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Abstract

This paper presents analysis of the standing–up manoeuvre in paraple-
gia considering the body supportive forces as a potential feedback source
in FES-assisted standing–up. The analysis investigates the significance
of particular feedback signals to the human body centre-of-mass (COM)
trajectory reconstruction. Two nonlinear empirical modeling methods
are implemented (Gaussian process priors (GP) and multi-layer percep-
tron neural networks (ANN)) and their performance comparedregarding
the different amount of input information required. The GP provided a
better fit to the data, at higher computational cost. The mainobjective
of the study was to compare the different sensory configurations, trading
off modelling performance for variables chosen, which allow ease-of-
use in everyday application. In this manner, the results provide guidance
for the design of user-friendly sensory-supported FES systems providing
standing and standing-up in spinal cord injured persons.

1 Introduction 1

Rising from a sitting to a standing position is a common dailyactivity in human living.
Individuals experiencing rising difficulties have problems living independently, while their
prolonged immobilization results in physiological problems. Spinal cord injury patients
have particular difficulties in standing-up, due to their lower limb paralysis. To alleviate
this, paraplegic patients are trained how to stand–up and compensate for the missing action
of their lower extremities during the rehabilitation process. The lifting and stabilizing
forces are provided by the arm support requiring an abled patient’s upper body. For support,
a walker frame, parallel bars, simple stationary standing frame or even chair arm rests are
normally used. However, people practicing a fully arm supported standing–up risk later
complications of the upper limb joints [1].
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In addition to the arm support, standing-up in paraplegia can be facilitated by Functional
Electrical Stimulation (FES). FES is a method of eliciting the action potential in the nerves
innervating the paralyzed muscles. This way, the muscle contractions are artificially evoked
and motor functions recovered [2]. Bajd with coworkers proposed a simple approach to the
FES supported standing-up of paraplegic subjects [3]. Within this strategy, today widely
used in home and clinical praxis, the stimulation is based onan open loop surface stim-
ulation of the knee extensors. The paraplegic subject in thepreparation phase brings his
body to an initial pose with the upper body leaning forward, arms almost fully flexed at
the elbows and supported by the walker frame, while the hip joints resting at the chair are
pulled forward toward the edge of chair as much as possible and feet brought backward.
For the start of rising the stimulation is voluntarily triggered by the subject and the body
is lifted upward from the initial to the extended upright position. As the stimulation of the
knee extensors is open-loop and on/off triggered with the maximal stimulation amplitudes
throughout the rising process, the current way of standing up is not optimal in terms of the
applied forces and torques in the upper and lower extremities [4]. On the other side, at
the end of the standing-up, when knees are almost fully extended, the excessive knee joint
torques cause high terminal velocities in the knee joints what can result in ligament injuries
[5].

These disadvantages of the traditional approach have led tothe development of new ap-
proaches to the stimulation control, principally based on the closed-loop control theory. In
the first place, the simple control algorithms have been proposed as “bang – bang” con-
trollers tracking the reference trajectory in the phase plane of variables. As state variables,
the knee joint angle and angle velocity were used in [5, 6], while in [8] the relationship
between the knee and hip joint angle velocities was controlled. In some of these stud-
ies, the process of the standing–up was divided into phases and the constant stimulation
output provided during the particular phase. The tasks of the phase start event detection
and the stimulation amplitude alteration were accomplished by the finite state controller
[6, 7]. The linear PID and the nonlinear fuzzy controllers controlling the knee joint angle
have also been proposed [9, 10]. Common to these solutions isthat the reference values
to the controller were determined corresponding to the standing-up of healthy subjects.
More advanced proposals, incorporating the paraplegic subject’s volition into the stimu-
lation control during rising, have been given in [11, 12]. Inboth studies the stimulation
sequences were determined on the basis of known subject bodyposition and arm reac-
tions. Algorithms have been evaluated only in the simulation or laboratory environment.
None has been implemented in home or clinical praxis. The main difficulty is that the
information fed back to the stimulator control system is supposed to be provided by the
sensors, normally goniometers and accelerometers, attached to the subject’s body. Mount-
ing, dismounting and wiring of the sensors is a tedious job and as such considered as not
convenient for practical use.

