STRINGS AND PATTERN
M ATCHING

» Brute Force, Rabin-Karp, Knuth-Morris-Pratt

What's up”
I’'m looking for some string.
That’s quite a trick considerin
that you have no eyes.

Oh yeah? Have you seen your writing?
It looks like an EKG!
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String Searching

e The previous slide is not a great example of whatjis
meant by “String Searching.” Nor is it meant to
ridicule people without eyes....

e The object oktring searchings to find the location
of a specific text pattern within a larger body of teit
(e.g., a sentence, a paragraph, a book, etc.).

« As with most algorithms, the main considerations
for string searching are speed and efficiency.

* There are a number of string searching algorithms}ir
existence today, but the two we shall review are
Brute ForceandRabin-Karp
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Brute Force

 TheBrute Forcealgorithm compares the pattern to
the text, one character at a time, until unmatching
characters are found:

WD ROADS DIVERGED IN A YELLOW WOOD

ROADS
TVO ROADS DIVERGED IN A YELLOW WOOD

FROADS
TWOROADS DIVERGED IN A YELLOW WOOQOD

ROADS
TWO ROADS DIVERGED IN A YELLOW WOQOD

ROADS
TWO ROAD®DIVERGED IN A YELLOW WOOQOD

ROADS

- Compared characters are italicized.
- Correct matches are in boldface type.

* The algorithm can be designed to stop on either the
first occurrence of the pattern, or upon reaching the
end of the text.
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Brute Force Pseudo-Code

e Here’s the pseudo-code
do
If (text letter == pattern letter)
compare next letter of pattern to next
letter of text
else
move pattern down text by one letter
while (entire pattern found or end of text)

t etththeheehthtehtheththehehtht

[ he
t etththeheehthtehtheththehehtht

[ he
te t t htheheehthtehtheththehehtht

[ he
tet th t heheehthtehtheththehehtht

th e
tett htheheehthtehtheththehehtht

f he

tetth eehthtehtheththehehtht
he
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Brute Force-Complexity

e Given a pattern M characters in length, and a text

characters in length...

e \Worst case compares pattern to each substring ¢
text of length M. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made
2) AAAALAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAA1 5 comparisons made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

N) AAAAAAAAAAAAAAAAAAAAAAA  AAAAH
5 comparisons made  AAAAH

e Total number of comparisons: M (N-M+1)

* WWorst case time complexitf?(MN)
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Brute Force-Complexity(cont.)

e Given a pattern M characters in length, and a text
characters in length...

» Best case If pattern foundFinds pattern in first M
positions of text. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAA 5 comparisons made

e Total number of comparisons: M

» Best case time complexitia(M)
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Brute Force-Complexity(cont.)

e Given a pattern M characters in length, and a text
characters in length...

» Best case If pattern not found Always mismatch
on first character. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made
2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made
3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made
4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made
5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

N) AAAAAAAAAAAAAAAAAAAAAAA  AAAAH
1 comparison made OOOOH

e Total number of comparisons: N

» Best case time complexit@(N)
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Rabin-Karp

e The Rabin-Karp string searching algorithm uses ¢
hash function to speed up the search.

-

Rabin & Karp’s

Heavenly

Homemad
Hashish

Fresh from Syria
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Rabin-Karp

 The Rabin-Karp string searching algorithm
calculates dnash valuefor the pattern, and for each
M-character subsequence of text to be compared.

e If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

* If the hash values are equal, the algorithm will do|a
Brute Force comparisdometween the pattern and the
M-character sequence.

* In this way, there is only one comparison per text
subsequence, and Brute Force is only needed whe
hash values match.

