
Towards An Adaptive Framework

for Performance Portability
Work in Progress (submission #23)

Patrick Maier Magnus Morton Phil Trinder

School of Computing Science
University of Glasgow

IFL 2015

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 1 / 15

Performance Portability?

Write once, run anywhere (a.k.a. the holy grail of portability)

1970s portable operating systems C
1990s portable web applications Java
2010s portable linear algebra kernels OpenCL

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 2 / 15

Performance Portability?

Write once, run anywhere (a.k.a. the holy grail of portability)

1970s portable operating systems C
1990s portable web applications Java
2010s portable linear algebra kernels OpenCL

It is accepted that portability incurs a performance hit.

C compilers are very mature; performance hit vs. assembly is small.

JIT compilation has brought Java performance within reach of C++.

OpenCL code can perform as well as hand-written kernels.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 2 / 15

Performance Portability?

Write once, run anywhere (a.k.a. the holy grail of portability)

1970s portable operating systems C
1990s portable web applications Java
2010s portable linear algebra kernels OpenCL

It is accepted that portability incurs a performance hit.

C compilers are very mature; performance hit vs. assembly is small.

JIT compilation has brought Java performance within reach of C++.

OpenCL code can perform as well as hand-written kernels.

But: Performance of OpenCL code very sensitive to architecture.

Necessary architecture-speci�c tuning defeats portability.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 2 / 15

Performance Portability?

Write once, run anywhere (a.k.a. the holy grail of portability)

1970s portable operating systems C
1990s portable web applications Java
2010s portable linear algebra kernels OpenCL

It is accepted that portability incurs a performance hit.

C compilers are very mature; performance hit vs. assembly is small.

JIT compilation has brought Java performance within reach of C++.

OpenCL code can perform as well as hand-written kernels.

But: Performance of OpenCL code very sensitive to architecture.

Necessary architecture-speci�c tuning defeats portability.

Performance Portability

Same parallel code runs across di�erent architectures with reasonable e�ciency.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 2 / 15

Grand Vision

Idea: Combine trace-based JIT compiler with demand-driven parallel scheduler.

Language: Racket + skeleton library

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 3 / 15

Grand Vision

Idea: Combine trace-based JIT compiler with demand-driven parallel scheduler.

Language: Racket + skeleton library

Slogan: Compile once, run anywhere in parallel.

Performance portability hypothesis to be tested

by benchmarking problems with irregular parallelism
on several (CPU-centric) architectures (desktop, NUMA server, small cluster).

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 3 / 15

Grand Vision

Idea: Combine trace-based JIT compiler with demand-driven parallel scheduler.

Language: Racket + skeleton library

Slogan: Compile once, run anywhere in parallel.

Performance portability hypothesis to be tested

by benchmarking problems with irregular parallelism
on several (CPU-centric) architectures (desktop, NUMA server, small cluster).

Some technical details:

Focus parallelisation where it matters.

Using JIT compiler's hot code detection.

Estimate task granularity by online pro�ling and/or static analysis of traces.

Linear structure of traces enables cheap yet accurate analyses.

Adapt task granularity by online code transformation.

Rewriting according to programmable rules expressing semantic equivalences.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 3 / 15

Grand Vision � Functional Block Diagram

* transform task graph

Rewrite Engine (d)

 to improve granularity

* interpret code until
 compiled trace or hot loop

* exec/prof compiled trace

Execution Engine (a)

* record hot loop trace

 tasks between schedulers

* schedule ready tasks

Scheduler (e)

* maintain task graph

* balance load by moving

* optimise and compile

Trace Compiler (b)

 recorded trace

Trace Analyser (c)

* estimate trace runtime

task graph

runtimescheduled trace
runtime

compiled trace

statistics

estimate

recorded trace

compiled trace

trace

rewritten task graph

task

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 4 / 15

Language and Compiler

Language: Racket (Scheme dialect)

dynamically typed, strict functional language

elaborate macro system

concurrency, shared-memory parallelism, distributed computation, ...

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 5 / 15

Language and Compiler

Language: Racket (Scheme dialect)

dynamically typed, strict functional language

elaborate macro system

concurrency, shared-memory parallelism, distributed computation, ...

Compiler JIT language support

Racket function-level full language
standard VM

20 years development

Pycket trace-level DOES NOT SUPPORT
PyPy-derived VM * concurrency (threads)
1 year development * parallelism (futures)
often beats Racket * distributed comp (places)

* exceptions
* sockets
...

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 5 / 15

Scheduler

Centralised control.

Actor-like processes (no shared state, single threaded, message passing).

task graph

...

Master

Worker_1 Worker_2

subgraph

Worker_n

subgraph

Racket

Pycket

TCP
subtasks

resultssubgraphs

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 6 / 15

Task Graphs

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

tasks

full futures

empty futures

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 7 / 15

Task Graphs

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

tasks

full futures
map skeleton

fold skeleton
empty futures

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 7 / 15

Task Graphs

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

tasks

full futures
map skeleton

fold skeleton

scheduled subgraph

empty futures

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 7 / 15

Skeletons

Map skeletons

par-map :: Closure (a -> b) -> [a] -> [b]

par-map/chunk :: Int -> Closure ([a] -> [b]) -> [a] -> [b]

par-map/stride :: Int -> Closure ([a] -> [b]) -> [a] -> [b]

Fold skeletons
par-fold :: Closure ([a] -> a) -> [a] -> a

par-fold/depth :: Int -> Closure ([a] -> a) -> [a] -> a

Divide and conquer skeletons

par-d&c :: Closure (a -> b, a -> [a], [b] -> b) -> a -> b

par-d&c/depth :: Int -> Closure (a -> b, a -> [a], [b] -> b) -> a -> b

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 8 / 15

Skeletons Transformations

Skeletons are related by an equational theory.

