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Abstract

Propagating constraints is the main feature of any
constraint solver. This is thus of prime importance
to manage constraint propagation as efficiently as
possible, justifying the use of the best algorithms.
But the ease of integration is also one of the con-
cerns when implementing an algorithm in a con-
straint solver. This paper focuses on AC-3, which
is the simplest arc consistency algorithm known
so far. We propose two refinements that preserve
as much as possible the ease of integration into a
solver (no heavy data structure to be maintained
during search), while giving some noticeable im-
provements in efficiency. One of the proposed re-
finements is analytically compared to AC-6, show-
ing interesting properties, such as optimality of its
worst-case time complexity.

1 Introduction

Constraint propagation is the basic operation in constraint
programming. It is now well-recognized that its extensive
use is necessary when we want to efficiently solve hard con-
straint satisfaction problems. All the constraint solvers use it
as a basic step. Thus, each improvement that can be incor-
porated in a constraint propagation algorithm has an imme-
diate effect on the behavior of the constraint solving engine.
In practical applications, many constraints are of well-known
types for which specific algorithms are available. These al-
gorithms generally receive a set of removed values for one
of the variables involved in the constraint, and propagate
these deletions according to the constraint. They are usu-
ally as cheap as one can expect in cpu time. This state
of things implies that most of the existing solving engines
are based on a constraint-oriented or variable-oriented prop-
agation scheme (ILOG Solver, CHOCO, etc.). And AC-3,
with its natural both constraint-oriented [Mackworth, 1977]
and variable-oriented [McGregor, 1979] propagation of the
constraints, is the generic constraint propagation algorithm

"This work has been partially financed by ILOG under a re-
search collaboration contract ILOG/CNRS/University of Montpel-
lier II.

“Member of the COCONUT group.

Jean-Charles Régin
ILOG
1681, route des Dolines
06560 Valbonne, France
regineilog. fr

which fits the best this propagation scheme. Its successors,
AC-4, AC-6, and AC-7, indeed, were written with a value-
oriented propagation. This is one of the reasons why AC-3
is the algorithm which is usually used to propagate those
constraints for which nothing special is known about the se-
mantics (and then for which no specific algorithm is avail-
able). This algorithm has a second strong advantage when
compared to AC-4, AC-6 or AC-7, namely, its independence
with regard to specific data structure which should be main-
tained if used during a search procedure. (And following
that, a greater easiness to implement it.) On the contrary,
its successors, while more efficient when applied to net-
works where much propagation occurs ([Bessiére er al., 1995;
Bessiere et al., 1999]), need to maintain some additional data
structures.

In this paper, our purpose is to present two new algorithms,
AC2000 and AC2001, which, like AC-3, accept variable-
oriented and constraint-oriented propagation, and which im-
prove AC-3 in efficiency (both in terms of constraint checks
and cpu time). AC2000, like AC-3, is free of any data struc-
ture to be maintained during search. AC2001, at the price
of a slight extra data structure (just an integer for each value-
constraint pair) reaches an optimal worst-case time complex-
ity.> It leads to substantial gains, which are shown both on
randomly generated and real-world instances of problems.
A comparison with AC-6 shows interesting theoretical prop-
erties. Regarding the human cost of their implementation,
AC2000 needs a few lines more than the classical AC-3, and
AC2001 needs the management of its additional data struc-
ture.

2 Preliminaries

Constraint network. A finite binary constraint network
P = (X,D,C) is defined as a set of n variables X =
{X1,..., Xy}, asetof domainsD = {D(X4),...,D(X,)},
where D(X;) is the finite set of possible values for vari-
able X;, and a set C of e binary constraints between pairs
of variables. A constraint C';; on the ordered set of variables
(X5, X;) is a subset of the Cartesian product D(X;) x D(X;)
that specifies the allowed combinations of values for the vari-
ables X; and X ;. (For each constraint Cj;, a constraint C}; is
defined between (X, X;), allowing the same pairs of values

3 A related paper by Zhang and Yap appears in these proceedings.
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in the reverse order.) Verifying whether a given pair (v;, v;)
is allowed by C}; or not is called a constraint check. A solu-
tion of a constraint network is an instantiation of the variables
such that all the constraints are satisfied.