» Perhaps a figure will clarify some things...
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Rabin-Karp Example

Hash value of “AAAAA” is 37
Hash value of “AAAAH” is 100

1) AAAAA A AAAAAAAAAAAAAAAAAAAAAH
AAAAH
37#£100 1 comparison made
2) AAAAAA AAAAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparison made
3) AAAAAAA AAAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparison made
4) AAAAAAAA AAAAAAAAAAAAAAAAAAAH
AAAAH
372100 1 comparison made

N) AAAAAAAAAAAAAAAAAAAAAAA  AAAAH
AAAAH
6 comparisons made 100=100
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Rabin-Karp Pseudo-Code

pattern is M characters long

~hash value of pattern
hash *hash value of first M letters In
body of text

do
If ( == hash }
brute force comparison of pattern
and selected section of text
hash t= hash value of next section of
text, one character over
while (end of texor
brute force comparison == true)
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Rabin-Karp
« Common Rabin-Karp questions:

“What is the hash function used to calculate
values for character sequences?”

“Isn’t it time consuming to hash
every one of the M-character
sequences in the text body?”

“Is this going to be on the final?”

e To answer some of these questions, we’ll have to ¢
mathematical.
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Rabin-Karp Math

e Consider an M-character sequence as an M-digit
number inbaseb, whereb is the number of letters in
the alphabet. The text subsequence t[i .. I+M-1] is
mapped to the number

x(i) = t[i] BM + t[i+1] BM2 +.. +[i+M-1]

e Furthermore, given x(i) we can compute Xx(i+1) fo
the next subsequence t[i+1 .. i+M] in constant time,
as follows:

x(i+1) = t[i+1] ML + t[i+2] BM-2 +.. +{[i+M]

—_

x(i+1) =x(i) B Shift left one digit
-t[ijmM Subtract leftmost digit
+ t[i+M] Add new rightmost digit

* In this way, we never explicitly compute a new
value. We simply adjust the existing value as we
move over one character.
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Rabin-Karp Mods

 If M is large, then the resulting value (~bM) will be:
enormous. For this reason, we hash the value by

taking itmod aprime numbenq,.

 Themod function (% in Java) Is particularly useful

In this case due to several of its inherent properti¢

- [(x mod q) + (y mod g)] mod g = (x+y) mod g
- (x mod g) mod g =x mod g

e For these reasons:

(i) = ((tf] B! modq) +
(t[i+1] (™2 modq) + ... +
(t[i+M-1] mod q)) modq

h(i+1) =(h()) (b modq
Shift left one digit
-t[i] (o™ modg
Subtract leftmost digit
+t[I+M] mod q)
Add new rightmost digit
modq

| ™4
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Rabin-Karp Pseudo-Code

pattern is M characters long
=hash value of pattern

hash t=hash value of first M letters in
body of text

do
If ( == hash }
brute force comparison of pattern
and selected section of text
hash t= hash value of next section of
text, one character over
while (end of texor
brute force comparison #ae)
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Rabin-Karp Complexity

e If a sufficiently large prime number is used for the
hash functionthe hashed values of two different
patterns will usually be distinct.

o If this is the case, searching take@\) time, where
N Is the number of characters in the larger body of
text.

e It Is always possible to construct a scenario with &
worst case complexity dd(MN). This, however, is
likely to happen only if the prime number used for
hashing is small.
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The Knuth-Morris-Pratt
Algorithm

e The Knuth-Morris-Prat{KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

o A failure function(f) is computed that indicates ho
much of the last comparison can be reused if it fais

« Specifically,f is defined to be the longest prefix of
the pattern PJO,..,j] that is also a suffix of P[1,..,]]

- Note:not a suffix of PJO,..,|]

e Example:
- value of the KMP failure function:
j 0 1 2 3 4 5
P[j] a b a b a C
f() 0 0 1 2 3

e This shows how much of the beginning of the string
matches up to the portion immediately preceding|a
failed comparison.

- If the comparison fails at (4), we know the a,b in
positions 2,3 is identical to positions 0,1
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The KMP Algorithm (contd.)

 Time Complexity Analysis
e definek =1 -|

 In every iteration through the while loop, one of
three things happens.

- 1) if T[i] = P[j], theni increases by 1, as dges
Kk remains the same.

- 2) if T[1] '= P[j] andj > O, then does not change
andk increases by at least 1, sinkehanges
fromi-jtoi-1(j-1)

- 3) if T[i] '= P[j] andj =0, theni increases by 1 and
K increases by 1 singgemains the same.

