
Tilt-Based Automatic Zooming and Scaling in Mobile
Devices – a state-space implementation

Parisa Eslambolchilar1, Roderick Murray-Smith1,2

1 Hamilton Institute, National University of Ireland, NUI, Maynooth, Co.Kildare , Ireland
parisa.eslambolchilar@may.ie

2 Department of Computing Science, Glasgow University, Glasgow G12 8QQ, Scotland

rod@dcs.gla.ac.uk

Abstract. We provide a dynamic systems interpretation of the coupling of in-
ternal states involved in speed-dependent automatic zooming, and test our im-
plementation on a text browser on a Pocket PC instrumented with an acceler-
ometer. The dynamic systems approach to the design of such continuous
interaction interfaces allows the incorporation of analytical tools and construc-
tive techniques from manual and automatic control theory. We illustrate ex-
perimental results of the use of the proposed coupled navigation and zooming
interface with classical scroll and zoom alternatives.

1 Introduction

Navigation techniques such as scrolling (or panning) and zooming are essential
components of mobile device applications such as map browsing and reading text
documents, allowing the user access to a larger information space than can be viewed
on the small screen. Scrolling allows the user to move to different locations, while
zooming allows the user to view a target at different scales. However, the restrictions
in screen space on mobile devices make it difficult to browse a large document effi-
ciently. Using the traditional scroll bar, the user must move back and forth between
the document and the scroll bar, which can increase the effort required to use the in-
terface. In addition, in a long document, a small movement of the handle can cause a
sudden jump to a distant location, resulting in disorientation and frustration.

Speed-dependent automatic zooming is a relatively new navigation technique [7, 8,
14, 22, 25, 26] that unifies rate-based scrolling and zooming to overcome these limita-
tions. The user controls the scrolling speed only, and the system automatically adjusts
the zoom level so that the speed of visual flow across the screen remains constant. Us-
ing this technique, the user can smoothly locate a distant target in a large document
without having to manually interweave zooming and scrolling, and without becoming
disoriented by extreme visual flow.

In this paper we demonstrate that, as suggested by Igarashi and Hinckley [14],
SDAZ is well suited to implementation on mobile devices instrumented with tilt sen-
sors, which can then be comfortably controlled in a single-handed fashion. We also
describe an alternative stylus controlled implementation for the PocketPC. A further

contribution is the use of a state-space formulation of speed dependent zooming,
which we believe is a promising reformulation of the technique, which opens the path
to the use of analytic tools from optimal and manual control theory.

2 Speed-dependent automatic zooming – a brief review

Several techniques have been proposed to improve the manipulation of scroll bars
[14, 19]. They allow the user to control scrolling speed, enabling fine positioning in
large documents. LensBar [18] combines these techniques with interactive filtering
and semantic zooming, and also provides explicit control of zooming via horizontal
motion of the mouse cursor. A rate-based scrolling interface is described in [29] that
maps displacement of the input device to the velocity of scrolling.

Zoomable user interfaces, such as Pad and Pad++ [4], use continuous zooming as a
central navigation tool. The objects are spatially organized in an infinite two-
dimensional information space, and the user accesses a target object using panning
and zooming operations. A notable problem with the original zoomable interfaces is
that they require explicit control of both panning and zooming, and it is sometimes
difficult for the user to coordinate them. The user can get lost in the infinite informa-
tion space [16]. Bimanual approaches also exist, such as that of Guiard et al. [11]
where a joystick in one hand controlled zoom level, and a mouse in the other provided
navigation. They showed that by using zooming interfaces, bit rates far beyond those
possible in physical selection tasks become possible.

Information visualization techniques, such as Fisheye Views [9, 12], Perspective
Wall [17], and the Document Lens [21] also address the problem of information over-
load by distorting the view of documents. The focused area is magnified, while the
non-focused areas are squashed but remain in spatial context. The user specifies the
next focal point by clicking or panning. Van Wijk derived an optimal trajectory for
panning and zooming in [24], for known start and end points.

The particular input device used can also influence the effectiveness of rate con-
trol. An experiment on 6 DOF input control [29] showed that rate control is more ef-
fective with isometric or elastic devices, because of their self-centring nature. It is
also reported that an isometric rate-control joystick [2] can surpass a traditional scroll
bar and a mouse with a finger wheel [29]. Another possibility is to change the rate of
scrolling or panning in response to tilt, as demonstrated by Rekimoto [20] as well as
Harrison et al. [13], suitable for small screen devices like mobiles phones and PDAs.