Arc consistency. Let P = (X, D,() be a constraint net-
work, and C;; a constraint in C. A value v; € D (X i}
consistent with C; iff Jv; € D(X;) such that (v;,v;) € Cjj.
(vj is then called a support for (X;,v;) on Cj;.) A value
v; € D(X;) is viable iff it has support in all D(X;) such
that Cs; € C. P is arc consistent iff all the values in all the
domains are viable. We achieve arc consistency in P by re-
moving every value which is not viable.

3 A first stab at improving AC-3
3.1 Background on AC-3

Before presenting the algorithm we propose in this section, let
us briefly recall the AC-3 algorithm. We present it with the
structure proposed by McGregor [McGregor, 1979], which is
built on a variable-based propagation scheme. This will be
recommended for the algorithm presented in the next subsec-
tion. The main algorithm (see Algorithm 1) is very close to
the original AC-3, with an initialization phase (lines 1 to 3),
a propagation phase (line 4), and with the use of the func-
tion Revise3(X;, X;) that removes from D(X;) the val-
ues without support in D(X;) (line 2). But instead of han-
dling a queue of the constraints to be propagated, it uses a
queue* of the variables that have seen their domain modi-
fied. When a variable X; is picked from the queue (line 2
of Propagation3 in Algorithm 2), all the constraints in-
volving X; are propagated with Revise3. This is the only
change w.r.t. the Mackworth’s version of AC-3.3 (This algo-
rithm has been presented in [Chmeiss and Jégou, 1998] under
the name AC-8.)

Algorithm 1: Main algorithm
function AC (in X’: set): Boolean
1Q+« 0
for each X; € X do
for each X such that C;; € C do

2 if Revise-Xx(Xi, X;, false®) then
if D(X;) = 0 then return false ;
3 Q+QU{X:}:

4 return Propagation-X(Q);

3.2 The algorithm AC2000

If we closely examine the behavior of AC-3, we see that re-
moving a single value v; from a domain D(X) (inside func-
tion Revise3l)is enough to put X in the propagation queue

“We name it a queue, but, as in AC-3, it has to be implemented
as a set since in line 3 of Algorithm 1 and in line 5 of Algorithm 2
we add X; to @ only if it does not already belong to it.

>In fact, McGregor’s version of the function Revise differs
from Mackworth’s one. Algorithm Revise3 is the Mackworth’s
version [Mackworth, 1977].

®The third parameter is useless for AC-3 but will be used in the
next version of Revise.

Algorithm 2: Subprocedures for AC-3
function Propagation3 (in Q): set): Boolean

1 while Q # 0 do

2 pick X; from Q;

3 for each X; such that C;; € C do

4 if Revise-X(X;, X;) then
if D(X;) = 0 then return false ;
5 Q+ QU{X:}
return true ;

function Revise3 (in X;, X;: variable): Boolean
CHANGE < false;
for each v; € D(X;) do
if ,Evj € D(X])/C” (UZ', 'Uj) then
remove v; from D(X;);
CHANGE <« true;
return CHANGE ;