* Thus, each time through the loop, eitherk
Increases by at least 1, so the greatest possible
number of loops IS

e This of course assumes tlidtas already been
computed.

 However,fis computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction@m)

e Total Time ComplexityO(n + m)
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The KMP Algorithm (contd.)

« the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)
Input: StringsT (text) withn characters and
(pattern) withm characters.
Output:Starting index of the first substring ©f
matchingP, or an indication tha® is not a
substring ofT.

f —« KMPFailureFunctio(P) {build failure function}
| 0
whilei <ndo
If P[j] = T[i] then
If ] =m- 1then
returni - m- 1{a match}
| «1+1
J—J+1
else ifj > Othen{no match, but we have advanced}
] « f(J-1) {j indexes just after matching prefix in P}
else
| 1 +1
return“There is no substring af matchingP”
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The KMP Algorithm (contd.)

e The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunctio(P);
Input: String P (pattern) withm characters
Ouput:The faliure functiorf for P, which mapg to
the length of the longest prefix Bfthat is a suffix
of P[1,..]

j <0
whilei <m-1do
If P[j] = T[j] then
{we have matche@+ 1 characters}
fi) « ]+ 1
| «1+1
J—J+1
else ifj > Othen
{] Indexes just after a prefix fthat matches}
J < 1(-1)
else
{there is no match}
fi) < O
| —1+1
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The KMP Algorithm (contd.)

« A graphical representation of the KMP string
searching algorithm

alblalc|lalalblalc|]cla|blalclalbla]l a
1 2 3 4| 5| 6
al blal clalb

7

al blal clalb

no comparison
needed here 13

14 15 16 17 1819
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Regular Expressions

notation for describing a set of strings, possibly o
Infinite size

¢ denotes the empty string

ab + c denotes the set {ab, c}

a* denotes the set{a, aa, aaa,.}.

Examples

- (a+b)* all the strings from the alphabet {a,b}

- b*(ab*a)*b* strings with an even number of a’s

- (a+b)*sun(a+b)* strings containing the pattern
‘sun”

- (a+b)(a+b)(a+b)a 4-letter strings ending in a

]
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Finite State Automaton

* “machine” for processing strings

a

ol ©
J & O

b b

Strings and Pattern Matching
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Composition of FSA’s

Strings and Pattern Matching
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Tries

e A trieis a tree-based date structure for storing
strings in order to make pattern matching faster.

* Tries can be used to perfogmefix queries for
iInformation retrieval. Prefix queries search for the
longest prefix of a given string X that matches a
prefix of some string in the trie.

« Atrie supports the following operationsonaset S
strings:

iInsert(X) Insert the string X into S
Input : StringOuput: None

remove(X) Remove string X from S
Input : StringOutput: None

prefixes(X) Return all the strings in S that have a
longest prefix of X
Input : StringOutput: Enumeration of
strings

Of
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Tries (cont.)

e Let Sbe a set of strings from the alphahetuch
that no string irb is a prefix to another string. A
standard tridor Sis an ordered treé that:

- Each edge of is labeled with a character fram

- The ordering of edges out of an internal node is
determined by the alphahet

- The path from the root of to any node represents
a prefix inZ that is equal to the concantenation ¢f
the characters encountered while traversing the
path.

* For example, the standard trie over the alphabet
{a, b} for the set {aabab, abaab, babbb, bbaaa,
bbab}
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Tries (cont.)

 An internal node can have 1dahildren when d is
the size of the alphabet. Our example is essentially
binary tree.

A path from the root of to an internal node at
depthi corresponds to ancharacter prefix of a
string of S

* We can implement a trie with an ordered tree by
storing the character associated with an edge at th
child node below it.
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Compressed Tries

e A compressed tries like a standard trie but makes
sure that each trie had a degree of at least 2. Singl
child nodes are compressed into an single edge.