For this reason, we are proposing a method for assessing the subject’s body state during
rising based on feedback information acquired in a more practical manner. We have cho-
sen the supportive forces acting at the interaction points with the paraplegic’s environment
as an alternative feedback source. Seat, foot, and arm reactions can be far more easily
measured than joint angles, for example. The assessment of the seat and arm supports can
readily be accomplished using multidimensional force loadcells mounted on the arm sup-
portive frame and seat. Besides, as an even more practical alternative to instrumenting the
subject’s environment, the wearable assessment of foot reactions is feasible using commer-
cially available shoe insole sensors. Furthermore, the employment of the natural sensory
nerve signals from the foot is expected to be functional in the future [13]. As an objective
characterizing the body state during rising we have chosen the total body center of mass
(COM) motion trajectory. The COM trajectory as a feedback isinteresting for continu-
ous and for finite state control approaches. It characterizes the position of the human body
and/or the phase of the standing–up process in which in the first phase body segments accel-
erate anteriorly, in the transition phase decelerate anteriorly and accelerate vertically, and
in the third phase achieve standing pose by deceleration in vertical direction [16, 17, 18].
According to Newton’s second law, the external forces acting on the body are directly re-



lated to the body COM acceleration. Hence, the COM displacement in human transient
activities can be estimated by a second time integral of the sum of interaction forces. This
method is, however, prone to cumulative integration errors, i.e. drift [14, 15]. To overcome
this problem, two nonlinear modeling techniques are implemented in this paper. An ANN
model and a GP mixture model were designed for the purpose of mapping the interaction
forces to the COM trajectory. In the paper, the model input variable selection, the structure,
and the performance evaluation are presented and compared.

2 Methods

A concept of the sensory driven FES supported standing-up ispresented in Figure 1. The
amplitude and frequency of the knee extensors FES are aimed to be varied according to the
COM position during rising transfer. From the perspectivesof the supportive force signals
exploitation, the model capable of mapping the reaction forces to the COM trajectory is
vital. The objective of this study was to build a model for predicting the COM vertical and
horizontal displacements on a basis of a limited number of input signals provided by the
artificial force sensors.
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Figure 1: Sensory driven control concept in the FES supported standing–up of paraplegic
patient

2.1 Data Set

To provide the representative data set for modeling, the standing up maneuver of eight
paraplegic patients with different levels of spinal cord injury and different experiences in
FES usage was analyzed. The kinematic and kinetic variablesof standing up trials were
assessed with a specially built measurement setup. The dataacquired were used in the
model design and evaluation.

2.1.1 Measurement Instrumentation

The measuring setup used in the standing-up analysis incorporated two systems, first aimed
for determining the forces acting to the human body and second for measuring the body
motion trajectory. For assessing the reaction forces, two measuring frames were built as
copies of a wheelchair seat and a conventional walker. The seating frame was instrumented
by the use of six axis AMTI force plate (AMTI, Inc., Massachussetts, USA), while the
force and torque vectors on the arm support frame were assessed by the six axis JR3 sensor
(JR3, Inc., Woodland, USA) usually utilized as wrist sensorin robotics. Additional AMTI
force plate was used for measuring the ground reaction forces under a foot.



The motion kinematics of the body segments was assessed by the OPTOTRAK optical sys-
tem (Northern Digital Inc., Waterloo, Canada) measuring the 3D positions of active mark-
ers (infrared LEDs). Markers, about 1 cm in diameter, were attached to the human body
anatomical landmarks with double-sided tape. Human body symmetry during standing-up
task was presumed. Hence, measurements were accomplished only for the patient’s right
side and were calculated for the left side. Figure 2 presentsthe standing up manoeuvre of
paraplegic patient performed in the measuring setup. Optotrak optical markers attached to
the knee, elbow and shoulder joints are well seen in the figure.