(line 3 of AC in Algorithm 1 and line 5 of Propagation3
in Algorithm 2), and to provoke a call to Revise3(X;, X;)
for every constraint Cj; involving X; (lines 3 and 4 of
Propagation3). Revise3 will look for a support for ev-
ery value in D(X;) whereas for some of them v; was per-
haps not even a support. (As a simple example, we can
take the constraint X; = X;, where D(X;) = D(X;) =
[1..11] Removing value 11 from D(X}) leads to a call to
Revise3(X;, X;), which will look for a support for every
value in D(Xj;), foratotal costof 1+2+...+94+10+10=
65 constraint checks, whereas only (X;,11) had lost sup-
port.) We exploit this remark in AC2000. Instead of look-
ing blindly for a support for a value v; € D(X;) each time
D(X;) is modified, we do that only under some conditions.
In addition to the queue @ of variables modified, we use a
second data structure, A(X j),7 which for each variable X
contains the values removed since the last propagation of
X;. When a call to Revise2000(X;, X;,lazymode) is
performed, instead of systematically looking whether a value
v; still has support in D(X}), we first check that v; really
lost a support, namely one of its supports is in A(X;) (line 3
of Revise2000 in Algorithm 3). The larger A(X}) is, the
more expensive that process is, and the greater the probability
to actually find a support to v; in this set is. So, we perform
this “lazymode” only if A(Xj) is sufficiently smaller than
D(X;). We use a parameter Ratio to decide that. (See line
1 of Propagation2000 in Algorithm 3.) The Boolean
lazymode is set to true when the ratio is not reached. Other-
wise, lazymode is false, and Revise2000 performs exactly
as Revise3, going directly to lines 4 to 5 of Revise2000
without testing the second part of line 3.

If we run AC2000 on our previous example, we have
A(X;) = {11}. If |[A(X;)| <Ratio - |[D(X})|, then for
each v; € D(X;), we check whether A(X) contains a sup-
port of v; before looking for a support for v;. This requires
11 constraint checks. The only value for which support is
effectively sought is (X;,11). That requires 10 additional

"We take this name from [Van Hentenryck et al., 19921, where
A denotes the same thing, but for a different use.
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Algorithm 3: Subprocedures for AC2000
function Propagation2000 (in ): set): Boolean

while Q # 0 do
pick X; from Q;
1 lazymode+ (|A(X;)| < Ratio - |D(X;)|);
for each X; such that C;; € C do
if Revise2000(X;, X;,lazymode) then
if D(X;) = 0 then return false ;
Q+ QU{X:}
2 reset A(Xj);
return true ;

function Revise2000 (in X;, X;: variable;
in lazymode: Boolean ): Boolean

CHANGE < false;
for each v; € D(X;) do
3 if =lazymode or Jv; € A(X;)/Cs;(vi,v;) then
4 if ,B’Uj S D(Xj)/C’ij(v,-,vj) then
remove v; from D(X;);
add v; to A(X;);
5 CHANGE < true;
return CHANGE ;

constraint checks. We save 44 constraint checks compared to
AC-3.

Analysis

Let us first briefly prove AC2000 correctness. Assuming
AC-3 is correct, we just have to prove that the lazy mode does
not let arc-inconsistent values in the domain. The only way
the search for support for a value v; in D(X;) is skipped,
is when we could not find a support for v; in A(X;) (line
3 of Revise2000). Since A(X;) contains all the val-
ues deleted from D(X;) since its last propagation (line 2
of Propagation2000), this means that v; has exactly the
same set of supports as before on C;;. Thus, looking again
for a support for v; is useless. It remains consistent with Cj;.

The space complexity of AC2000 is bounded above by the
sizes of @ and A. @ is in O(n) and A is in O(nd), where d
is the size of the largest domain. This gives a O(nd) overall
complexity. In this space complexity, it is assumed that we
built AC2 000 with the variable-oriented propagation scheme,
as recommended earlier. If we implement AC2000 with the
constraint-oriented propagation scheme of the original AC-3,
we need to attach a A(X}) to each constraint C;; put in the
queue. This implies a O(ed) space complexity.

The organization of AC2000 is the same as in AC-3. The
main change is in function Revise2000, where A(X;)and
D(X;) are examined instead of only D(X). Their total size
is bounded above by d. This leads to a worst-case where d?
checks are performed, as in Revise3. Thus, the overall time
complexity is in O(ed?®) since Revise2000 can be called d
times per constraint. This is as in AC-3.