A critical node IS a node v such that v is labeled with
a string from S, v has at least 2 children, or v is the
root.

e To convert a standard trie to a compressed trie we
replace an edge fvv,) each chain on nodesy(v
Vq...Vy) for k 2 such that

- Vg and vy are critical but y s critical for O<i<k
- each \ has only one child

e Each internal node in a compressed tire has at legas
two children and each external is associated with|a
string. The compression reduces the total space fo
the trie from OfM) wherem is the sum of the the
lengths of strings iisto O(n) wheren is the number
of strings InS
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Compressed Tries (cont.)

 An example:

Strings and Pattern Matching

29




Prefix Queries on a Trie

Algorithm prefixQueryT, X):
Input: Trie T for a set S of strings and a query stridg
Output: The noderof T such that the labeled nodes ¢
the subtree of rooted atv store the strings
of S with a longest prefix in common wikh
vV~ T.root()
-0 {iis anindex into the string}
reped
for each childv of vdo
let e be theedge {,w)
Y —string@) {Y is the substring associated weh
| - Ylength() {=1if T is a standard trie}
Z X.substringi, i+l-1) {Z holds the next charac
ters ofX}
If Z=Y then
VeW
| — 1+1{move to W, incrementingpast Z}
break out of thefor loop
else ifa proper prefix of Z matched a proper pref
of Y then
VeW
break out ot therepeatloop
until vis externabr vzw
return v
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Insertion and Deletion

 Insertion: We first perform a prefix query for strin
X. Let us examine the ways a prefix query may enc
In terms of insertion.

- The query terminates at node v. Lethé the
prefix of X that matched in the trie up to node v
and X be the rest of X. If % is an empt string we
label v with X and the end. Otherwise we creat a
new external node w and label it with X.

- The query terminates at an edge e=(v, w) becal
a prefix of X match prefix(v) and a proper prefix af
string Y associated with e. LetYbe the part of Y
that X mathed to and Ythe rest of Y. Likewise for
Xq and X. Then X=X+X, = prefix(v) +Y;+Xo.
We create a new node u and split the edges(v, L
and (u, w). If X2 is empty then w label u with X.
Otherwise we creat a node z which is external anc
label it X.

e Insertion is O(dn) when d is the size of the alphabe
and n is the length of the string t insert.

N

—
N’
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Insertion and Deletion (cont.)

a b
a - b a © b
A A~ O search ~
b a b stops a b
here
D O Q O ®
a a b \ a a
@ Q ® @ @
b b b a b
u n 1 O n
1 2 3 4 5
() .
a b Insert(pbadb)
a - b a - b
O 0 Q O
b a b a b
D O Q O D
a a b a
O @ O ) O
b b a/\b
H H 1 C @ n
1 2 3 4 b 5
H
6
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Insertion and Deletion (cont.)

baab abbhb

3 aaa bab

baab abbh

bab
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Lempel Ziv Encoding

e Constructing the trie:
- Let phrase 0 be the null string.
- Scan through the text

- If you come across a letter you haven't seen
before, add it to the top level of the trie.

- If you come across a letter you've already seen
scan down the trie until you can’t match any more
chracters, add a node to the trie representing the
new string.

- Insert the pair (nodelndex, lastChar) into the
compressed string.

e Reconstructing the string:
- Every time you see a ‘0’ in the compressed string
add the next character in the compressed string
directly to the new string.

- For each non-zero nodelndex, put the substring
corresponding to that node into the new string,
followed by the next character in the compresse
string.

d
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Lempel Ziv Encoding (contd.)

« A graphical example:

Uncompressed text: )how now brown cow in town.

phra593012345 6 7 8 9 10 11 121314 15

Compressed text: 0hOoOw0O_On2w4bOr 6n4c6 0i 5 Ot 9.
Trie: (0)
h 0 W,

-/ \Nn
@ g © @ 6 O W 14

I
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File Compression

o text files are usually stored by representing each
character with an 8-brscii code (typenan ascii In
a Unix shell to see thescil encoding)

e theAsClIl encoding is an example fed-length
encoding, where each character is represented wijtt
the same number of bits

 In order to reduce the space required to store a tex
file, we can exploit the fact that some characters ar
more likely to occur than others

e variable-length encoding uses binary codes of
different lengths for different characters; thus, we
can assign fewer bits to frequently used charactefs
and more bits to rarely used characters.

