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Performance Portability?

Write once, run anywhere (a.k.a. the holy grail of portability)

1970s portable operating systems  C
1990s portable web applications  Java
2010s portable linear algebra kernels  OpenCL
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It is accepted that portability incurs a performance hit.

C compilers are very mature; performance hit vs. assembly is small.

JIT compilation has brought Java performance within reach of C++.

OpenCL code can perform as well as hand-written kernels.
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It is accepted that portability incurs a performance hit.

C compilers are very mature; performance hit vs. assembly is small.

JIT compilation has brought Java performance within reach of C++.

OpenCL code can perform as well as hand-written kernels.

But: Performance of OpenCL code very sensitive to architecture.

Necessary architecture-speci�c tuning defeats portability.

Performance Portability

Same parallel code runs across di�erent architectures with reasonable e�ciency.
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Grand Vision

Idea: Combine trace-based JIT compiler with demand-driven parallel scheduler.

Language: Racket + skeleton library
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Grand Vision

Idea: Combine trace-based JIT compiler with demand-driven parallel scheduler.

Language: Racket + skeleton library

Slogan: Compile once, run anywhere in parallel.

Performance portability hypothesis to be tested

by benchmarking problems with irregular parallelism
on several (CPU-centric) architectures (desktop, NUMA server, small cluster).

Some technical details:

Focus parallelisation where it matters.

Using JIT compiler's hot code detection.

Estimate task granularity by online pro�ling and/or static analysis of traces.

Linear structure of traces enables cheap yet accurate analyses.

Adapt task granularity by online code transformation.

Rewriting according to programmable rules expressing semantic equivalences.
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Grand Vision � Functional Block Diagram

* transform task graph

Rewrite Engine (d)

   to improve granularity

* interpret code until
   compiled trace or hot loop

* exec/prof compiled trace

Execution Engine (a)

* record hot loop trace

   tasks between schedulers

* schedule ready tasks

Scheduler (e)

* maintain task graph

* balance load by moving

* optimise and compile

Trace Compiler (b)

   recorded trace

Trace Analyser (c)

* estimate trace runtime

task graph

runtimescheduled trace
runtime

compiled trace

statistics

estimate

recorded trace

compiled trace

trace

rewritten task graph

task
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Language and Compiler

Language: Racket (Scheme dialect)

dynamically typed, strict functional language

elaborate macro system

concurrency, shared-memory parallelism, distributed computation, ...
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Language and Compiler

Language: Racket (Scheme dialect)

dynamically typed, strict functional language

elaborate macro system

concurrency, shared-memory parallelism, distributed computation, ...

Compiler JIT language support

Racket function-level full language
standard VM

20 years development

Pycket trace-level DOES NOT SUPPORT
PyPy-derived VM * concurrency (threads)
1 year development * parallelism (futures)
often beats Racket * distributed comp (places)

* exceptions
* sockets
...
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Scheduler

Centralised control.

Actor-like processes (no shared state, single threaded, message passing).

task graph

...

Master

Worker_1 Worker_2

subgraph

Worker_n

subgraph

Racket

Pycket

TCP
subtasks

resultssubgraphs
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Task Graphs
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Task Graphs
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full futures
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fold skeleton

scheduled subgraph

empty futures
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Skeletons

Map skeletons

par-map :: Closure ( a -> b ) -> [a] -> [b]

par-map/chunk :: Int -> Closure ([a] -> [b]) -> [a] -> [b]

par-map/stride :: Int -> Closure ([a] -> [b]) -> [a] -> [b]

Fold skeletons
par-fold :: Closure ([a] -> a) -> [a] -> a

par-fold/depth :: Int -> Closure ([a] -> a) -> [a] -> a

Divide and conquer skeletons

par-d&c :: Closure (a -> b, a -> [a], [b] -> b) -> a -> b

par-d&c/depth :: Int -> Closure (a -> b, a -> [a], [b] -> b) -> a -> b
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Skeletons Transformations

Skeletons are related by an equational theory.

