
1Strings and Pattern Matching

STRINGS AND PATTERN
MATCHING

• Brute Force, Rabin-Karp, Knuth-Morris-Pratt

What’s up?

I’m looking for some string.

That’s quite a trick considering
that you have no eyes.

Oh yeah?  Have you seen your writing?
It looks like an EKG!
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String Searching
• The previous slide is not a great example of what is

meant by “String Searching.”  Nor is it meant to
ridicule people without eyes....

• The object ofstring searching is to find the location
of a specific text pattern within a larger body of text
(e.g., a sentence, a paragraph, a book, etc.).

• As with most algorithms, the main considerations
for string searching are speed and efficiency.

• There are a number of string searching algorithms in
existence today, but the two we shall review are
Brute Force andRabin-Karp.
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Brute Force
• TheBrute Force algorithm compares the pattern to

the text, one character at a time, until unmatching
characters are found:

- Compared characters are italicized.
- Correct matches are in boldface type.

• The algorithm can be designed to stop on either the
first occurrence of the pattern, or upon reaching the
end of the text.

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWOROADS DIVERGED IN A YELLOW WOOD

ROADS
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Brute Force Pseudo-Code
• Here’s the pseudo-code

do
if  (text letter == pattern letter)

compare next letter of pattern to next
letter of text

else
move pattern down text by one letter

while (entire pattern found or end of text)

t etththeheehthtehtheththehehtht
t he
t etththeheehthtehtheththehehtht

t he
te t t htheheehthtehtheththehehtht

t he
tet th t heheehthtehtheththehehtht

th e
tett htheheehthtehtheththehehtht

t he
tetth the heehthtehtheththehehtht

the
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Brute Force-Complexity
• Given a pattern M characters in length, and a text N

characters in length...

• Worst case:  compares pattern to each substring of
text of length M.  For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

....
N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH

5 comparisons made AAAAH

• Total number of comparisons: M (N-M+1)

• Worst case time complexity:Ο(MN)
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Brute Force-Complexity(cont.)
• Given a pattern M characters in length, and a text N

characters in length...

• Best case if pattern found: Finds pattern in first M
positions of text.  For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAA 5 comparisons made

• Total number of comparisons: M

• Best case time complexity:Ο(M)
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Brute Force-Complexity(cont.)
• Given a pattern M characters in length, and a text N

characters in length...

• Best case if pattern not found: Always mismatch
on first character.  For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
1 comparison made OOOOH

• Total number of comparisons: N

• Best case time complexity:Ο(N)
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Rabin-Karp
• The Rabin-Karp string searching algorithm uses a

hash function to speed up the search.

Rabin & Karp’s

Fresh from Syria

Heavenly
Homemade
  Hashish
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Rabin-Karp
• The Rabin-Karp string searching algorithm

calculates ahash valuefor the pattern, and for each
M-character subsequence of text to be compared.

• If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

• If the hash values are equal, the algorithm will do a
Brute Force comparisonbetween the pattern and the
M-character sequence.

• In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when
hash values match.

• Perhaps a figure will clarify some things...
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Rabin-Karp Example
Hash value of “AAAAA” is 37

Hash value of “AAAAH” is 100

1) AAAAA AAAAAAAAAAAAAAAAAAAAAAH
AAAAH
37≠100 1 comparison made

2) AAAAAA AAAAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparison made
3) AAAAAAA AAAAAAAAAAAAAAAAAAAAH

AAAAH
37≠100 1 comparison made

4) AAAAAAAA AAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparison made

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
AAAAH

6 comparisons made  100=100
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Rabin-Karp Pseudo-Code
pattern is M characters long

hash_p=hash value of pattern
hash_t=hash value of first M letters in

body of text

do
if  (hash_p == hash_t)

brute force comparison of pattern
and selected section of text

hash_t = hash value of next section of
          text, one character over

while (end of textor
          brute force comparison == true)
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Rabin-Karp
• Common Rabin-Karp questions:

“What is the hash function used to calculate
values for character sequences?”