Z

X

Y

Figure 2: Standing–up of paraplegic patient and a measurement setup

2.1.2 Measurement Protocol

The subject was seated on the instrumented seat with the armsresting on the arm support
frame. The height of the seat coincided with the height of a wheel chair, while the arm
support frame height was adjusted according to the patient’s preferences. Prior to mea-
surements three testing standing-up trials were accomplished with certain amount of FES
assisted standing afterwards. This exercise enabled the subject to get used to the measuring
equipment and relieved the spasticity in paralyzed extremities. No further consideration
of spasticity effects was encountered since there was no significant evidence of spasticity
during standing-up measurements in all subjects.

The functional electrical stimulation used in analysis wasthe surface stimulation of the
M.quadriceps muscle group. The knee extensors were stimulated with an open-loop ap-
proach with constant stimulation amplitude throughout therising process. The stimulation
intensity level was determined as the level which brings thelegs to fully extended position
during sitting. The stimulation was voluntarily triggeredon/off by the subject via the push-
button mounted at the walker handle. In measurement trials,the subject was asked to take
the initial pose and after approximately two seconds from starting the data collection, he or
she was asked to stand up in a suitable manner and speed. Five rising trials were recorded
for each participant with a 50 Hz sampling rate, each measurement lasting for about 10
seconds. By taking into consideration only five successive standing up trials a good re-
peatability of the results for particular subject was achieved which excluded the influence



of muscle fatigue.

2.1.3 Measured Data Analysis

The signals were collected from active markers, force plates and wrist sensors. The signals
were interpolated and low pass filtered using a 4th order, dual pass, Butterworth filter with
5 Hz cut-off frequency. The coordinate systems of all sensors were transformed to coincide
with the reference coordinate system placed on the floor in the center of the arm supportive
frame. The signal derivatives were calculated by differentiating the data and additional fil-
tering afterwards. On the basis of measurement data, a three-dimensional, thirteen segment
model of the human body was developed, embodying feet, shanks, thighs, pelvis, trunk,
head, upper arms, lower arms and hands. Each segment of the body had six degrees of
freedom and was considered as a rigid body. Each body joint was represented as a per-
fect ball-and-socket joint with no translation. From the marker positions, the joint center
locations were determined and the vector was defined along the segment longitudinal axis
connecting the centers of proximal and distal joints. Segmental masses and centers of mass
locations were estimated using anthropometric relationships from the De Leva’s study [19].
Masses were expressed as percentages of total body mass, andthe COM, lying on the seg-
ment’s longitudinal axis, were estimated as percentage of the distance between proximal
and distal joints. The total body COM location in each time instant was determined as a
weighted sum of individual COM positions of all body segments. The horizontal and ver-
tical components of the body COM location in sagittal plane were determined according to
equations (1). In equations,mi is the mass, whileyi andzi are the horizontal and vertical
displacements of particular segment.

COMY =
m1 · y1 + m2 · y2 + ...+ m13· y13

m1 + m2 + ...+ m13

(1)

COMZ =
m1 · z1 + m2 · z2 + ...+ m13· z13

m1 + m2+ ...+ m13

Eight paraplegic patients participated in the study, five men and three women. Their ages
ranged from 17 to 57 years, weights from 58 to 95 kilograms andheights from 159 to 185
centimeters. Sample group included patients with different levels of spinal cord injury and
different experience of FES usage as summarized in Table 1.

In order to achieve comparability of the measured data amongparaplegic patients the body
COM trajectory assessed in the inertial coordinates was transformed to the COM relative
displacement according to subject’s initial position. Resulting trajectories of the lower
extremity joints, the upper trunk inclination, and lower and upper body supportive forces
are shown in Figure 3 representing sample rising trials of eight paraplegic subjects. From
the figure it is evident that the duration of the sit-to-standphase, rising speed, initial pose
and the upper and lower extremity action varied considerably among the subjects.