A common problem with scrolling and zooming interfaces is that when users are
zoomed out for orientation, there is not enough detail to do any ‘real work’. When
they are zoomed in sufficiently to see detail, the context is lost. To reduce this prob-
lem, multiple windows can be provided, each with pan and zoom capability. Although
this is reasonable for small information spaces, the many windows required by large
spaces often lead to usability problems due to excessive screen clutter and window
overlap. An alternative strategy is to have one window containing a small overview,
while a second window shows a large more detailed view [3, 10]. The small overview
contains a rectangle that can be moved and resized, and its contents are shown at a
larger scale in the large view. This strategy, however, requires extra space for the

overview and forces the viewer to mentally integrate the detail and context views. An
operational overhead is also required, because the user must regularly move the
mouse between the detail and context windows.

Speed-dependent automatic zooming (SDAZ) is a navigation technique first pro-
posed by Igarashi & Hinckley [14]. It couples rate-based scrolling with automatic
zooming to overcome the limitations of typical scrolling interfaces and to prevent ex-
treme visual flow. This means that as a user scrolls faster the system automatically
zooms out, providing a constant information flow across the screen. This allows users
to efficiently scroll a document without having to manually switch between zooming
and scrolling or becoming disoriented by fast visual flow, and results in a smooth
curve in the space-scale diagram. In traditional manual zooming interfaces, the user
has to interleave zooming and scrolling (or panning); thus the resulting pan-zoom tra-
jectory forms a zigzag line. Cockburn et al. [7, 8, 22, 25, 26] presented further devel-
opments, with a usability study of performance-improved SDAZ prototypes.

3 Dynamics and interaction

In this paper we use systems of differential equations to describe the interaction be-
tween user and computer. Skeptics might question this “Why introduce dynamics,
when dynamic systems tend to be more difficult to control than static ones? Vehicle
control systems tend to go to great trouble to hide the underlying dynamics of the ve-
hicle from the driver.”

We explicitly include dynamics because we can only control what we can perceive,
and while, in principle, we can navigate instantly in an arbitrary information space,
given a static interaction mechanism (e.g. clicking on a scroll bar), if we are depend-
ent on feedback to be displayed while pursuing our goals, there will be upper limits
on the speed at which the display can change. This is especially true in cases where
there is uncertainty in the user’s mind about where to go, and when they have the op-
tion to change their goal on route, as more information becomes available. In order to
cope with this, interface designers have a long history of hand-crafting transition ef-
fects in a case-by-case manner. Nonlinear mouse transfer functions are long-
established examples of finely-tuned dynamic systems driven by user input.

One of our long-term goals is to investigate whether describing the dynamics of in-
teraction using the tools of control engineers allows us a more consistent approach to
analyzing, developing and comparing the ‘look-and-feel’ of an interface, or in control
terms, the ‘handling qualities’. Control synthesis often focuses on analysis of cou-
pling among system states. Speed-dependent zooming is an obvious example of this,
but if we generalize the approach to other interaction scenarios, with possibly a larger
number of interacting states/inputs, we will require more general methods to analyse
the consequences of coupling effects. Control methods are likely to be especially im-
portant for design for mobile devices, where sensor noise, disturbance rejection, sen-
sor fusion, adaptive self-calibration and incorporating models of human control be-
haviour are all important research challenges.

In cases such as the use of accelerometers as input devices, the direct mapping of
acceleration in the real world to acceleration in the interface provides an intuitive

mapping, which also suggests a range of other affordances, especially for multi-modal
feedback, which can then be utilized by interface designers. Real-world effects such
as haptic feedback of springs, or friction linked to speed of motion are easy to repro-
duce in a dynamic system, and we can choose to explicitly use these features to de-
sign the system to encourage interaction to fall into a comfortable, natural rhythm.
Furthermore, the act of performing a continuous input trajectory to achieve a goal,
creates proprioceptive feedback for the user which can then be associated with that
particular task. The mechanisms of gesture recognition can be ‘opened up’ and explic-
itly made visible during the motion, to provide a link for the user between the control
input and the task completion. We describe a probabilistic, audio/vibrotactile ap-
proach to this in [28], which can ease learning and reduce frustration.