4 AcC2001

In Section 3, we proposed an algorithm, which, like AC-3,
does not need special data structures to be maintained dur-
ing search. (Except the current domains, which have to be

maintained by any search algorithm performing some look-
ahead.) During a call to Revise2000, for each v; in D(X;),
we have to look whether v; has a support in A(X}), to know
whether it lost supports or not. In this last case, we have to
look again for a support for v; on C;; in the whole D(X)
set. If we could remember what was the support found for
v; in D(Xj) the last time we revised Cj;, the gain would
be twofold: First, we would just have to check whether this
last support has been removed from D (X ;) or not, instead of
exploring the set A(X ;). Second, when a support was effec-
tively removed from D(X;), we would just have to explore
the values in D(X]) that are “after” that last support since
“predecessors” have already been checked before. Adding a
very light extra data structure to remember the last support of
a value on a constraint leads to the algorithm AC2001 that
we present in this section.

Let us store in Last(X;,v;, X;) the value that has
been found as a support for wv; at the last call to
Revise2001(X;, X;). The function Revise2001 will
always run in the lazy mode since the cost of check-
ing whether the Last support on Cj; of a value v; has
been removed from D(X) is not dependent on the num-
ber of values removed from D(X;). A second change
w..t. AC2000 is that the structure A is no longer nec-
essary since the test “Last(X;,v;, X;) ¢ D(X;)” can re-
place the test “Last(X;,v;, X;) € A(X;)”. The conse-
quence is that AC2001 can equally be used with a constraint-
based or variable-based propagation. We only present the
function Revise2001, which simply replaces the function
Revise3l in AC-3. The propagation procedure is that of
AC-3, and the Last structure has to be initialized to NIL at
the beginning. In line 1 of Revise2001 (see Algorithm 4)
we check whether Last(X;, v;, X;) still belongs to D(X;).
If it is not the case, we look for a new support for v; in
D(X}); otherwise nothing is done since Last(X;,v;, X;) is
stillin D(X). Inline 2 of Revise2001 we can see the sec-
ond advantage of storing Last(X;,v;, X;): If the supports
are checked in D(Xj) in a given ordering “<4”, we know
that there isn’t any support for v; before Last(X;, v;, X;) in
D(X;). Thus, we can look for a new support only on the
values greater than Last(X;, vi, X;).

Algorithm 4: Subprocedure for AC2001
function Revise2001 (in X;, X;: variable): Boolean

CHANGE <« false;
for each v; € D(X;) do
1 ifLast(Xi,w,Xj) ¢D(Xj)then
2 ifEIvj S D(Xj)/vj >4 Last(Xi,vi,Xj)/\Cij(v,',vj)
then Last(X;,v;, X;) < vj;
else
remove v; from D(X;);
add v; to A(X;);
CHANGE < true;
return CHANGE ;

On the example of Section 3, when (Xj;,11) is re-
moved, AC2001 simply checks for each v; € [1..10] that
Last(X;,v;, X;) still belongs to D(X;), and finds that
Last(X;,11, X;) has been removed. Looking for a new sup-
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AC-3 AC2000 AC2001 AC-6®)

#ccks  time #ccks  time #ccks  time time

<150, 50, 500,1250>  (under-constrained) 100,010  0.04 100,010  0.05 100,010  0.05 0.07
<150, 50, 500, 2350>  (over-constrained) 507,783  0.18 507,327 0.18 487,029 0.16 0.10
<150, 50, 500, 2296>  (phase transition) 2,860,542  1.06 1,601,732  0.69 688,606 0.34 0.32
<50, 50, 1225, 2188>  (phase transition) 4,925,403 1.78 3,038,280 1.25 1,147,084 0.61 0.66
SCEN#08 (arc inconsistent) 4,084,987 1.67 || 3,919,078 1.65 || 2,721,100 1.25 0.51

Table 1: Arc consistency results in mean number of constraint checks (#ccks) and mean cpu time in seconds (time) on a PC
Pentium IT 300MHz (50 instances generated for each random class). (*) The number of constraint checks performed by AC-6

is similar to that of AC2001, as discussed in Section 6.

port for 11 does not need any constraint check since D(X)
does not contain any value greater than Last(X;,11,X}),
which was equal to 11. It saves 65 constraint checks com-
pared to AC-3.