“Isn’t it time consuming to hash
every one of the M-character
sequences in the text body?”

“Is this going to be on the final?”

• To answer some of these questions, we’ll have to get
mathematical.
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Rabin-Karp Math
• Consider an M-character sequence as an M-digit

number inbaseb, whereb is the number of letters in
the alphabet.  The text subsequence t[i .. i+M-1] is
mapped to the number

x(i) = t[i] ⋅bM-1 + t[i+1] ⋅bM-2 +...+ t[i+M-1]

• Furthermore, given x(i) we can compute x(i+1) for
the next subsequence t[i+1 .. i+M] in constant time,
as follows:

x(i+1) = t[i+1] ⋅bM-1 + t[i+2] ⋅bM-2 +...+ t[i+M]

x(i+1) = x(i)⋅b Shift left one digit

- t[i] ⋅b M  Subtract leftmost digit

+ t[i+M]  Add new rightmost digit

• In this way, we never explicitly compute a new
value.  We simply adjust the existing value as we
move over one character.
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Rabin-Karp Mods
• If M is large, then the resulting value (~bM) will be

enormous.  For this reason, we hash the value by
taking itmod aprime numberq.

• Themod function (% in Java) is particularly useful
in this case due to several of its inherent properties:
- [(x mod q) + (y mod q)] mod q = (x+y) mod q
- (x mod q) mod q = x mod q

• For these reasons:

h(i) = ((t[i] ⋅ bM-1 modq) +
(t[i+1] ⋅ bM-2 modq) + ... +
(t[i+M-1] mod q)) modq

h(i+1) =( h(i)⋅ b  modq
Shift left one digit

-t[i] ⋅ bM modq
Subtract leftmost digit

+t[i+M] mod q )
Add new rightmost digit

modq
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Rabin-Karp Pseudo-Code
pattern is M characters long

hash_p=hash value of pattern

hash_t=hash value of first M letters in
 body of text

do
if  (hash_p== hash_t)

brute force comparison of pattern
and selected section of text

hash_t = hash value of next section of
          text, one character over

while (end of textor
          brute force comparison ==true)
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Rabin-Karp Complexity
• If a sufficiently large prime number is used for the

hash function, the hashed values of two different
patterns will usually be distinct.

• If this is the case, searching takes O(N) time, where
N is the number of characters in the larger body of
text.

• It is always possible to construct a scenario with a
worst case complexity ofO(MN). This, however, is
likely to happen only if the prime number used for
hashing is small.
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The Knuth-Morris-Pratt
Algorithm

• TheKnuth-Morris-Pratt (KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

• A failure function(f) is computed that indicates how
much of the last comparison can be reused if it fais.

• Specifically, f is defined to be the longest prefix of
the pattern P[0,..,j] that is also a suffix of P[1,..,j]
- Note:not a suffix of P[0,..,j]

• Example:
- value of the KMP failure function:

• This shows how much of the beginning of the string
matches up to the portion immediately preceding a
failed comparison.
- if the comparison fails at (4), we know the a,b in

positions 2,3 is identical to positions 0,1

j 0 1 2 3 4 5

P[j] a b a b a c

f(j) 0 0 1 2 3 0
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The KMP Algorithm (contd.)
• Time Complexity Analysis

• definek = i - j

• In every iteration through the while loop, one of
three things happens.
- 1) if T[i] = P[j], theni increases by 1, as doesj

k remains the same.
- 2) if T[i] != P[j] andj > 0, theni does not change

andk increases by at least 1, sincek changes
from i - j to i - f(j-1)

- 3) if T[i] != P[j] andj = 0, theni increases by 1 and
k increases by 1 sincej remains the same.

• Thus, each time through the loop, eitheri or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes thatf has already been
computed.