Figure 4 presents the COM displacements in sagittal plane with respect to the subject’s
initial position. Again, considerable variation in the approach to the sit-to-stand transfer can
be observed among the subjects. Some of the patients transfer the upper body forward in
the preparation phase and then rise vertically, while in others a dynamic horizontal transfer
of the trunk before the vertical lift is present.

¿From the measured data three data sets were formed. For eachof the paraplegic patients,
the data set incorporating three standing-up trials was formed as a representative data set.
From this set, one half of the data points was randomly extracted, forming aprimary data
set intended to be used in the model training procedure. The other half of those data points
formed avalidation data set. Besides, thetest data set, for use in model evaluation, was
formed of the remaining data, two standing–up trials that were not used in the training
process.



Patient Sex Age Height Weight Lesion Post injury FES usage

initials [years] [cm] [kg] level time [years] [years]

AK M 44 180 74 T10-11 1.5 0.5

MK M 23 168 58 T9 1.5 0.2

SB M 31 183 64 T10-12 1 0.9

ZB M 22 184 94 T3-4 3 2

ZJ F 57 159 53 T11 4.5 3

BJ M 23 185 85 T9 1.2 0.5

MT F 28 171 75 T4-5 7 5

TM F 19 178 59 T3-4 5 3.5

Table 1: Data of paraplegic patients participating in the study

2.2 Input Variable Selection

In order to meet the usability requirements for everyday usage, the sensory supported FES
system needs to employ as few feedback channels as possible.Every feedback channel con-
tributes to the complexity of the sensory device and to the wiring and mounting difficulties.
Therefore, the question what amount of feedback information is minimal but still sufficient
for successful recognition of the body state - in our case, the body COM trajectory - is
crucial for employing the force feedback into the FES system. We investigated the mini-
mal requirements, in terms of feedback information. The potential feedback sources were
divided into ten empirical groups, each group incorporating different numbers of feedback
variables.

The empirical input variable groups are listed in Table 2.Group 1 incorporates all the
possible signals acquired in the measurement setup, i.e. arm, seat and foot reactions to-
gether with their derivatives. In the case of foot reactions, beside the three components of
the reaction force, the position of foot center of pressure (COP) was also assessed under
the foot. The position is expressed in the coordinates of thefoot sole and normalized to
the foot length. The components are denoted ascopx andcopy. The seat reaction force,
assessed by the force plate, is a three dimensional vector, while the arm reactions, when
assessed by the JR3 force sensor, consists of three force andthree moment components.
Group 2 excludes the derivatives of the signals in order to show their significance to the
output. Group 3 excludes the seat reaction force signals since sensors attached to the seat
or wheelchair are less practical for implementation.Group 4 incorporates only the vertical
component of the foot reactions, since this is a case when theshoe insole sensors can be
used instead of the force plate.Group 5 investigates the usage of more simple and less
expensive force sensor for measuring the arm support. Only vertical and horizontal arm



Group 1 FOOT (copx,copy,Fx,Fy,Fz, Ḟx, Ḟy, Ḟz), SEAT (Fx,Fy,Fz, Ḟx, Ḟy, Ḟz),
ARM (Fx,Fy,Fz,Mx,My,Mz, Ḟx, Ḟy, Ḟz,Ṁx,Ṁy,Ṁz)

Group 2 FOOT (copx,copy,Fx,Fy,Fz), SEAT (Fx,Fy,Fz),
ARM (Fx,Fy,Fz,Mx,My,Mz)

Group 3 FOOT (copx,copy,Fx,Fy,Fz, Ḟx, Ḟy, Ḟz),
ARM (Fx,Fy,Fz,Mx,My,Mz, Ḟx, Ḟy, Ḟz,Ṁx,Ṁy,Ṁz)

Group 4 FOOT (copx,copy,Fz, Ḟz), ARM (Fx,Fy,Fz,Mx,My,Mz, Ḟx, Ḟy, Ḟz,Ṁx,Ṁy,Ṁz)