Analysis

Proving correctness of AC2001 can be done very quickly
since the framework of the algorithm is very close to AC-3.
They have exactly the same initialization phase except that
AC2001 stores Last(X;,v;, X;), the support found for each
v; on each Cy;. (In line 1 it is assumed that NIL does
not belong to D(X;).) During the propagation, they di-
verge in the way they revise an arc. As opposed to AC-3,
Revise2001(X;, X;) goes into a search for support for
a value v; in D(X;) only if Last(X;,v;, X;) does not be-
long to D(X;). We see that checking that Last(X;, v;, X;)
still belongs to D(Xj) is sufficient to ensure that v; still has
a support in D(X;). And if a search for a new support
has to be done, limiting this search to the values of D(Xj)
greater than Last(X;,v;, X;) w.rt. to the ordering <4 used
to visit D(X;) is sufficient. Indeed, the previous call to
Revise2001 stopped as soon as the value Last(X;, v;, X;)
was found. It was then the smallest support for v; in D(X)
w.It. <g4.

The space complexity of AC2001 is bounded above by the
size of @, and Last. Q is in O(n) or O(e), depending on the
propagation scheme that is used (variable-based or constraint-
based). Last is in O(ed) since each value v; has a Last
pointer for each constraint involving X;. This gives a O(ed)
overall complexity.

As in AC-3 and AC2000, the function Revise2001
can be called d times per constraint in AC2001. But, at
each call to Revise2001(X;,X;), for each value v; €
D(X;), there will be a test on the Last(X;,v;, X;), and
a search for support only on the values of D(X;) greater
than Last(X;,v;, X;). Thus, the total work that can be
performed for a value v; over the d possible calls to
Revise2001 on a pair (X;, X;) is bounded above by d
tests on Last(X;,v;, X;) and d constraint checks. The over-
all time complexity is then bounded above by d- (d+d)-2-e,
which is in O(ed?). This is optimal [Mohr and Henderson,
1986]. AC2001 is the first optimal arc consistency algorithm
proposed in the literature that is free of any lists of supported
values. Indeed, the other optimal algorithms, AC-4, AC-6,
AC-7, and AC-Inference all use these lists.

312

5 Experiments

In the sections above, we presented two refinements of AC-3,
namely AC2000 and AC2001. It remains to see whether
they are effective in saving constraint checks and/or cpu time
when compared to AC-3. AS we said previously, the goal is
not to compete with AC-6/AC-7, which have very subtle data
structure for the propagation phase. An improvement (even
small) w.r.t. AC-3 would fulfill our expectations. However,
we give AC-6 performances, just as a marker.

5.1 Arc consistency as a preprocessing

The first set of experiments we performed should permit to
see the effect of our refinements when arc consistency is used
as a preprocessing (without search). In this case, the chance
to have some propagations is very small on real instances.
We have to fall in the phase transition of arc consistency (see
[Gent et al., 1997]). So, we present results for randomly gen-
erated instances (those presented in [Bessiére et al., 1999]),
and for only one real-world instance. For the random in-
stances, we used a model B generator [Prosser, 1996]. The
parameters are < N, D, C/pl,T/p2 >, where N is the num-
ber of variables, D the size of the domains, C' the number of
constraints (their density pl = 2C/N - (N — 1)), and T the
number of forbidden tuples (their tightness p2 = T/ D?). The
real-world instance, SCEN#08, is taken from the FullRLFAP
archive,® which contains instances of radio link frequency as-
signment problems (RLFAPs). They are described in [Cabon
et al., 1999]. The parameter Ratio used in AC2000 is set to
0.2. Table 1 presents the results for four classes of random
instances plus the real-world one.

The upper two are under-constrained
(<150, 50,500/0.045,1250/0.5>) and  over-constrained
(<150, 50, 500/0.045,2350/0.94>) problems. They repre-
sent cases where there is little or no propagation to reach the
arc consistent or arc inconsistent state. This is the best case
for AC-3, which performs poorly during propagation. We
can see that AC2000 and AC2001 do not suffer from this.