• However,f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction isO(m)

• Total Time Complexity:O(n + m)
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The KMP Algorithm (contd.)
• the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)
Input:StringsT (text) withn characters andP

(pattern) withm characters.
Output:Starting index of the first substring ofT

matchingP, or an indication thatP is not a
substring ofT.

f ← KMPFailureFunction(P) {build failure function}
i ← 0
j ← 0
while i < n do

if P[j] = T[i] then
if j = m - 1 then

returni - m - 1 {a match}
i ← i + 1
j ← j + 1

else if j > 0 then{no match, but we have advanced}
j ← f(j-1) {j indexes just after matching prefix in P}

else
i ← i + 1

return “There is no substring ofT matchingP”
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The KMP Algorithm (contd.)
• The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input:StringP (pattern) withm characters
Ouput:The faliure functionf for P, which mapsj to

the length of the longest prefix ofP that is a suffix
of P[1,..,j]

i ← 1
j ← 0
while i ≤ m-1 do

if P[j] = T[j] then
{we have matchedj + 1 characters}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else ifj > 0 then
{ j indexes just after a prefix ofP that matches}
j ← f(j-1)

else
{there is no match}
f(i) ← 0
i ← i + 1
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The KMP Algorithm (contd.)
• A graphical representation of the KMP string

searching algorithm

baaa b c

aaaaaaaa bbbb cccc aa

1 2 3 4 5 6

7

8 9 10 11 12

13

14 15 16 17 18

baaa b c

baaa b c

baaa b c

baaa b c
19

no comparison
needed here
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Regular Expressions
• notation for describing a set of strings, possibly of

infinite size

• ε denotes the empty string

• ab + c denotes the set {ab, c}

• a* denotes the set {ε, a, aa, aaa, ...}

• Examples
- (a+b)* all the strings from the alphabet {a,b}
- b*(ab*a)*b* strings with an even number of a’s
- (a+b)*sun(a+b)* strings containing the pattern

“sun”
- (a+b)(a+b)(a+b)a 4-letter strings ending in a
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Finite State Automaton
• “machine” for processing strings

0 1

bb

a

a

321
aba

0

6

4
b

b

a

a
2 3

5

1
εε

ε

ε

ε

ε
a,b
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Composition of FSA’s
ε

a

α
ε

β

ε

εε

α βε

α

ε

ε
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Tries
• A trie is a tree-based date structure for storing

strings in order to make pattern matching faster.

• Tries can be used to perform prefix queries for
information retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

• A trie supports the following operations on a set S of
strings:

insert(X): Insert the string X into S
Input : StringOuput: None

remove(X): Remove string X from S
Input : StringOutput : None

prefixes(X): Return all the strings in S that have a
longest prefix of X
Input : StringOutput : Enumeration of
strings
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Tries (cont.)
• Let S be a set of strings from the alphabetΣ such

that no string inS is a prefix to another string. A
standard trie for S is an ordered treeT that:
- Each edge ofT is labeled with a character from Σ
- The ordering of edges out of an internal node is

determined by the alphabetΣ
- The path from the root ofT to any node represents

a prefix in Σ that is equal to the concantenation of
the characters encountered while traversing the
path.

• For example, the standard trie over the alphabetΣ =
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5
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Tries (cont.)
• An internal node can have 1 tod children when d is

the size of the alphabet. Our example is essentially a
binary tree.

• A path from the root ofT to an internal nodev at
depth i corresponds to ani-character prefix of a
string ofS.

• We can implement a trie with an ordered tree by
storing the character associated with an edge at the
child node below it.
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Compressed Tries
• A compressed trie is like a standard trie but makes

sure that each trie had a degree of at least 2. Single
child nodes are compressed into an single edge.