The use of dynamic models of interaction allows intelligent interaction, if the han-
dling qualities of the dynamics of the interface are adapted depending on current in-
ferred user goals. Using this approach, actions require less effort, the more likely the
system’s interpretations of user intentions, equivalent to a fewer bits from the user, in
communication terms. This was used by Barrett et al. in [2], and we used this ap-
proach for text entry in Williamson & Murray-Smith [27], and the approach can be
linked to methods which adapt the control-to-display ratio, such as Blanch et al. [5] in
classical windows interfaces. These approaches, which work with relative input
mechanisms, cannot be used if we use static mappings, such as a stylus touching an
explicit point on the screen.

4 Speed-dependent automatic zooming on a mobile device

Implementing the SDAZ technique on a mobile device with inertial sensing allows
us to investigate a number of issues: the use of single-handed tilt-controlled naviga-
tion, which does not involve obscuring the small display; the usability consequences
of tilting the display; the relative strength of stylus-based speed-dependent zooming,
compared to mouse and tilt-based control, and combinations of stylus, and tilt-based
control. If successful, the user should be able to target a position quickly without be-
coming annoyed or disoriented by extreme visual flow, and we want the technique to
provide smooth transitions between the magnified local view and the global overview,
without the user having to manually change the document magnification factor.

4.1 Hardware/software environment

We implemented this method using Embedded Visual C++ on an HP 5450 Pocket
PC (Figure 1). Here, tilting the device moves the zooming-window. The accelerome-
ter (Xsens P3C, 3 degree-of-freedom linear accelerometer) attached to the serial port
of the Pocket PC provides the roll and pitch angles.

Fig. 1. PocketPC and accelerometer attached to serial port (1a). Screen shots of the
document browser (1b). The left picture shows a red box moving rapidly over the pic-
ture, the middle picture shows the user has found the picture and landing there, and
right picture shows the zoomed-in picture.

4.2 Design and implementation of Speed-dependent automatic zooming

State space modelling is a well-established way of presenting differential equations
describing a dynamic system as a set of first-order differential equations. There is a
wealth of knowledge and analysis techniques from systems theory, including design-
ing estimators and controllers for multi–input–multi–output systems, optimal control,
disturbance rejection, stability analysis and manual control theory [6]. State-space
modelling allows us to model the internal dynamics of the system, as well as the
overall input/output relationship as in transfer functions, so this method is an obvious
candidate for the representation of the coupling between the user’s speed with zoom
level. There are many advantages to modelling systems in state space, especially for
multivariable problems, where the matrix formulation is particularly useful for analy-
sis purposes.

4.2.1 State space model
For an introduction to the basic ideas, see any introductory control theory book, e.g.
[1,6]. The generic form for the state equations is given by equation (1)

)(

)()(

xhY

ugxfX

=
+=

&

&
 (1)

where f(x), g(u) and h(x) can be nonlinear functions, and where X(t) is an n×1 state
vector where n is the number of states or system order, U(t) is a r ×1 input vector
where r is the number of input functions, and Y(t) is a p×1 output vector where p is
the number of outputs. The more specific case of a linear system, (2)

&() () ()

() () ()

x t Ax t Bu t

y t Cx t Du t

= +
= +

(2)

Fig. 1a Fig. 1b

where A is an nn× square matrix called the system matrix, B is an rn× matrix
called the input matrix, C is a p n× matrix called the output matrix and D is a p r×
matrix which represents any direct connection between the input and output.

4.2.2 Coupling the user’s velocity with the zoom-level
In this section we show how an SDAZ-like approach couples the user’s motion

with the zoom-level. The inputs to the system are the tilting angles measured using an
accelerometer attached to the serial port of PDA, and in a second experiment the sty-

lus position on the PDA touch screen. The state variables chosen are)(1 tx for posi-

tion,)(2 tx for speed of scroll and)(3 tx for zoom, and the state equations are:

),,()(

)(

213

12

uxxfZtx

xVtx

==
∆==

(3)
(4)

So the zoom-level is a function of position, velocity and tilting angle. An initial sug-
gestion is to reproduce the standard second-order dynamics of a mass-spring-damper
system, in the hope that giving the scrolling movement and zoom level some inertia
will provide a physically intuitive interface. The first time-derivative of the state
equations can be written as below, as a linearization of the system at a given velocity
and zoom:

)()()()(

)()()(

)()(

323

22

21

tu
M

a
tx

M

R
tx

M

b
Ztx

tu
M

k
tx

M

R
Vtx

txVtx

+
−

+
−

==

+−==

==

&&

&&

&

(5)