Group 5 FOOT (copx,copy,Fz, Ḟz), ARM (Fy,Fz, Ḟy, Ḟz)

Group 6 FOOT (copx,copy,Fz, Ḟz)

Group 7 FOOT (copx,copy,Fz, Ḟz), ANKLE JOINT ANGLE (φankle, φ̇ankle)

Group 8 FOOT (copx,copy,Fz, Ḟz), KNEE JOINT ANGLE (φknee, φ̇knee)

Group 9 FOOT (copx,copy,Fz, Ḟz), TRUNK INCLINATION ANGLE ( φtrunk, φ̇trunk)

Group 10 FOOT (copx,copy,Fz, Ḟz), TRUNK ACCELERATION (ay,az)

Table 2: Feedback signals in ten input groups
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Figure 3: Motion trajectories and supporting actions of theupper and lower extremities in
sample trials of eight paraplegic subjects. The portion of the data between the dotted lines
belongs to sample standing-up of one subject

reaction components were used in this case in combination with the shoe insole sensory
signals. Group 6 investigates the usage of only the shoe insole sensor. Additionally, the
possible combinations of the shoe insole sensor with the goniometers, inclinometer or ac-
celerometers were investigated. Thus, the ankle joint angle was incorporated inGroup 7
and the knee joint angle inGroup 8. Group 9 verifies the combination with inclinometer
mounted at the upper body, whileGroup 10 verifies the shoe insole combination with the
accelerometers attached to the trunk.

The significance of each group was evaluated using a modelingapproach. Two different
nonlinear models were used to predict the body COM trajectory on the basis of the input
signals of particular group. The root mean square error (RMSE) between the actual COM
trajectory and the model predicted output were calculated characterizing the model perfor-
mance. RMSE values were calculated separately for the horizontal and vertical component
of the COM trajectory as:

RMSEY =

√

1
N

N

∑
k=1

(COMm
Y k −COMa

Yk)
2 (2)

RMSEZ =

√

1
N

N

∑
k=1

(COMm
Zk −COMa

Zk)
2

where superscripta stands for actual andm for modeled value of the COM trajectory in a
samplek. In (2), parameter N represents a number of data points in particular test data set.
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2.3 Artificial Neural Network (ANN) Model

As an example of a well-established approach, a moderate size multi-layer perceptron ar-
tificial neural network (ANN) was trained and the network performance characteristics
examined [20]. The size of the network was kept constant to make sure that the compari-
son is valid. The neural network was built in the Mathworks Matlab software environment
as a two-layer feed-forward network. The first layer incorporated sixtansig neurons, while
the second layer consisted of twopurelin neurons. Thetrainlm Matlab function was used
implementing the back propagation method for training the network. In training, the error
cost on the validation set was used to stop training early if further training on the primary
training set would hurt generalization to the validation set. The network was trained for up
to 300 epochs to an error goal of 10−5. The test set performance was then used to measure
how well the network generalizes beyond primary and validation sets.

2.4 Gaussian Process Prior (GP) for Regression and Hierarchical Mixture Models

As an alternative to neural networks, we also used a GP regression model. An introduction
to this approach is given in reviews by [21] and [22]. An empirical comparison in [24]
showed that GPs were usually as good as or better than neural networks in test compar-
isons. GPs tend to have a clearer advantage in problems with smaller data sets. The major
difference is that the training data are retained by the model and predictions are inferred
from those data, rather than the parametric approach of neural networks, where the data
points are represented by a finite number of parameters, and discarded. This means that
prediction uncertainty in GPs can be made to increase as we make predictions further from
the training data (in terms of the input space), but it also has storage and computational is-
sues, compared to neural networks, as training set sizes increase. It also means that models
can include new data points relatively easily, without major retraining.