• A critical node is a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

• To convert a standard trie to a compressed trie we
replace an edge (v0, v1) each chain on nodes (v0,
v1...vk) for k 2 such that
- v0 and v1 are critical but v1 is critical for 0<i<k
- each v1 has only one child

• Each internal node in a compressed tire has at least
two children and each external is associated with a
string. The compression reduces the total space for
the trie from O(m) wherem is the sum of the the
lengths of strings inSto O(n) wheren is the number
of strings inS.
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Compressed Tries (cont.)
• An example:

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

abab baab babbb

aaa bab1 2 3

4 5
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Prefix Queries on a Trie

Algorithm prefixQuery(T, X):
Input : Trie T for a set S of strings and a query stringX
Output : The nodevof Tsuch that the labeled nodes of

the subtree ofT rooted atv store the strings
of S with a longest prefix in common withX

v←T.root()
i←0 { i is an index into the stringX}
repeat

for  each childw of v do
let e be theedge (v,w)
Y←string(e) { Y is the substring associated withe}
l←Y.length()  {l=1 if T is a standard trie}
Z¨X.substring(i, i+l-1) {Z holds the nextl charac

ters ofX}
if  Z = Y then

v←w
i←i+1{move to W, incrementingi past Z}
break out of thefor  loop

else if a proper prefix of Z matched a proper prefix
of Y then
v←w
break out ot therepeat loop

until v is externalor v≠w
return v
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Insertion and Deletion
• Insertion: We first perform a prefix query for string

X. Let us examine the ways a prefix query may end
in terms of insertion.
- The query terminates at node v. Let X1 be the

prefix of X that matched in the trie up to node v
and X2 be the rest of X. If X2 is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) because
a prefix of X match prefix(v) and a proper prefix of
string Y associated with e. Let Y1 be the part of Y
that X mathed to and Y2 the rest of Y. Likewise for
X1 and X2. Then X=X1+X2 = prefix(v) +Y1+X2.
We create a new node u and split the edges(v, u)
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external and
label it X.

• Insertion is O(dn) when d is the size of the alphabet
and n is the length of the string t insert.
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Insertion and Deletion (cont.)
a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

a b

a b

a

b

b b

b b

b

b b

a

a

aa

a a

a

b

1 2 3 4 5

search
stops
here

b

b

6

insert(bbaabb)
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Insertion and Deletion (cont.)

a b

abab baab babbb

aaa bab1 2 3

4 5

a b

abab baab babbb

aa bab1 2 3

5

search stops here

bba

insert(bbaabb)
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Lempel Ziv Encoding
• Constructing the trie:

- Let phrase 0 be the null string.
- Scan through the text
- If you come across a letter you haven’t seen

before, add it to the top level of the trie.
- If you come across a letter you’ve already seen,

scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodeIndex, lastChar) into the
compressed string.

• Reconstructing the string:
- Every time you see a ‘0’ in the compressed string

add the next character in the compressed string
directly to the new string.

- For each non-zero nodeIndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compressed
string.
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Lempel Ziv Encoding (contd.)
• A graphical example:

how now brown cow in town.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(nil)

0h0o0w0_0n2w4b0r 6n4c6_0i 5_0t 9.Compressed text:

Uncompressed text:
phrases:

h o w _ n r i t

0

1 2 3 4 5

6

8 12 14

w b

n

c

.

7

9

10 13

_

_

11

Trie:

15
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File Compression
• text files are usually stored by representing each

character with an 8-bitASCII code (typeman ascii in
a Unix shell to see theASCII encoding)

• theASCII encoding is an example offixed-length
encoding, where each character is represented with
the same number of bits

• in order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others

• variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used characters,
and more bits to rarely used characters.