 (6)

 (7)

The standard matrix format of these equations is:

(8)

This shows how a single-degree of freedom input can control both velocity and zoom-
level. The non-zero off-diagonal elements of the A matrix indicate coupling among
states, and the B matrix indicates how the inputs affect each state. This example could
be represented as having zoom as an output equation, rather than state, and the cou-
pling between zoom and speed comes only through the B matrix, which is not particu-
larly satisfying. However, this paper is intended as an initial exploration of the area,
and as more interesting behaviour can be obtained by fully interacting nonlinear equa-
tions, such as those elegantly derived by van Wijk in [24], we have left it in this for-
mat. In the experiments, R=1, M=1, k=1 and b=0, but we also experimented with
varying the parameters, essentially including nonlinearities by a function relating ve-

locity with zoom factor, as will be discussed in the next section. We include satura-
tion terms for maximum and minimum zoom levels, and there can be specific rules
for behaviour at the limits associated with the start and end of the document. For
nonlinear functions we can locally linearise around any given state [x v z] leading to
time-varying matrices A(t),B(t). We can analytically investigate the local dynamics
for different operating points by, for example, looking at the eigenvalues of the A & B
matrices to check for oscillatory (eigenvalues are complex conjugate pairs) or unsta-
ble behaviour (real part of eigenvalue in right half plane – i.e. positive). For more
background see any control textbook (e.g. [1, 6]). Importantly, the system itself might
be stable, but when coupled with the time delay and lead-lag-dynamics of typical hu-
man control behaviour, the combined closed loop system might be unstable, as in pi-
lot-induced oscillations in aircraft control [15,23].

The dynamic systems implementation allows us to deviate from a static link be-
tween speed and zoom level. In this paper, our basic assumption is that zoom should
lead speed when speed increases, in order to avoid extreme visual flow. Zoom should,
however, lag speed when |v| decreases, to allow the user to slow down but still main-
tain the overview. This also allows, for example, the user to zoom out, without chang-
ing position in the document, by repeated positive and negative acceleration.

In order to move more rapidly through the document at high levels of zoom, in this
paper, we adapted B by making ‘a’ in eqn. (8) a function of velocity. When speed is
above the dead-zone threshold (here set to 0.1), a = 3 but below this threshold a=0.
We wish to avoid rapid drop effects when user changes direction. To achieve this, we
set a=a*0.2, when the sign of velocity and input differ. For practical implementation
on a PDA we converted the continuous-time system to a discrete-time one [1], with
sampling time h, which involves the evaluation of a matrix exponential,

∫=Γ=Φ
h

AsAh dsBee
0

 , .

)()()(

)()()(

khDukhCxkhy

khukhxhkhx

+=
Γ+Φ=+

(9)

A phase plane figure shows an example of a trajectory through this state-space for
the SDAZ implementation on the Pocket PC (Figure 2). This gives some insight into
the transient dynamics of large and small translations of position through the docu-
ment.

Fig.2. Phase plane trajectories showing velocity against zoom (left), zoom-level
against position (centre) and velocity against position (right), from a record of par-
ticipant browsing a long document on the PocketPC.

Z
o

o
m

Velocity

Z
o

o
m

Position

V
e

lo
ci

ty

Position

4.2.3 Control mode

We can now introduce transitions among control modes which alter the dynamics
and the way user inputs are interpreted. A simple example of this approach uses state
feedback to augment control behaviour, by making the state move towards some ref-
erence value r, we can create a control law (),xrLu −= such that the new state equa-
tions are

() BLrxBLA

BLrBLxAxBuAxx

+−=
+−=+=&

(10)

such that the system dynamics have changed from A to (A-BL). In the SDAZ imple-
mentation in this paper, we switched from tilt-angle as acceleration, to tilt angle to in-
dicate desired velocity, as soon as the speed passed the threshold at which zooming
started. This made it easier for users to find and maintain a comfortable zoom level.
Other similar examples can be created, where the interpretation of sensor inputs and
their significance for control can adapt to context. Including position control, for ex-
ample, would allow the user to tap on the screen to specify a goal, which is then dy-
namically acquired. While on route to that goal, the user changes their mind, they can
break out and switch again to velocity control.

4.2.4 Calibrating SDAZ and the state space approach
SDAZ has many parameters that can be tuned, usually treated as a series of inter-

acting, but essentially separate equations. The state-space formulation allows multiple
variables, and derivative effects (e.g. position, velocity, acceleration) can be coupled
with zoom level, without any further coding, by just changing the entries of the A ma-
trix, simulating combinations of springs, masses and damping effects.