If we are givenN data points of training data{yn,xn,n = 1, · · · ,N}, wherex is a Q-
dimensional vector ofinputs, andy is theoutput. A Gaussian process is defined in such
a way thaty(x) has a Gaussian prior distribution with zero mean and covariance function



C(xi,x j) = Cov(Y (xi),Y (x j)). An example of such a covariance function is

C(xi,x j) = C(xi,x j;θ)

= v0exp

(

−
1
2

Q

∑
q=1

wq(xiq − x jq)
2

)

+ a0+ a1

Q

∑
q=1

xiqx jq + δi jσ2
v , (3)

whereθ = (w1, · · · ,wQ,v0,a0,a1,σ2
v), andδi j = 1 if i = j and 0 otherwise. This covariance

function is often used in practice. More discussion about the choice of covariance function
and the details of the implemention of the model can be found in [22]. The parameters of
the covariance function can be optimised by maximising the likelihood, or you can integrate
over them using numerical methods such as Markov-Chain Monte-Carlo methods.

GPs allow a ‘soft model-structure selection’, where the complexity of the model, as mea-
sured by theeffective degrees of freedom [25] can vary automatically with the hyperparam-
eters. It also provides an automatic relevance detection, as the length-scale parameterswq
associated with inputq give an indication of how important any given input is – if an ele-
ment of input vector does not help predict outputs accurately, thewq will tend to go towards
zero, as likelihood is maximised [22].

To illustrate the prediction of uncertainty provided by GP models, we use an example
of prediction ofCOMx andCOMy for 5 separate standing-up trajectories of patient ZJ.
Figure 5 shows the mean and±2 standard deviation uncertainty bands from a single GP.
The GP included some data from each of the first three trajectories in the training set,
and the second two were test data. Note that the uncertainty is low on the predictions on
data close to the training data, but increases for the data points further from the training
data. The uncertainty also varies within individual batches, depending on the input state,
reflecting variations in model complexity, and training data density. The implementation of
GP regression model requires the inversion of a covariance matrix, the dimension of which
is the sample size of training data. It becomes computationally expensive for large sample
sizes (N > 1000), because the computational cost scales asO(N3). For the data discussed
in this paper, if we consider a single standing-up, a single GP regression model is not
computationally problematic. However, if we want to combine the data collected from the
different standings-up and from the different patients, the sample size may be as large as a
few thousand data points, and the use of a hierarchical mixture model, as proposed in [23]
is recomended. This model also allows for the heterogeneityfor the data-set combining
from the different sources, which is a particularly nice property for data acquired in human
motion, as is the case in our study.

A proposed hierarchical GP regression model has the following two-level structure: a
lower-level single GP regression model defined around (3) isused to fit the data corre-
sponding to each replication (different standing-up) separately, and the structures of the
basic models are similar but with some mutual heterogeneity; a higher-level model is de-
fined to model the heterogeneity among different replications. Specifically, suppose that
there areM different replications. In themth group,Nm observations are collected. Let
the observation beymn, m = 1, · · · ,M, n = 1, · · · ,Nm. In a hierarchical mixture model of
Gaussian processes for regression we have that

ymn|zm = k ∼ GP(θk), (4)

wherezm is an unobservable latent indicator variable. Ifzm = k is given, the model for
groupm is a GP regression modelGP(θk), as defined around (3). The association among
the different groups is introduced by the latent variablezm, for which

P(zm = k) = πk, k = 1, · · · ,K, (5)

for eachm. K is the number of components of the mixture model. We assume that K has a
fixed given value. For the details of the theory and implementation refer to [23].
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Figure 5: Example of GP prediction, showing mean and 2 std. deviations for 5 separate
standing-up trajectories of patient BJ. The x-axis indicates time. The first three sets were
included in the training set, and the second two were test data. Actual COM trajectory is
represented by bold solid line, the GP model response is represented by solid line and its
95% confidence interval is represented by dotted line
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3 Modelling Results

In the following section, the prediction results from the nonlinear models are presented.
The performances of the proposed ANN and GP regression models are verified on predic-
tion of the body COM position. For each subject and for each input group an individual
model was built and verified with the subject’s test data set.The model structure depended
on the specific subset sensors used to provide the input vector. The input variables were
organized as described in section 2.2.