• Example:
- text: java

- encoding:a = “0”, j = “11”, v = “10”

- encoded text:110100 (6 bits)

• How to decode?
- a = “0”, j = “01”, v = “00”
- encoded text:010000 (6 bits)
- is this java, jvv, jaaaa ...
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Encoding Trie
• to prevent ambiguities in decoding, we require that

the encoding satisfies theprefix rule, that is, no code
is a prefix of another code
- a = “0”, j = “11”, v = “10” satisfies the prefix rule
- a = “0”, j = “01”, v= “00” doesnot satisfy the prefix

rule (the code ofa is a prefix of the codes ofj andv)

• we use anencoding trie to define an encoding that
satisfies the prefix rule
- the characters stored at the external nodes
- a left edge means 0
- a right edge means 1

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A
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Example of Decoding
• trie:

• encoded text:
01011011010000101001011011010

• text:

A = 010

B = 11

C = 00

D = 10

R = 011

D B
C

R

0 1

0

00 1

1

1

A

A    B   R     A  C     A   D   A    B    R    A

See?  Decodes like magic...
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Trie this!

E NKCS BTW

RO

0

0

0000

0

0

0

1

1111

1

11

1

1000011111001001100011101111000101010011010100
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Optimal Compression
• An issue with encoding tries is to insure that the

encoded text is as short as possible:

D BC

R

0 1

0

00 1

1

1

ABRACADABRA
01011011010000101001011011010

29 bits

ABRACADABRA
001011000100001100101100

24 bits

A

B RA

D

0 1

0

00 1

1

1

C
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Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

2 2 1 1

24

2 2 1 1

24

5 6

frequency

character

ABRACADABRA

A B R

C D

B R C D

A

A

B R C D

A
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Huffman Encoding Trie (contd.)

B R D

A

0

1

0 1

0

0

11

C

5

11

4 2

6

2 2 1 1

2 2 1 1

24

5 6
A

B R C D
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Final Huffman Encoding Trie

B R D

A

0

1

0 1

0

0

11

C

A B R A   C  A   D A    B     R A
0 100 101 0 110 0 111 0 100 101 0

23 bits

5

11

4 2

6

2 2 1 1
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Another Huffman Encoding Trie

1 1

C D

5 2 2

B R

5 2 2

1 1

2

5

frequency

character
ABRACADABRA

A B R

C D

A

A

1 1

2

C D

2
R

4
2
B
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Another Huffman Encoding Trie

5

A

1 1

2

C D

2
R

4
2
B

1 1

2

C D

2
R

42
B

65

A
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Another Huffman Encoding Trie

11

5

A

1 1

2

C D

2
R

42
B

65

A

1 1

2

C D

2
R

42
B

6
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Another Huffman Encoding Trie

11

1 1

2

C D

2
R

42
B

65

A

0 1

1

1

1

0

0

0

A B R A   C A   D A B R A
0 10 110 0 1100 0 1111 0 10 110 0

23 bits
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Construction Algorithm
• with a Huffman encoding trie, the encoded text has

minimal length

Algorithm Huffman(X):
Input : StringX of lengthn
Output : Encoding trie forX

Compute thefrequencyf(c) of each characterc of X.
Initialize apriority queueQ.

for  each characterc in X do
Create a single-node treeT storingc
Q.insertItem(f(c), T)

while Q.size() > 1do
f1 ← Q.minKey()
T1 ← Q.removeMinElement()
f2 ← Q.minKey()
T2 ← Q.removeMinElement()
Create a new treeT with left subtreeT1 and right

subtreeT2.
Q.insertItem(f1 + f2)

return treeQ.removeMinElement()

• runing time for a text of length n with k distinct
characters: O(n + k log k)
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Image Compression
• we can use Huffman encoding also for binary files

(bitmaps, executables, etc.)

• common groups of bits are stored at the leaves

• Example of an encoding suitable for b/w bitmaps

000

0

0

1

11

1

010 101

111

0 1

001 100

0

0 1

011 110

0

0 1
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	• Examples
	- (a+b)* all the strings from the alphabet {a,b}
	- b*(ab*a)*b* strings with an even number of a’s
	- (a+b)*sun(a+b)* strings containing the pattern “sun”
	- (a+b)(a+b)(a+b)a 4-letter strings ending in a


	The KMP Algorithm (contd.)
	• Time Complexity Analysis
	• define k = i - j
	• In every iteration through the while loop, one of three things happens.
	- 1) if T[i] = P[j], then i increases by 1, as does j k remains the same.
	- 2) if T[i] != P[j] and j > 0, then i does not change and k increases by at least 1, since k cha...
	- 3) if T[i] != P[j] and j = 0, then i increases by 1 and k increases by 1 since j remains the same.