In SDAZ, the function linking zoom with velocity, z = f(v), can be nonlinear, in-
cluding threshold effects. Examples include linear, with thresholds, exponential, and
‘modified exponential’ [14,25]. Furthermore the document velocity v=g(δ) as a func-
tion of control input (mouse displacement, tilt-angle, or stylus displacement, depend-
ing on platform) tend to be static, linear, or piecewise linear functions [14, 25]. In the
state-space representation, we need to reformulate these equations in terms of the
time-derivatives of zoom and velocity, via the A and B matrices. For example, for
ramp increases in speed, the modified exponential zoom-speed mapping corresponds
to our suggestion of zoom leading speed, with the exponent being related to the dif-
ference between the time constants for zoom and speed.

To enhance the smoothness of the transition between the global overview and the
magnified local view after a mouse button is pressed, Cockburn and Savage use a ‘fal-
ling’ speed, and Igarashi & Hinckley [14] place a limit on the maximum time-
derivative of zoom, with similar effect. The falling rate was calculated using trial and
error – if the rate was too fast, the user felt motion sickness and lost their place in the
document, whereas it being too small led to a sluggish interface. This can be repre-
sented as a straightforward switch to a particular parameterization of the A matrix,
which can be tuned to give an appropriate exponential decay in velocity or zoom.

Related problems include rapid zooming in and out when making a rapid change of
direction [14]. In the state-space representation, dealing with these issues becomes a

matter of tuning the dynamics of the system by changing the A matrix, to make, for
example, the time-constants associated with the zoom level larger than that of the
speed, for regimes where speed is dropping.

Gutwin [12], Igarashi & Hinckley [14] and Wallace [25] report the hunting effect
problem when users overshoot the target due to the system zooming in as the user
slows, the user then rapidly adjusts behaviour to compensate, which causes the system
to zoom out again. One approach to this would be to switch to a ‘diving’ control mode
if dz/dt < zthresh, where a=0, preventing zooming increases, unless a major change in
velocity, occurs, which would switch the control mode back to velocity control.

5 Example application – document browser for a PDA

The document viewer was designed to use automatic zooming to browse PDF, PS and
DOC files which had been converted to a image (PNG) file. BMP or PNG (Portable
Network Graphics) files are more efficient, and have low rendering time. This in-
creases the speed and smoothness of the browser, the implementation of which was
simple but very efficient and smooth (although text tended to flicker during zooming
because it was treated as a flat image). Equations (15) to (18) (previous section) show
the formula used to calculate the relationship between the user’s hand motion (tilting
PDA) and the zoom level from the document.
For comparison we show trajectories of users using traditional scroll bars on the
Pocket PC and a touch-screen based SDAZ implementation (Figure 3) for browsing a
long document on PDA (Figure. 1b). The touch-screen based SDAZ and tilt-
controlled SDAZ both use the same state-space model. The results in Figure 3 high-
light the different navigation styles of the different interfaces, with the scroll bar ap-
proach using a number of rapid translations through the document to find a paragraph
in bottom of the document, and no use of zooming for an overview, while the two
SDAZ implementations had smoother navigation, which also included smooth
changes in zoom level.

Fig.3. Left picture shows the trajectory of one participant in using traditional scroll bars in
browsing the long document, so y displacement is as long as the document. Middle picture
shows the trajectory of the same participant in touch screen based SDAZ in browsing the long.

Users found the touch screen-based mechanism intuitive and easy to use for brows-
ing. Figure 4 presents the system’s inputs in three SDAZ applications to find the same
paragraph used in scroll bar browser for tilt-based and touch screen controlled SDAZ.

Time

User Input

Y screen position

Time

User Input

Y screen position

Time

Y scroll position

Also this figure presents an example run with tilt-based SDAZ, with augmented ve-
locity control, as described in section 4.2.3, to browse the document to find 7 main
headings. For comparison, the central plots in Figure 4 show tilt-based SDAZ without
augmented velocity control on the same task, where fluctuations indicate that control-
ling the zoom level was difficult, and hunting behaviour appears when users tried to
land on the targets (e.g. t=20,40, 85, in middle figures).