Some map skeleton equations

(1) map f $ map g xs == map (x -> f $ g x) xs

(2) map f xs == concat $ map (map f) $ chunk k xs

(3) map f xs == par-map (Closure f) xs

(4) concat $ map g $ chunk k xs == par-map/chunk k (Closure g) xs

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 9 / 15

Skeletons Transformations

Skeletons are related by an equational theory.

Some map skeleton equations

(1) map f $ map g xs == map (x -> f $ g x) xs

(2) map f xs == concat $ map (map f) $ chunk k xs

(3) map f xs == par-map (Closure f) xs

(4) concat $ map g $ chunk k xs == par-map/chunk k (Closure g) xs

Equations can be used as bi-directional rewrite rules.

Instantiate granularity parameter k when applying (2) from left to right.

Sample transformation

par-map (Closure f) $ par-map (Closure g) xs

== map f $ map g xs

== map (x -> f $ g x) xs

== concat $ map (map (x -> f $ g x)) $ chunk 5 xs guessed k=5

== par-map/chunk 5 (Closure (map (x -> f $ g x))) xs

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 9 / 15

Skeletons Transformations II

Transform task graph when observed task cost (i.e. runtime) distribution not
in target range (10 � 100 milliseconds).

Transformation strategy:

1 Repeatedly
Rewrite task graph according to skeleton equations

randomised selection of rewrite rules;

cost model guided instantiation of granularity parameters.

Predict costs of rewritten tasks.

2 Select a task graph whose cost distribution falls within target range.

Compute cost model on the �y during JITting.

Use cost model

to predict task execution time, and

to infer suitable values for granularity parameters (e.g. chunk size).

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 10 / 15

Trace-based Cost Models

Tracing JIT compilers automatically produce

traces (= sequences of instructions), and

trace counters.

Simple cost model piggybacking on tracing JIT

cost(trace) =
∑

inst∈trace

cost(inst)

cost(task) =
∑

trace∈task

count(trace) · cost(trace)

Simple cost model parametric in cost of instructions.

�Learn� cost of instructions by training cost model on a Pycket benchmark
suite.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 11 / 15

Trace-based Cost Models II

Bad news: Cost model not very accurate for comparing whole programs.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 12 / 15

Trace-based Cost Models II

Bad news: Cost model not very accurate for comparing whole programs.
Good news: Cost model quite accurate for comparing task transformations.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 12 / 15

Evaluating Scheduler

Limitations: Single server (max 24 cores).

Microbenchmarks skeleton irregular? comm. volume C gap
Fibonacci divide/conquer no low 3.4×
SumEuler parallel map moderate low 1.3×
Mandelbrot parallel map moderate moderate 3.2×
Matrix multiplication parallel map no high 1.2×

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 13 / 15

Evaluating Scheduler

Limitations: Single server (max 24 cores).

Microbenchmarks skeleton irregular? comm. volume C gap
Fibonacci divide/conquer no low 3.4×
SumEuler parallel map moderate low 1.3×
Mandelbrot parallel map moderate moderate 3.2×
Matrix multiplication parallel map no high 1.2×

 1

 4

 8

 12

 16

 20

 1 4 8 12 16 20

a
b
so

lu
te

 s
p
e
e
d
u
p

workers

Fib 47 (threshold 29)
SumEuler [1 .. 50,000]

Mandelbrot 5000x4000
MatMult 3200x3200

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 13 / 15

Impact of Transformations

SumEuler does not scale well because of low task granularity (≈ 1.6 ms).

 1

 4

 8

 12

 16

 20

 1 4 8 12 16 20

a
b

so
lu

te
 s

p
e
e
d

u
p

workers

largest granularity (1 task/worker)
large granularity (avg ~ 4 tasks/worker)

medium granularity (avg ~ 400ms)
small granularity (avg ~ 80ms)

smallest granularity (avg ~ 1.6ms)

Transformation 1: Split input interval into even chunks.

Irregular parallelism: scaling very sensitive to task size.
Top speedup: 15.9 (up from 11.6)

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 14 / 15

Impact of Transformations

SumEuler does not scale well because of low task granularity (≈ 1.6 ms).

 1

 4

 8

 12

 16

 20

 1 4 8 12 16 20

a
b

so
lu

te
 s

p
e
e
d

u
p

workers

largest granularity (1 task/worker)
large granularity (avg ~ 4 tasks/worker)

medium granularity (avg ~ 400ms)
small granularity (avg ~ 80ms)

smallest granularity (avg ~ 1.6ms)

Transformation 2: Stride through input interval.

Fairly regular parallelism: scaling independent of task size.
Top speedup: 16.4 (up from 11.6)

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 14 / 15

The End

Summary:

Scheduler running parallel Racket code in Pycket.

Skeleton transformations can speedup parallel code.

Not yet demonstrated: best transformation dependent on architecture.

Current limitations:

Task graph scheduling not fully implemented.

Limited to single server architecture.

High communication/serialisation overheads.

Work in progress:

Hook cost analysis into JIT compiler.

Task graph transformation engine.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 15 / 15