3.1 Model predictions compared to test data

Figures 6 and 7 present the resulting model predictions and the COM displacements mea-
sured in the fourth (testing) trial of real standing-up. In the figures, the results for the
horizontal and vertical component of the COM trajectory areshown separately in the left
and right column, respectively. Each graph in the figure is divided into eight sections, suc-
cessively demonstrating the results for eight subjects whoparticipated in the study. The
sections are divided with the vertical dotted lines and denoted with the subject’s initials on
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Figure 7: Comparison of resulting GP model predictions and the COM displacements mea-
sured in the fourth (testing) trial of real standing-up for eight paraplegic subjects and ten
different groups of input variables

top of the figure. Figure 6 outlines the results of ANN modeling approach, while the results
of GP modeling approach are given in Figure 7. For example, the first section in the second
row in the right of Figure 6 compares the ANN model output withthe real COM vertical
displacement in the fourth standing-up of subject AK when utilizing the model input vari-
ables from Group 2. In Figures 6 and 7 the deterioration of themodel performance as a
consequence of decreasing the number of model input channels can be observed.

To objectively evaluate the performances of the models, theRMSE values between the
modeled and actual COM trajectories were calculated according to (2). Other model evalu-
ation measures such as the 95 % confidence interval or correlation produced similar results.
Therefore, only the RMSE was used for evaluation of the models. In Figure 8, the RMSE
values characterizing the testing trials from Figures 6 and7 are presented. The values are
presented by means of bar graphs. The arrangement of bar graphs corresponds to the ar-
rangement of graphs in Figures 6 and 7. Figure 8 is divided into two columns and ten
rows. The left and right column demonstrates the RMSE valuesof ANN and GP modeling
approaches, respectively. Performance of each model is characterized with two RMSE val-
ues describing the matching of the horizontal and vertical COM components to the model
responses. Ten rows evaluate ten different input configurations.



¿From Figures 6 to 8 we can see that both approaches give quitegood results, although GP
modelling seems to provide a more accurate model. An exampleof one of these subplots
with 2σ uncertainty bounds was given in Figure 5. The bar graphs confirm our assump-
tions about the information importance of the input groups.The degradation of the model
performances with respect to the number of input channels can be noticed.

It is interesting that pattern of variability among subjects is not similar in ANN and GP
results. For example, the worst results for COMY in ANN modeling were achieved with
the subject ZJ who was standing-up, according to Figure 4, with the extensive forward
excursion before rising. On the other hand, the worst results in GP modeling were achieved
with the subject MK who was standing-up primarily vertically. The GP tends to be worse
in the vertical rather than the horizontal component, whichmay be because of a zero-
mean assumption in the standardisation used. This seems well-suited to the horizontal
component, but more information about the patient, such as height, for example, is needed
to improve on the vertical component.

3.2 Relative importance of input signal groups

To get a better insight into the significance of particular group of input signals to the model
output all the testing RMSE values of all the subjects were averaged and compared in two
bar graphs presented in Figure 9. The bar graphs illustrate the averaged ANN modeling
results on the left and the averaged GP modeling results on the right side of the figure.
Again, the results are presented separately for the horizontal and vertical component of the
COM trajectory.

The overall modeling results presented in Figure 9 illustrate the information significance of
input groups defined in Table 2. The peak of RMSE values is attained when only the instru-
mented foot insole information is used for the feedback inGroup 6. Observing the results
for particular input group it is firstly interesting that themodels exhibit better performance
when the signal derivatives are excluded from the input (seethe results for theGroup 2).
This phenomenon can be attributed to the numerical differentiation of noisy force signals,
which can be improved on by appropriate filtering. Secondly,the results for theGroups
4 and 5, representing the results of the most practically realizable systems, demonstrate
comparable performance to the other groups. The third finding is that the best modeling
results in the vertical direction are attained in both approaches when information about the
knee joint angle is incorporated. However, the results of the inputGroup 8 also exhibit
poor performance in the horizontal direction. Finally, theaveraged results indicate that the
incorporation of information about the ankle joint angle, trunk inclination angle, and trunk
acceleration at the input is only a comparable alternative to force reactions.
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Figure 8: RMSE model evaluation values of ANN and GP modelingapproach of the fourth
(testing) trial of real standing-up for eight paraplegic subjects and ten different groups of
input variables
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Figure 9: Overall modeling results for each group of inputs,summed over all patients.