	• Thus, each time through the loop, either i or k increases by at least 1, so the greatest possib...
	• This of course assumes that f has already been computed.
	• However, f is computed in much the same manner as KMPMatch so the time complexity argument is a...
	• Total Time Complexity: O(n + m)

	Finite State Automaton
	• “machine” for processing strings

	The KMP Algorithm (contd.)
	• the KMP string matching algorithm: Pseudo-Code
	Algorithm KMPMatch(T,P)
	Input: Strings T (text) with n characters and P (pattern) with m characters.
	Output: Starting index of the first substring of T matching P, or an indication that P is not a s...
	f ¨ KMPFailureFunction(P) {build failure function}
	i ¨ 0
	j ¨ 0
	while i < n do
	if P[j] = T[i] then
	if j = m - 1 then
	return i - m - 1 {a match}
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then {no match, but we have advanced}
	j ¨ f(j-1) {j indexes just after matching prefix in P}
	else
	i ¨ i + 1
	return “There is no substring of T matching P”


	The KMP Algorithm (contd.)
	• The KMP failure function: Pseudo-Code
	Algorithm KMPFailureFunction(P);
	Input: String P (pattern) with m characters
	Ouput: The faliure function f for P, which maps j to the length of the longest prefix of P that i...
	i ¨ 1
	j ¨ 0
	while i £ m-1 do
	if P[j] = T[j] then
	{we have matched j + 1 characters}
	f(i) ¨ j + 1
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then
	{j indexes just after a prefix of P that matches}
	j ¨ f(j-1)
	else
	{there is no match}
	f(i) ¨ 0
	i ¨ i + 1


	The KMP Algorithm (contd.)
	• A graphical representation of the KMP string searching algorithm

	Composition of FSA’s
	Brute Force
	• The Brute Force algorithm compares the pattern to the text, one character at a time, until unma...
	- Compared characters are italicized.
	- Correct matches are in boldface type.

	• The algorithm can be designed to stop on either the first occurrence of the pattern, or upon re...

	Brute Force Pseudo-Code
	• Here’s the pseudo-code
	do
	if (text letter == pattern letter)
	compare next letter of pattern to next
	letter of text
	else
	move pattern down text by one letter
	while (entire pattern found or end of text)


	Brute Force-Complexity
	• Given a pattern M characters in length, and a text N characters in length...
	• Worst case: compares pattern to each substring of text of length M. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 ...
	• Total numbe r of comparisons: M (N-M+1)
	• Worst case time complexity: O(MN)


	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern found: Finds pattern in first M positions of text. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAA 5 comparisons made
	• Total number of comparisons: M
	• Best case time complexity: O(M)


	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern not found: Always mismatch on first character. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 c...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 1 comparison made OOOOH
	• Total number of comparisons: N
	• Best case time complexity: O(N)


	Rabin-Karp
	• The Rabin-Karp string searching algorithm uses a hash function to speed up the search.

	Rabin-Karp
	• The Rabin-Karp string searching algorithm calculates a hash value for the pattern, and for each...
	• If the hash values are unequal, the algorithm will calculate the hash value for next M-characte...
	• If the hash values are equal, the algorithm will do a Brute Force comparison between the patter...
	• In this way, there is only one comparison per text subsequence, and Brute Force is only needed ...
	• Perhaps a figure will clarify some things...

	Rabin-Karp Example
	Hash value of “AAAAA” is 37
	Hash value of “AAAAH” is 100
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 37¹100 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AA...
	...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 6 comparisons made 100=100

	Rabin-Karp Pseudo-Code
	pattern is M characters long
	hash_p = hash value of pattern hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)


	Rabin-Karp
	• Com mon Rabin-Karp questions:
	“What is the hash function used to calculate valu es for character sequences?”
	“Isn’t it time consuming to hash e very one of the M-character sequences in the text body?”
	“Is this going to be on the final?”
	• To answer some of these questions, we’ll have to get mathematical.