The third and fourth experiments are at the
phase transition of arc consistency for sparse
(<150, 50, 500/0.045, 2296 /0.918>) and dense
(<50, 50,1225/1.0,2188/0.875>) problems. We can

assume there is much propagation on these problems before
reaching the arc consistent state. This has a significant impact
on the respective efficiencies of the algorithms. The smarter

8We thank the Centre d’Electronique de I’ Armement (France).
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MAC-3 MAC2000 MAC2001 MAC6

#ccks time #ccks time #ccks time time

SCEN#01 5,026,208 2.33 4,319,423 2.10 || 1,983,332 1.62 2.05
SCEN#11 77,885,671 39.50 || 77,431,840 38.22 || 9,369,298 21.96 14.69
GRAPH#09 6,269,218 2.95 5,164,692 2.57 || 2,127,598 1.99 241
GRAPH#10 6,790,702 3.04 5,711,923 2.65 || 2,430,109 1.85 2.17
GRAPH#14 5,503,326 2.53 4,253,845 2.13 1,840,886 1.66 1.90

Table 2: Results for search of the first solution with a MAC algorithm in mean number of constraint checks (#ccks) and mean

cpu time in seconds (time) on a PC Pentium I 300MHz.

the algorithm is, the lower the number of constraint checks
is. AC2001 dominates AC2000, which itself dominates
AC-3. And the cpu time follows this trend.

The lower experiment reports the results for the SCEN#0S.
This is one of the instances in FullRLFAP for which arc con-
sistency is sufficient to detect inconsistency.

5.2 Maintaining arc consistency during search

The second set of experiments we present in this section
shows the effect of our refinements when arc consistency
is maintained during search (MAC algorithm [Sabin and
Freuder, 1994]) to find the first solution. We present results
for all the instances contained in the FullRLFAP archive for
which more than 2 seconds were necessary to find a solution
or prove that none exists. We took again 0.2 for the Ratio
in AC2000. It has to be noticed that the original question in
these instances is not satisfiability but the search of the “best”
solution, following some criteria. It is of course out of the
scope of this paper.

From these instances we can see a slight gain for AC2000
on AC-3. On SCEN#11, it can be noticed that with a smaller
Ratio, AC2000 slightly improves its performances. (Ratio
= 0.05 seems to be the best.) A more significant gain can be
seen for AC2001, with up to 9 times less constraint checks
and twice less cpu time on SCEN#11. As for the experiments
performed on random instances at the phase transition of arc
consistency, this tends to show that the trick of storing the
Last data structure significantly pays off. However, we have
to keep in mind that we are only comparing algorithms with
simple data structures. This prevents them from reaching the
efficiency of algorithms using lists of supported values when
the amount of propagation is high, namely on hard problems.
(E.g., a MAC algorithm using AC-6 for enforcing arc con-
sistency needs only 14.69 seconds to solve the SCEN#11 in-
stance.)

6 AC2001 vs AC-6

In the previous sections, we proposed two algorithms based
on AC-3 to achieve arc consistency on a binary constraint
network. AC2000 is close to AC-3, from which it inherits
its O(ed®) time complexity and its O(nd) space complexity.
AC2001, thanks to its additional data structure, has an opti-
mal O(ed?) worst-case time complexity, and an O(ed) space
complexity. These are the same characteristics as AC-6.° So,

9We do not speak about AC-7 here, since it is the only one among
these algorithms to deal with the bidirectionality of the constraints

we can ask the question: “What are the differences between
AC2001 and AC-6?".

Let us first briefly recall the AC-6 behavior [Bessiere,
1994]. AC-6 looks for one support (the first one or smallest
one with respect to the ordering <4) for each value (X;, v;)
on each constraint C;; to prove that (X;, v;) is currently vi-
able. When (X, v;) is found as the smallest support for
(X3, v;) on Cyj, (X, v;) is added to S[X;, v;], the list of val-
ues currently having (X, v;) as smallest support. If (X, v;)
is removed from D(Xj), it is added to the DeletionSet,
which is the stream driving propagations in AC-6. When
(Xj,v;) is picked from the DeletionSet, AC-6 looks for the
next support (i.e., greater than v;) in D (X ;)for each value
(X;,v;) in S[X;,v;]. Notice that the DeletionSet corre-
sponds t0 3y ¢ » A(X;) in AC2000, namely the set of val-

ues removed but not yet propagated.