e Example:
- text:java
- encodinga =“0", j=“11", v = “10”
- encoded text110100 (6 bits)

e How to decode?
- a="0",j="01", v="00"
- encoded text10000 (6 bits)
- Is thisjava, jvv, jaaaa ...
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Encoding Trie

 to prevent ambiguities in decoding, we require that
the encoding satisfies the=fix rule, that is, no code
IS a prefix of another code
- a="0",j="11", v = “10” satisfies the prefix rule

- a="0",j="01", v=""“00" doesnot satisfy the prefix
rule (the code o# is a prefix of the codes ¢ofandv)

e We use amrncoding trie to define an encoding that
satisfies the prefix rule

- the characters stored at the external nodes
- a left edge means O
- aright edge means 1
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Example of Decoding

e trie:

e encoded text:
01011011010000101001011011010

___________________________________

___________________________________
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Trie this!

Y\ o\t o\ o\
s||w]|T Ellc]|K]|N

1000011111001001100011101111000101010011010100
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Optimal Compression

e An issue with encoding tries Is to insure that the
encoded text is as short as possible:

ABRACADABRA
01011011010000101001011011010
29 bits

ABRACADABRA
001011000100001100101100
24 bits
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Huffman Encoding Trie

ABRACADABRA
character A B

Strings and Pattern Matching
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Huffman Encoding Trie (contd.)
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Final Huffman Encoding Trie

A B RA CADAIDB R A
O 10010101100 111 0 100 1010
23 bits
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Another Huffman Encoding Trie

ABRACADABRA
character A D

frequency E
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Another Huffman Encoding Trie

A B
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Another Huffman Encoding Trie
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Another Huffman Encoding Trie

A BRACAD AB R A
0 01111 0 10 1100
bits
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Construction Algorithm

o with a Huffman encoding trie, the encoded text has
minimal length

Algorithm Huffman(X):
Input : String X of lengthn
Output: Encoding trie foiX

Compute thdrequencyf(c) of each characterof X.
Initialize apriority queueQ.

for each characterin X do
Create a single-node tréestoringc
Q.insertltem(f(c), T)

while Q.size() > 1do
f; — Q.minKey()
T; < Q.removeMinElement()
fr — Q.minKey()
T, « Q.removeMinElement()
Create a new treEwith left subtreel; and right

subtreerl,.
Q.insertltem(f; +f5)
return treeQ.removeMinElement()

 runing time for a text of length n with k distinct
characters: O(n + k log k)

Strings and Pattern Matching 48



Image Compression

e we can use Huffman encoding also for binary files
(bitmaps, executables, etc.)

e common groups of bits are stored at the leaves

« Example of an encoding suitable for b/w bitmaps

0 1
(. @
o/ \1 0 1
ooo] () 111 (]
o/ \1 0 1
o10] [101] @
o/ \1 o/ \1
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	Strings and Pattern Matching
	• Brute Force, Rabin-Karp, Knuth-Morris-Pratt
	String Searching
	• The previous slide is not a great example of what is meant by “String Searching.” Nor is it mea...
	• The object of string searching is to find the location of a specific text pattern within a larg...
	• As with most algorithms, the main considerations for string searching are speed and efficiency.
	• There are a number of string searching algorithms in existence today, but the two we shall revi...

	The Knuth-Morris-Pratt Algorithm
	• The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm ...
	• A failure function (f) is computed that indicates how much of the last comparison can be reused...
	• Specifically, f is defined to be the longest prefix of the pattern P[0,..,j] that is also a suf...
	- Note: not a suffix of P[0,..,j]

	• Example:
	- value of the KMP failure function:

	• This shows how much of the beginning of the string matches up to the portion immediately preced...
	- if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1


	Regular Expressions
	• notation for describing a set of strings, possibly of infinite size
	• e denotes the empty string
	• ab + c denotes the set {ab, c}
	• a* denotes the set {e, a, aa, aaa, ...}
	• Examples
	- (a+b)* all the strings from the alphabet {a,b}
	- b*(ab*a)*b* strings with an even number of a’s
	- (a+b)*sun(a+b)* strings containing the pattern “sun”
	- (a+b)(a+b)(a+b)a 4-letter strings ending in a