6 User feedback

We asked five users from our research lab to work with the document browser us-
ing tilt-based SDAZ and touch screen-controlled SDAZ with and without augmented
velocity control. Users who did the experiment without augmented velocity control
suggested that adding a control option or a switch to control the zoom-level with ve-
locity and tilting angles will make the system more comfortable to use. Most of them
proposed if they could control level of zoom by tapping on the screen or pressing a
key on PDA, the application would be easier to use.

Fig.4. Left picture tilt-based SDAZ with augmented velocity control, middle picture tilt-based
SDAZ without augmented control and right picture touch-screen controlled SDAZ.

Time

Time

Y screen position

User Input

Velocity

Zoom

Time

Zoom

Velocity

Time

Y screen position

User Input

Y screen position

User Input

Time

Time

Velocity

Zoom

In contrast, users who did their experiments with augmented velocity control were
satisfied with the application in both tilt-based and touch screen-controlled modes.
Some users complained that with tilt input, they had to tilt the device to angles which
caused irritating reflections from the PocketPC screen. Users in both groups, with and
without augmented control, commented that if they were involved with other tasks,
(like answering the phone, working with PC, etc.) they would prefer the touch screen-
controlled SDAZ because they imagined it would be difficult to stay in the desired
position in the document, with a tilt-based SDAZ. Although this was beyond the
scope of our initial experiments, a key factor in the usefulness of tilt-based SDAZ will
be the ease with which the user can toggle tilt-control on and off, during tasks.

7 Conclusions

We have presented a state-space, dynamic systems representation of the dynamic
coupling involved in speed-dependent automatic zooming. We demonstrated the ap-
plicability of the approach by implementing a speed-dependent zooming interface for
a text browsing system on a PDA instrumented with an accelerometer, and with stylus
control. We illustrated the behaviour of the different interfaces by plotting their trajec-
tories in phase space and as time-series.

Initial informal user evaluation of the implementation of SDAZ on a Pocket PC is
positive, and users felt that this provided an intuitive solution to the problem of large
documents and small displays. The tilt-controlled version can be used in a single-
handed manner, without obscuring the screen, but because in the implementation
tested, there was no toggle for tilt-control, users felt more comfortable with the stylus-
controlled version.

This approach has the potential to provide a very general framework for develop-
ment, analysis and optimisation of interfaces which induce complex, but convenient
coupling among multiple states, in order to cope with few degrees of freedom in in-
put. It opens up the dynamics of the ‘look and feel’ of mobile applications based on
continuous control metaphors, to analysis and design techniques from automatic and
manual control theory [15, 23].

References

[1] K. Åström, J., Wittenmark, B., Computer controlled systems, Theory and Design, 3rd ed. NJ:
Prentice Hall, 1997.

[2] R. C. Barrett, E. J. Sleker, J. D. Rutledge, and R. S. Olyha, "The Negative Inertia: A dynamic
pointing function," in CHI'95, conference companion, 1995, pp. 316-317.

[3] D. Beard and J. Walker, "Navigational techniques to improve the display of large two-
dimensional spaces," Behav. Inf. Tech, vol. 9(6), pp. 451-466, 1990.

[4] B. Bederson and J. Meyer, "Implementing a Zooming User Interface: Experience Building
Pad++," Journal of Software - Practice and Experience, vol. 28(10), pp. 1101-1135, 1998.

[5] R. Blanch, Y. Guiard, M. Beaudouin-Lafon, "Semantic Pointing: Improving target acquisition
with Control-Display ratio adaptation," Proc. of ACM Conference on Human Factors in Com-
puting Systems, pp. 519- 526, 2003.

[6] W. L. Brogan, Modern Control Theory, 3rd ed: NJ: Prentice Hall, 1991.

[7] A. Cockburn, J. Looser, and J. Savage, "Around the World in Seconds with Speed-Dependent
Automatic Zooming," in Demonstration in the Proceedings of the ACM User Interface Software
and Technology (UIST Conference Supplement), Vancouver, Canada, 2003, pp. 35-36.

[8] A. Cockburn and J. Savage, "Comparing Speed-Dependent Automatic Zooming with Tradi-
tional Scroll, Pan, and Zoom Methods," in People and Computers XVII: British Computer Soci-
ety Conference on Human Computer Interaction, Bath, England, 2003, pp. 87-102.