To allow a closer comparison, we will suppose in the fol-
lowing that the S[X;, v;] lists of AC-6 are split on each con-
straint C; involving X, leading to a structure S[X;, v;, X;],
as in AC-7.

Property 1 Let P = (X,D,C) be a constraint network. If
we suppose AC2001 and AC-6 follow the same ordering of
variables and values when looking for supports and propa-
gating deletions, then, enforcing arc consistency on P with
AC2001 requires the same constraint checks as with AC-6.

Proof. Since they follow the same ordering, both algorithms
perform the same constraint checks in the initialization phase:
they stop search for support for a value v; on Cj; as soon
as the first v; in D(X;) compatible with v; is found, or
when D(X;) is exhausted (then removing v;). During the
propagation phase, both algorithms look for a new support
for a value v; on Cj; only when v; has lost its current sup-
port v; in D(X;) (ie., v; € S[Xj,v;,X;] for AC-6, and
v; = Last(X;,v;, X;) for AC2001). Both algorithms start
the search for a new support for v; at the value in D(X;) im-
mediately greater than v; w.r.t. the D(X;) ordering. Thus,
they will find the same new support for v; on Cj;, or will
remove v;, at the same time, and with the same constraint
checks. And so on. O

From property 1, we see that the difference between
AC2001 and AC-6 cannot be characterized by the number
of constraint checks they perform. We will then focus on the
way they find which values should look for a new support.
For that, both algorithms handle their specific data structures.
Let us characterize the number of times each of them checks

(namely, the fact that Cs; (vs, v;) = Cji(vj, vi)).
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its own data structure when a set A(X) of deletions is prop-
agated on a given constraint Cj;.

Property 2 Let C;; be a constraint in a network P =
(X,D,C). Let A(X ;)be a set of values removed from D(X ;)
that have to be propagated on Cs;. If,

A=A+ X0, enx,$Xi:v5, Xill

B =|D(X;))and

C = # checks performed on Cij to propagate A(X;),
then, A + C and B + C represent the number of operations
AC-6 and AC2001 will respectively perform to propagate
Z&(;Kj) on Chj.
Proof. From property 1 we know that AC-6 and AC2001
perform the same constraint checks. The difference is in the
process leading to them. AC-6 traverses the S[X;,v;, X;]
list for each v; € A(X;) (i.e., A operations), and AC2001
checks whether Last(X;, v;, X ;) belongs to D(X ) for every
v; in D(X;) (i.e., B operations). O

v50
v51

v100

Figure 1: The constraint example

We illustrate this on the extreme case presented in Figure 1.
In that example, the three values of X; are all compatible with
the first value vy of X;. In addition, (X;,v1) is compatible
with all the values of X; from vy to vsg, and (X ;, vo)with all
the values of X; from vs; to vigp. Imagine that for some
reason, the value vz has been removed from D(X;) (i.e.,
A(X;) = {vs}). Thisleadsto A =1, B =101, and C' = 0,
which is a case in which propagating with AC-6 is much bet-
ter than with AC2001, even if none of them needs any con-
straint check. Indeed, AC-6 just checks that S[X;, vs, X;] is

empty,'® and stops. AC2001 takes one by one the 101 val-

!9The only value compatible with (Xi,v3) is (Xj,v0), which is
currently supported by (X;, v1).

ues v; of D(X;) to check that their Last(X;,v;, X;) is not
in A(X;). Imagine now that the values vy to vigo of D(X;)
have been removed (i.e., A(X;) = {v1,...,v100}). Now,
A =100, B = 3, and C = 0. This means that AC2001 will
clearly outperform AC-6. Indeed, AC-6 will check for all the
100 values v; in A(X;) that S[X;,v;, X;] is empty,!! while
AC2001 just checks that Last(X;, v;, X;) is not in A(Xj)
for the 3 values in D(Xj).