	The KMP Algorithm (contd.)
	• Time Complexity Analysis
	• define k = i - j
	• In every iteration through the while loop, one of three things happens.
	- 1) if T[i] = P[j], then i increases by 1, as does j k remains the same.
	- 2) if T[i] != P[j] and j > 0, then i does not change and k increases by at least 1, since k cha...
	- 3) if T[i] != P[j] and j = 0, then i increases by 1 and k increases by 1 since j remains the same.

	• Thus, each time through the loop, either i or k increases by at least 1, so the greatest possib...
	• This of course assumes that f has already been computed.
	• However, f is computed in much the same manner as KMPMatch so the time complexity argument is a...
	• Total Time Complexity: O(n + m)

	Finite State Automaton
	• “machine” for processing strings

	The KMP Algorithm (contd.)
	• the KMP string matching algorithm: Pseudo-Code
	Algorithm KMPMatch(T,P)
	Input: Strings T (text) with n characters and P (pattern) with m characters.
	Output: Starting index of the first substring of T matching P, or an indication that P is not a s...
	f ¨ KMPFailureFunction(P) {build failure function}
	i ¨ 0
	j ¨ 0
	while i < n do
	if P[j] = T[i] then
	if j = m - 1 then
	return i - m - 1 {a match}
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then {no match, but we have advanced}
	j ¨ f(j-1) {j indexes just after matching prefix in P}
	else
	i ¨ i + 1
	return “There is no substring of T matching P”


	The KMP Algorithm (contd.)
	• The KMP failure function: Pseudo-Code
	Algorithm KMPFailureFunction(P);
	Input: String P (pattern) with m characters
	Ouput: The faliure function f for P, which maps j to the length of the longest prefix of P that i...
	i ¨ 1
	j ¨ 0
	while i £ m-1 do
	if P[j] = T[j] then
	{we have matched j + 1 characters}
	f(i) ¨ j + 1
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then
	{j indexes just after a prefix of P that matches}
	j ¨ f(j-1)
	else
	{there is no match}
	f(i) ¨ 0
	i ¨ i + 1


	The KMP Algorithm (contd.)
	• A graphical representation of the KMP string searching algorithm

	Composition of FSA’s
	Brute Force
	• The Brute Force algorithm compares the pattern to the text, one character at a time, until unma...
	- Compared characters are italicized.
	- Correct matches are in boldface type.

	• The algorithm can be designed to stop on either the first occurrence of the pattern, or upon re...

	Brute Force Pseudo-Code
	• Here’s the pseudo-code
	do
	if (text letter == pattern letter)
	compare next letter of pattern to next
	letter of text
	else
	move pattern down text by one letter
	while (entire pattern found or end of text)


	Brute Force-Complexity
	• Given a pattern M characters in length, and a text N characters in length...
	• Worst case: compares pattern to each substring of text of length M. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 ...
	• Total numbe r of comparisons: M (N-M+1)
	• Worst case time complexity: O(MN)


	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern found: Finds pattern in first M positions of text. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAA 5 comparisons made
	• Total number of comparisons: M
	• Best case time complexity: O(M)


	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern not found: Always mismatch on first character. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 c...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 1 comparison made OOOOH
	• Total number of comparisons: N
	• Best case time complexity: O(N)


	Rabin-Karp
	• The Rabin-Karp string searching algorithm uses a hash function to speed up the search.

	Rabin-Karp
	• The Rabin-Karp string searching algorithm calculates a hash value for the pattern, and for each...
	• If the hash values are unequal, the algorithm will calculate the hash value for next M-characte...
	• If the hash values are equal, the algorithm will do a Brute Force comparison between the patter...
	• In this way, there is only one comparison per text subsequence, and Brute Force is only needed ...
	• Perhaps a figure will clarify some things...