[9] G. W. Furnas, "Generalized Fisheye Views," in Proceedings of CHI'86, 1986, pp. 16-23.
[10] G. W. a. B. B. B. Furnas, "Space-Scale Diagrams: Understanding Multiscale Interfaces," Pro-

ceedings of CHI'95, 1995.
[11] Y. Guiard, F. Bourgeois, D. Mottet, and M. Beaudouin-Lafon, "Beyond the 10-Bit Barrier: Fitts'

Law in Multiscale Electronic Worlds," in Proceedings of IHM-HCI, 2001, pp. 573-587.
[12] C. Gutwin, "Improving focus targeting in interactive fisheye views," Proc. of ACM Conference

on Human Factors in Computing Systems (CHI'02), Minneapolis, pp. p267-274, 2002.
[13] B. Harrison, K. P. Fishkin, et al., "Squeeze Me, Hold Me, Tilt Me! An Exploration of Manipu-

lative User Interfaces," Proceedings of CHI'98., 1998.
[14] T. Igarashi and K. Hinckely, "Automatic speed-dependent zooming for browsing large docu-

ments," in 13th Annual Symposium on User Interface Software and Technology, ACM UIST,
San Diego, CA, 2000, pp. 139-148.

[15] R. J. Jagacinski and J. M. Flach, Control Theory for Humans: Lawrence Erlbaum Associates,
2003.

[16] S. Jul and G. Furnas, "Critical Zones in Desert Fog: Aids to Multiscale Navigation," in Proceed-
ings of UIST '98, 1998, pp. 97-106.

[17] J. D. Mackinlay, G. G. Robertson, and C. K. Card, "The Perspective Wall: Detail and Context
Smoothly Integrated," in Proceedings of CHI'91, 1991, pp. 173-179.

[18] T. Masui, "LensBar - Visualization for Browsing and Filtering Large Lists of Data.," in Pro-
ceedings of InfoVis'98, 1998, pp. 113-120.

[19] T. Masui, K. Kashiwagi, and G. R. Borden, "Elastic graphical interfaces for precise data ma-
nipulation," in CHI'95, Conference Companion, 1995, pp. 143-144.

[20] J. Rekimoto, "Tilting Operations for Small Screen Interfaces," in Proceedings of UIST, 1996,
pp. 167-168.

[21] G. G. Robertson and J. D. Mackinlay, "The Document Lens," in Proceedings of UIST'93, 1993,
pp. 101-108.

[22] J. Savage, "Speed-dependent automatic zooming," University of Canterbury, 2002.
http://www.cosc.canterbury.ac.nz/research/reports/HonsReps/2002/hons_0208.pdf.

[23] T. B. Sheridan and W. R. Ferrell, Man-Machine Systems: Information, Control, and Decision
Models of Human Performance: MIT Press, 1974.

[24] J. J. Van Wijk, "Smooth and efficient zooming and panning," T. Munzner, S. North (eds.), Pro-
ceedings IEEE Symposium on Information Visualization (InfoVis'2003), pp. 15-22, 2003.

[25] A. Wallace, "The Calibration and Optimisation of Speed-Dependent Automatic Zooming," Uni-
versity of Canterbury, Christchurch, New Zealand November 2003.
http://www.cosc.canterbury.ac.nz/research/reports/HonsReps/2003/hons_0303.pdf.

[26] A. Wallace, J. Savage, and A. Cockburn, "Rapid Visual Flow: How Fast is Too Fast?," in Pro-
ceedings of the Fifth Australasian User Interface Conference (AUIC2004), Dunedin, New Zea-
land, 2004, pp. 117-122.

[27] J. Williamson and R. Murray-Smith, "Dynamics and probabilistic text entry," Department of
Computing Science, Glasgow University DCS Technical Report TR-2003-147, June 2003.

[28] J. Williamson and R. Murray-Smith, "Granular synthesis for display of time-varying probability
densities", International Workshop on Interactive Sonification (Human Interaction with Audi-
tory Displays), eds. A. Hunt, Th. Hermann, Bielefeld, Germany, January 2004

[29] S. Zhai, B. A. Smith, and T. Selker, " Improving Browsing Performance: A Study of Four Input
Devices for Scrolling and Pointing Tasks," in INTERACT, 1997, pp. 286-292.

Acknowledgements
The authors gratefully acknowledge support of IRCSET BRG project Continuous Gestural In-
teraction with Mobile devices, Science Foundation Ireland grant 00/PI.1/C067, the MAC net-
work - EC TMR grant HPRN-CT-1999-00107, and EPSRC grant GR/R98105/01.,