Discussion

Thanks to property 2, we have characterized the amount of
effort necessary to AC-6 and AC2001 to propagate a set
A(X;) of removed values on a constraint C;;. A — B gives
us information on which algorithm is the best to propagate
A(X;) on C;;. We can then easily imagine a new algo-
rithm, which would start with an AC-6 behavior on all the
constraints, and would switch to AC2001 on a constraint Cj;
as soon as A — B would be positive on this constraint (and
then forget the S lists on Cj;). Switching from AC2001 to
AC-6 is no longer possible on this constraint because we can
deduce in constant time that Last(X;,v;, X;) = v; when
v; belongs to S[X;,v;, X;], but we cannot obtain cheaply
S[X;,v;,X;] from the Last structure. A more elaborated
version would maintain the S lists even in the AC2001 be-
havior (putting v; in S[X},v;, X;] each time v; is found as
being the Last(X;,v;, X;)). This would permit to switch
from AC-6 to AC2001 or the reverse at any time on any
constraint in the process of achieving arc consistency. These
algorithms are of course far from our initial purpose of em-
phasizing easiness of implementation since they require the
S and Last structures to be maintained during search.

7 Non-binary versions

Both AC2000 and AC2001 can be extended to deal with
non-binary constraints. A support is now a tuple instead of
a value. Tuples in a constraint C'(Xj,, ..., X;,) are ordered
w.r.t. the ordering <4 of the domains, combined with the
ordering of Xj,,..., X;_ (or any order used when search-
ing for support). Once this ordering is defined, a call to
Revise2000(X;, ) —because of a set A(X;) of val-
ues removed from D(X;)— simply checks for each v; €
D(X;) whether there exists a support 7 of v; on the con-
straint C' for which 7[X] (the value of X in the tuple) be-
longs to A(X;). If yes, it looks for a new support for v;
on C. Revise2001(X;,C) checks for each v; € D(Xj;)
whether Last(X;,v;,C'), which is a tuple, still belongs to
D(X;,) x - - - x D(X;,) before looking for a new support for
v; onC.

This extension to non-binary constraints is very simple to
implement. However, it has to be handled with care when
the variable-oriented propagation is used, as recommended
for AC2000. (With a constraint-based propagation, a A(X)
set is duplicated for each constraint put in the queue to prop-
agate it.) Variable-based propagation is indeed less precise in

"Indeed, (X;,vo) is the current support for the three values in
D(X;) since it is the smallest in D(Xj;) and it is compatible with
every value in D(X;).
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the way it drives propagation than constraint-based propaga-
tion. Take the constraint C'(X;, , X;,, X;;) as an example. If
D(X;,) and D(X,,) are modified consecutively, X;, and X,
are put in the queue () consecutively. Picking X;, from @
implies the calls to Revise(X;,,C) and Revise(X;,,C),
and picking X;, implies the calls to Revise(X;,,C) and
Revise(X;,,C). We see that Revise(X,,,C) is called
twice while once was enough. To overcome this weakness,
we need to be more precise in the way we propagate dele-
tions. The solution, while being technically simple, is more
or less dependent on the architecture of the solver in which it
is used. Standard techniques are described in [ILOG, 1998;
Laburthe, 2000].

8 Conclusion

We presented AC2000 and AC2001, two refinements in
AC-3. The first one improves slightly AC-3 in efficiency
(number of constraint checks and cpu time) although it does
not need any new data structure to be maintained during
search. The second, AC2001, needs an additional data struc-
ture, the Last supports, which should be maintained during
search. This data structure permits a significant improvement
on AC-3, and decreases the worst-case time complexity to the
optimal O(ed?). AC2001 is the first algorithm in the litera-
ture achieving optimally arc consistency while being free of
any lists of supported values. Its behavior is compared to that
of AC-6, making a contribution to the understanding of the
different AC algorithms, and opening an opportunity of im-
provement. This is in the same vein as the work on AC-3 vs
AC-4 [Wallace, 1993], which was leading up to AC-6.
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