Some map skeleton equations

(1) map f $ map g xs == map (x -> f $ g x) xs

(2) map f xs == concat $ map (map f) $ chunk k xs

(3) map f xs == par-map (Closure f) xs

(4) concat $ map g $ chunk k xs == par-map/chunk k (Closure g) xs
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Skeletons Transformations

Skeletons are related by an equational theory.

Some map skeleton equations

(1) map f $ map g xs == map (x -> f $ g x) xs

(2) map f xs == concat $ map (map f) $ chunk k xs

(3) map f xs == par-map (Closure f) xs

(4) concat $ map g $ chunk k xs == par-map/chunk k (Closure g) xs

Equations can be used as bi-directional rewrite rules.

Instantiate granularity parameter k when applying (2) from left to right.

Sample transformation

par-map (Closure f) $ par-map (Closure g) xs

== map f $ map g xs

== map (x -> f $ g x) xs

== concat $ map (map (x -> f $ g x)) $ chunk 5 xs guessed k=5

== par-map/chunk 5 (Closure (map (x -> f $ g x))) xs
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Skeletons Transformations II

Transform task graph when observed task cost (i.e. runtime) distribution not
in target range (10 � 100 milliseconds).

Transformation strategy:

1 Repeatedly
Rewrite task graph according to skeleton equations

randomised selection of rewrite rules;

cost model guided instantiation of granularity parameters.

Predict costs of rewritten tasks.

2 Select a task graph whose cost distribution falls within target range.

Compute cost model on the �y during JITting.

Use cost model

to predict task execution time, and

to infer suitable values for granularity parameters (e.g. chunk size).
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Trace-based Cost Models

Tracing JIT compilers automatically produce

traces (= sequences of instructions), and

trace counters.

Simple cost model piggybacking on tracing JIT

cost(trace) =
∑

inst∈trace

cost(inst)

cost(task) =
∑

trace∈task

count(trace) · cost(trace)

Simple cost model parametric in cost of instructions.

�Learn� cost of instructions by training cost model on a Pycket benchmark
suite.

Maier, Morton, Trinder (Glasgow) Towards ... Performance Portability IFL 2015 11 / 15



Trace-based Cost Models II

Bad news: Cost model not very accurate for comparing whole programs.
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Trace-based Cost Models II

Bad news: Cost model not very accurate for comparing whole programs.
Good news: Cost model quite accurate for comparing task transformations.
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Evaluating Scheduler

Limitations: Single server (max 24 cores).

Microbenchmarks skeleton irregular? comm. volume C gap
Fibonacci divide/conquer no low 3.4×
SumEuler parallel map moderate low 1.3×
Mandelbrot parallel map moderate moderate 3.2×
Matrix multiplication parallel map no high 1.2×
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SumEuler [1 .. 50,000]

Mandelbrot 5000x4000
MatMult 3200x3200
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Impact of Transformations

SumEuler does not scale well because of low task granularity (≈ 1.6 ms).
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large granularity (avg ~ 4 tasks/worker)

medium granularity (avg ~ 400ms)
small granularity (avg ~ 80ms)

smallest granularity (avg ~ 1.6ms)

Transformation 1: Split input interval into even chunks.

Irregular parallelism: scaling very sensitive to task size.
Top speedup: 15.9 (up from 11.6)
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largest granularity (1 task/worker)
large granularity (avg ~ 4 tasks/worker)

medium granularity (avg ~ 400ms)
small granularity (avg ~ 80ms)

smallest granularity (avg ~ 1.6ms)

Transformation 2: Stride through input interval.

Fairly regular parallelism: scaling independent of task size.
Top speedup: 16.4 (up from 11.6)
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The End

Summary:

Scheduler running parallel Racket code in Pycket.

Skeleton transformations can speedup parallel code.

Not yet demonstrated: best transformation dependent on architecture.

Current limitations:

Task graph scheduling not fully implemented.

Limited to single server architecture.

High communication/serialisation overheads.

Work in progress:

Hook cost analysis into JIT compiler.

Task graph transformation engine.
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