 37¹100 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AA...
	...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 6 comparisons made 100=100

	Rabin-Karp Pseudo-Code
	pattern is M characters long
	hash_p = hash value of pattern hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)

	Rabin-Karp
	• Com mon Rabin-Karp questions:
	“What is the hash function used to calculate valu es for character sequences?”
	“Isn’t it time consuming to hash e very one of the M-character sequences in the text body?”
	“Is this going to be on the final?”
	• To answer some of these questions, we’ll have to get mathematical.

	Rabin-Karp Math
	• Consider an M-character sequence as an M-digit number in base b, where b is the number of lette...
	x(i) = t[i]×bM-1 + t[i+1]×bM-2 +...+ t[i+M-1]
	• Furthermore, given x(i) we can compute x(i+1) for the next subsequence t[i+1 .. i+M] in constan...

	x(i+1) = t[i+1]×bM-1 + t[i+2]×bM-2 +...+ t[i+M]
	x(i+1) = x(i)×b Shift left one digit
	- t[i]×b M Subtract leftmost digit
	+ t[i+M] Add new rightmost digit
	• In this way, we never explicitly compute a new value. We simply adjust the existing value as we...

	Rabin-Karp Mods
	• If M is large, then the resulting value (~bM) will be enormous. For this reason, we hash the va...
	• The mod function (% in Java) is particularly useful in this case due to several of its inherent...
	- [(x mod q) + (y mod q)] mod q = (x+y) mod q
	- (x mod q) mod q = x mod q

	• For these reasons:
	h(i) = ((t[i]× bM-1 mod q) + (t[i+1]× bM-2 mod q) + ... + (t[i+M-1] mod q)) mod q
	h(i+1) = (h(i)× b mod q Shift left one digit -t[i]× bM mod q Subtract leftmost digit +t[i+M] mod...

	Rabin-Karp Pseudo-Code
	pattern is M characters long
	hash_p = hash value of pattern
	hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)

	Rabin-Karp Complexity
	• If a sufficiently large prime number is used for the hash function, the hashed values of two di...
	• If this is the case, searching takes O(N) time, where N is the number of characters in the larg...
	• It is always possible to construct a scenario with a worst case complexity of O(MN). This, howe...

	Tries
	• A trie is a tree-based date structure for storing strings in order to make pattern matching fas...
	• Tries can be used to perform prefix queries for information retrieval. Prefix queries search fo...
	• A trie supports the following operations on a set S of strings:
	insert(X): Insert the string X into S Input: String Ouput: None
	remove(X): Remove string X from S Input: String Output: None
	prefixes(X): Return all the strings in S that have a longest prefix of X Input: String Output: En...

	Compressed Tries
	• A compressed trie is like a standard trie but makes sure that each trie had a degree of at leas...
	• A critical node is a node v such that v is labeled with a string from S, v has at least 2 child...
	• To convert a standard trie to a compressed trie we replace an edge (v0, v1) each chain on nodes...
	- v0 and v1 are critical but v1 is critical for 0<i<k
	- each v1 has only one child

	• Each internal node in a compressed tire has at least two children and each external is associat...

	Prefix Queries on a Trie
	Algorithm prefixQuery(T, X):
	Input: Trie T for a set S of strings and a query string X
	Output: The node v of T such that the labeled nodes of the subtree of T rooted at v store the str...
	i¨0 {i is an index into the string X}
	repeat
	for each child w of v do
	let e be the e dge (v,w)
	Y¨string(e) {Y is the substring associated with e}
	l¨Y.length() {l=1 if T is a standard trie}
	Z¨X.substring(i, i+l-1) {Z holds the next l charac ters of X}
	if Z = Y then
	v¨w
	i¨i+1 {move to W, incrementing i past Z}
	break out of the for loop
	else if a proper prefix of Z matched a proper prefix of Y then
	v¨w
	break out ot the repeat loop
	until v is external or v¹ùw
	return v

	Insertion and Deletion
	• Insertion: We first perform a prefix query for string X. Let us examine the ways a prefix query...
	- The query terminates at node v. Let X1 be the prefix of X that matched in the trie up to node v...
	- The query terminates at an edge e=(v, w) because a prefix of X match prefix(v) and a proper pre...