	Rabin-Karp Example
	Hash value of “AAAAA” is 37
	Hash value of “AAAAH” is 100
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 37¹100 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AA...
	...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 6 comparisons made 100=100

	Rabin-Karp Pseudo-Code
	pattern is M characters long
	hash_p = hash value of pattern hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)


	Rabin-Karp
	• Com mon Rabin-Karp questions:
	“What is the hash function used to calculate valu es for character sequences?”
	“Isn’t it time consuming to hash e very one of the M-character sequences in the text body?”
	“Is this going to be on the final?”
	• To answer some of these questions, we’ll have to get mathematical.


	Rabin-Karp Math
	• Consider an M-character sequence as an M-digit number in base b, where b is the number of lette...
	x(i) = t[i]×bM-1 + t[i+1]×bM-2 +...+ t[i+M-1]
	• Furthermore, given x(i) we can compute x(i+1) for the next subsequence t[i+1 .. i+M] in constan...

	x(i+1) = t[i+1]×bM-1 + t[i+2]×bM-2 +...+ t[i+M]
	x(i+1) = x(i)×b Shift left one digit
	- t[i]×b M Subtract leftmost digit
	+ t[i+M] Add new rightmost digit
	• In this way, we never explicitly compute a new value. We simply adjust the existing value as we...


	Rabin-Karp Mods
	• If M is large, then the resulting value (~bM) will be enormous. For this reason, we hash the va...
	• The mod function (% in Java) is particularly useful in this case due to several of its inherent...
	- [(x mod q) + (y mod q)] mod q = (x+y) mod q
	- (x mod q) mod q = x mod q

	• For these reasons:
	h(i) = ((t[i]× bM-1 mod q) + (t[i+1]× bM-2 mod q) + ... + (t[i+M-1] mod q)) mod q
	h(i+1) = ( h(i)× b mod q Shift left one digit -t[i]× bM mod q Subtract leftmost digit +t[i+M] mod...

	Rabin-Karp Pseudo-Code
	pattern is M characters long
	hash_p = hash value of pattern
	hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)


	Rabin-Karp Complexity
	• If a sufficiently large prime number is used for the hash function, the hashed values of two di...
	• If this is the case, searching takes O(N) time, where N is the number of characters in the larg...
	• It is always possible to construct a scenario with a worst case complexity of O(MN). This, howe...

	Tries
	• A trie is a tree-based date structure for storing strings in order to make pattern matching fas...
	• Tries can be used to perform prefix queries for information retrieval. Prefix queries search fo...
	• A trie supports the following operations on a set S of strings:
	insert(X): Insert the string X into S Input: String Ouput: None
	remove(X): Remove string X from S Input: String Output: None
	prefixes(X): Return all the strings in S that have a longest prefix of X Input: String Output: En...

	Compressed Tries
	• A compressed trie is like a standard trie but makes sure that each trie had a degree of at leas...
	• A critical node is a node v such that v is labeled with a string from S, v has at least 2 child...
	• To convert a standard trie to a compressed trie we replace an edge (v0, v1) each chain on nodes...
	- v0 and v1 are critical but v1 is critical for 0<i<k
	- each v1 has only one child

	• Each internal node in a compressed tire has at least two children and each external is associat...

	Prefix Queries on a Trie
	Algorithm prefixQuery(T, X):
	Input: Trie T for a set S of strings and a query string X
	Output: The node v of T such that the labeled nodes of the subtree of T rooted at v store the str...
	i¨0 {i is an index into the string X}
	repeat
	for each child w of v do
	let e be the e dge (v,w)
	Y¨string(e) {Y is the substring associated with e}
	l¨Y.length() {l=1 if T is a standard trie}
	Z¨X.substring(i, i+l-1) {Z holds the next l charac ters of X}
	if Z = Y then
	v¨w
	i¨i+1 {move to W, incrementing i past Z}
	break out of the for loop
	else if a proper prefix of Z matched a proper prefix of Y then
	v¨w
	break out ot the repeat loop
	until v is external or v¹ùw
	return v

	Insertion and Deletion
	• Insertion: We first perform a prefix query for string X. Let us examine the ways a prefix query...
	- The query terminates at node v. Let X1 be the prefix of X that matched in the trie up to node v...
	- The query terminates at an edge e=(v, w) because a prefix of X match prefix(v) and a proper pre...