4 Conclusions

The analysis of feedback information in a standing–up of paraplegic patients has been pre-
sented in this paper. The analysis focused on the exploitation of the supportive force signals
for the purposes of the body state estimation. In this manner, the body COM trajectory has
been estimated utilizing two different nonlinear modelingapproaches. The results of the
study proved that the force-feedback-based FES system is viable and realistic. Regardless
of the fact that the study was accomplished with data acquired in an laboratory environ-
ment with sophisticated measurement equipment, conclusions can be drawn for practical
portable systems. On this basis, the minimal requirements for the number and complex-
ity of force sensors have been searched with the method of comparison among different
sets of feedback. Results show that both the foot and arm reactions are vital for the COM
trajectory reconstruction, while the sensory complexity (number of channels) depends on
reconstruction accuracy requirements. However, it was beyond the scope of this study to
search for the optimal feedback set for a particular sensor-supported FES system.

4.1 Summary of sensor group investigation

The sensor set proposals are practical for an implementation with a smaller number of in-
put channels and consequently slight decrease of performances are visible in the results for
Group 3, Group 4, andGroup 5. In Group 3 a sophisticated force sensor under a foot is
required, while the need for the seat force sensor is eliminated. Furthermore, these results
are almost fully comparable with the results ofGroup 4 which introduces the utilization of
a commercially available shoe insole sensor with only COP position and vertical support
outputs instead of a sophisticated multichannel device. The results ofGroup 5 demon-
strate that the introduction of the arm support force sensorwith fewer channels does not
significantly influence the model performance. However, we can see in theGroup 6 re-
sults that the further reduction of the feedback information, in this case characterizing the
upper body action, introduces considerable error into the model’s output. As side com-
parison, we investigated the significance of kinematic parameters to the COM trajectory
reconstruction and showed that information about knee joint angle is most descriptive. We
also demonstrated that the joint angle, trunk inclination angle and trunk acceleration could
be substituted, at no cost to performance, with force feedback signals, which are far less
cumbersome for practical everyday usage.

4.2 Comparison of GP and ANN approaches

The study on the first hand provided knowledge on feedback significance and will thus ease
the design of sensory supported FES systems. On the other hand, the study can also serve
as a practical comparison between the ANN and GP nonlinear modeling methods. The
modeling performance suggests that although GPs are computationally more expensive,
they provided a better fit to the data, and also have the advantage that they provide an
estimate of the conditional density for predictions, rather than just the conditional mean,
as provided by the neural network. The hierarchical GP was computationally much more
efficient than a single GP, and also coped well with the heterogeneity among patients. Since
we observed great variability in standing-up among paraplegic subjects (subjects differed
in sex, age, weight, height and the level of spinal cord injury, while data even varied in the
same subject due to variance in initial position and muscle fatigue), results suggest that the
models used in this paper should be further calibrated to an individual subject.

In terms of computational requirements, the neural networkhas a very small memory foot-
print, requiring storage only of the network weights which is the product of the number
of inputs× number of hidden units× number of outputs, while the GP might be storing
several thousand training examples, and inference to new points involves multiplication of
the inverse covariance matrix (which can be calculated off-line, prior to use), by the covari-
ance with the test point, which for a single test point would involveN2 + N floating-point
multiplication and addition operations forN training points. For the hierarchical model we



have∑M
i (N2

i + Ni), operations whereNi are the sizes of the subsets.
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