	• Insertion is O(dn) when d is the size of the alphabet and n is the length of the string t insert.

	Lempel Ziv Encoding
	• Constructing the trie:
	- Let phrase 0 be the null string.
	- Scan through the text
	- If you come across a letter you haven’t seen before, add it to the top level of the trie.
	- If you come across a letter you’ve already seen, scan down the trie until you can’t match any m...
	- Insert the pair (nodeIndex, lastChar) into the compressed string.

	• Reconstructing the string:
	- Every time you see a ‘0’ in the compressed string add the next character in the compressed stri...
	- For each non-zero nodeIndex, put the substring corresponding to that node into the new string, ...

	Lempel Ziv Encoding (contd.)
	• A graphical example:

	Huffman Encoding Trie
	Huffman Encoding Trie (contd.)
	Final Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Construction Algorithm
	• with a Huffman encoding trie, the encoded text has minimal length
	Algorithm Huffman(X):
	Input: String X of length n
	Output: Encoding trie for X
	Compute the frequency f(c) of each character c of X.
	Initialize a priority queue Q. for each character c in X do
	Create a single-node tree T storing c
	Q.insertItem(f(c), T)
	while Q.size() > 1 do
	f1 ¨ Q.minKey()
	T1 ¨ Q.removeMinElement()
	f2 ¨ Q.minKey()
	T2 ¨ Q.removeMinElement()
	Create a new tree T with left subtree T1 and right subtree T2.
	Q.insertItem(f1 + f2)
	return tree Q.removeMinElement()

	• runing time for a text of length n with k distinct characters: O(n + k log k)

	Tries (cont.)
	• Let S be a set of strings from the alphabet S such that no string in S is a prefix to another s...
	- Each edge of T is labeled with a character from S
	- The ordering of edges out of an internal node is determined by the alphabet S
	- The path from the root of T to any node represents a prefix in S that is equal to the concanten...

	• For example, the standard trie over the alphabet S = {a, b} for the set {aabab, abaab, babbb, b...

	Tries (cont.)
	• An internal node can have 1 to d children when d is the size of the alphabet. Our example is es...
	• A path from the root of T to an internal node v at depth i corresponds to an i-character prefix...
	• We can implement a trie with an ordered tree by storing the character associated with an edge a...

	Compressed Tries (cont.)
	• An example:

	File Compression
	• text files are usually stored by representing each character with an 8-bit ASCII code (type man...
	• the ASCII encoding is an example of fixed-length encoding, where each character is represented ...
	• in order to reduce the space required to store a text file, we can exploit the fact that some c...
	• variable-length encoding uses binary codes of different lengths for different characters; thus,...
	• Example:
	- text: java
	- encoding: a = “0”, j = “11”, v = “10”
	- encoded text: 110100 (6 bits)

	• How to decode?
	- a = “0”, j = “01”, v = “00”
	- encoded text: 010000 (6 bits)
	- is this java, jvv, jaaaa ...

	Encoding Trie
	• to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, tha...
	- a = “0”, j = “11”, v = “10” satisfies the prefix rule
	- a = “0”, j = “01”, v= “00” does not satisfy the prefix rule (the code of a is a prefix of the c...

	• we use an encoding trie to define an encoding that satisfies the prefix rule
	- the characters stored at the external nodes
	- a left edge means 0
	- a right edge means 1

	Insertion and Deletion (cont.)
	Example of Decoding
	• trie:
	• encoded text: 01011011010000101001011011010
	• text:

	Insertion and Deletion (cont.)
	Trie this!
	Optimal Compression
	• An issue with encoding tries is to insure that the encoded text is as short as possible:

	Image Compression
	• we can use Huffman encoding also for binary files (bitmaps, executables, etc.)
	• common groups of bits are stored at the leaves
	• Example of an encoding suitable for b/w bitmaps