	• Insertion is O(dn) when d is the size of the alphabet and n is the length of the string t insert.

	Lempel Ziv Encoding
	• Constructing the trie:
	- Let phrase 0 be the null string.
	- Scan through the text
	- If you come across a letter you haven’t seen before, add it to the top level of the trie.
	- If you come across a letter you’ve already seen, scan down the trie until you can’t match any m...
	- Insert the pair (nodeIndex, lastChar) into the compressed string.

	• Reconstructing the string:
	- Every time you see a ‘0’ in the compressed string add the next character in the compressed stri...
	- For each non-zero nodeIndex, put the substring corresponding to that node into the new string, ...


	Lempel Ziv Encoding (contd.)
	• A graphical example:

	Huffman Encoding Trie
	Huffman Encoding Trie (contd.)
	Final Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Construction Algorithm
	• with a Huffman encoding trie, the encoded text has minimal length
	Algorithm Huffman(X):
	Input: String X of length n
	Output: Encoding trie for X
	Compute the frequency f(c) of each character c of X.
	Initialize a priority queue Q. for each character c in X do
	Create a single-node tree T storing c
	Q.insertItem(f(c), T)
	while Q.size() > 1 do
	f1 ¨ Q.minKey()
	T1 ¨ Q.removeMinElement()
	f2 ¨ Q.minKey()
	T2 ¨ Q.removeMinElement()
	Create a new tree T with left subtree T1 and right subtree T2.
	Q.insertItem(f1 + f2)
	return tree Q.removeMinElement()

	• runing time for a text of length n with k distinct characters: O(n + k log k)

	Tries (cont.)
	• Let S be a set of strings from the alphabet S such that no string in S is a prefix to another s...
	- Each edge of T is labeled with a character from S
	- The ordering of edges out of an internal node is determined by the alphabet S
	- The path from the root of T to any node represents a prefix in S that is equal to the concanten...

	• For example, the standard trie over the alphabet S = {a, b} for the set {aabab, abaab, babbb, b...

	Tries (cont.)
	• An internal node can have 1 to d children when d is the size of the alphabet. Our example is es...
	• A path from the root of T to an internal node v at depth i corresponds to an i-character prefix...
	• We can implement a trie with an ordered tree by storing the character associated with an edge a...

	Compressed Tries (cont.)
	• An example:

	File Compression
	• text files are usually stored by representing each character with an 8-bit ASCII code (type man...
	• the ASCII encoding is an example of fixed-length encoding, where each character is represented ...
	• in order to reduce the space required to store a text file, we can exploit the fact that some c...
	• variable-length encoding uses binary codes of different lengths for different characters; thus,...
	• Example:
	- text: java
	- encoding: a = “0”, j = “11”, v = “10”
	- encoded text: 110100 (6 bits)

	• How to decode?
	- a = “0”, j = “01”, v = “00”
	- encoded text: 010000 (6 bits)
	- is this java, jvv, jaaaa ...


	Encoding Trie
	• to prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule, tha...
	- a = “0”, j = “11”, v = “10” satisfies the prefix rule
	- a = “0”, j = “01”, v= “00” does not satisfy the prefix rule (the code of a is a prefix of the c...

	• we use an encoding trie to define an encoding that satisfies the prefix rule
	- the characters stored at the external nodes
	- a left edge means 0
	- a right edge means 1


	Insertion and Deletion (cont.)
	Example of Decoding
	• trie:
	• encoded text: 01011011010000101001011011010
	• text:

	Insertion and Deletion (cont.)
	Trie this!
	Optimal Compression
	• An issue with encoding tries is to insure that the encoded text is as short as possible:

	Image Compression
	• we can use Huffman encoding also for binary files (bitmaps, executables, etc.)
	• common groups of bits are stored at the leaves
	• Example of an encoding suitable for b/w bitmaps