	Rabin-Karp Math
	• Consider an M-character sequence as an M-digit number in base b, where b is the number of lette...
	x(i) = t[i]×bM-1 + t[i+1]×bM-2 +...+ t[i+M-1]
	• Furthermore, given x(i) we can compute x(i+1) for the next subsequence t[i+1 .. i+M] in constan...

	x(i+1) = t[i+1]×bM-1 + t[i+2]×bM-2 +...+ t[i+M]
	x(i+1) = x(i)×b Shift left one digit
	- t[i]×b M Subtract leftmost digit
	+ t[i+M] Add new rightmost digit
	• In this way, we never explicitly compute a new value. We simply adjust the existing value as we...


	Rabin-Karp Mods
	• If M is large, then the resulting value (~bM) will be enormous. For this reason, we hash the va...
	• The mod function (% in Java) is particularly useful in this case due to several of its inherent...
	- [(x mod q) + (y mod q)] mod q = (x+y) mod q
	- (x mod q) mod q = x mod q

	• For these reasons:
	h(i) = ((t[i]× bM-1 mod q) + (t[i+1]× bM-2 mod q) + ... + (t[i+M-1] mod q)) mod q
	h(i+1) = ( h(i)× b mod q Shift left one digit -t[i]× bM mod q Subtract leftmost digit +t[i+M] mod...

	Rabin-Karp Pseudo-Code
	pattern is M characters long
	hash_p = hash value of pattern
	hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)


	Rabin-Karp Complexity
	• If a sufficiently large prime number is used for the hash function, the hashed values of two di...
	• If this is the case, searching takes O(N) time, where N is the number of characters in the larg...
	• It is always possible to construct a scenario with a worst case complexity of O(MN). This, howe...

	Tries
	• A trie is a tree-based date structure for storing strings in order to make pattern matching fas...
	• Tries can be used to perform prefix queries for information retrieval. Prefix queries search fo...
	• A trie supports the following operations on a set S of strings:
	insert(X): Insert the string X into S Input: String Ouput: None
	remove(X): Remove string X from S Input: String Output: None
	prefixes(X): Return all the strings in S that have a longest prefix of X Input: String Output: En...

	Compressed Tries
	• A compressed trie is like a standard trie but makes sure that each trie had a degree of at leas...
	• A critical node is a node v such that v is labeled with a string from S, v has at least 2 child...
	• To convert a standard trie to a compressed trie we replace an edge (v0, v1) each chain on nodes...
	- v0 and v1 are critical but v1 is critical for 0<i<k
	- each v1 has only one child

	• Each internal node in a compressed tire has at least two children and each external is associat...

	Prefix Queries on a Trie
	Algorithm prefixQuery(T, X):
	Input: Trie T for a set S of strings and a query string X
	Output: The node v of T such that the labeled nodes of the subtree of T rooted at v store the str...
	i¨0 {i is an index into the string X}
	repeat
	for each child w of v do
	let e be the e dge (v,w)
	Y¨string(e) {Y is the substring associated with e}
	l¨Y.length() {l=1 if T is a standard trie}
	Z¨X.substring(i, i+l-1) {Z holds the next l charac ters of X}
	if Z = Y then
	v¨w
	i¨i+1 {move to W, incrementing i past Z}
	break out of the for loop
	else if a proper prefix of Z matched a proper prefix of Y then
	v¨w
	break out ot the repeat loop
	until v is external or v¹ùw
	return v

	Insertion and Deletion
	• Insertion: We first perform a prefix query for string X. Let us examine the ways a prefix query...
	- The query terminates at node v. Let X1 be the prefix of X that matched in the trie up to node v...
	- The query terminates at an edge e=(v, w) because a prefix of X match prefix(v) and a proper pre...

	• Insertion is O(dn) when d is the size of the alphabet and n is the length of the string t insert.

	Lempel Ziv Encoding
	• Constructing the trie:
	- Let phrase 0 be the null string.
	- Scan through the text
	- If you come across a letter you haven’t seen before, add it to the top level of the trie.
	- If you come across a letter you’ve already seen, scan down the trie until you can’t match any m...
	- Insert the pair (nodeIndex, lastChar) into the compressed string.

	• Reconstructing the string:
	- Every time you see a ‘0’ in the compressed string add the next character in the compressed stri...
	- For each non-zero nodeIndex, put the substring corresponding to that node into the new string, ...


	Lempel Ziv Encoding (contd.)
	• A graphical example:

	Huffman Encoding Trie
	Huffman Encoding Trie (contd.)
	Final Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Construction Algorithm
	• with a Huffman encoding trie, the encoded text has minimal length
	Algorithm Huffman(X):
	Input: String X of length n
	Output: Encoding trie for X
	Compute the frequency f(c) of each character c of X.
	Initialize a priority queue Q. for each character c in X do
	Create a single-node tree T storing c
	Q.insertItem(f(c), T)
	while Q.size() > 1 do
	f1 ¨ Q.minKey()
	T1 ¨ Q.removeMinElement()
	f2 ¨ Q.minKey()
	T2 ¨ Q.removeMinElement()
	Create a new tree T with left subtree T1 and right subtree T2.
	Q.insertItem(f1 + f2)
	return tree Q.removeMinElement()

	• runing time for a text of length n with k distinct characters: O(n + k log k)

	Tries (cont.)
	• Let S be a set of strings from the alphabet S such that no string in S is a prefix to another s...
	- Each edge of T is labeled with a character from S
	- The ordering of edges out of an internal node is determined by the alphabet S
	- The path from the root of T to any node represents a prefix in S that is equal to the concanten...

	• For example, the standard trie over the alphabet S = {a, b} for the set {aabab, abaab, babbb, b...

	Tries (cont.)
	• An internal node can have 1 to d children when d is the size of the alphabet. Our example is es...
	• A path from the root of T to an internal node v at depth i corresponds to an i-character prefix...
	• We can implement a trie with an ordered tree by storing the character associated with an edge a...

	Compressed Tries (cont.)
	• An example:

	File Compression
	• text files are usually stored by representing each character with an 8-bit ASCII code (type man...
	• the ASCII encoding is an example of fixed-length encoding, where each character is represented ...
	• in order to reduce the space required to store a text file, we can exploit the fact that some c...
	• variable-length encoding uses binary codes of different lengths for different characters; thus,...
	• Example:
	- text: java
	- encoding: a = “0”, j = “11”, v = “10”
	- encoded text: 110100 (6 bits)

	• How to decode?
	- a = “0”, j = “01”, v = “00”
	- encoded text: 010000 (6 bits)
	- is this java, jvv, jaaaa ...


	Encoding Trie
	• to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, tha...
	- a = “0”, j = “11”, v = “10” satisfies the prefix rule
	- a = “0”, j = “01”, v= “00” does not satisfy the prefix rule (the code of a is a prefix of the c...

	• we use an encoding trie to define an encoding that satisfies the prefix rule
	- the characters stored at the external nodes
	- a left edge means 0
	- a right edge means 1


	Insertion and Deletion (cont.)
	Example of Decoding
	• trie:
	• encoded text: 01011011010000101001011011010
	• text:

	Insertion and Deletion (cont.)
	Trie this!
	Optimal Compression
	• An issue with encoding tries is to insure that the encoded text is as short as possible:

	Image Compression
	• we can use Huffman encoding also for binary files (bitmaps, executables, etc.)
	• common groups of bits are stored at the leaves
	• Example of an encoding suitable for b/w bitmaps



