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ABSTRACT
We describe a rhythmic interaction mechanism for mobile
devices. A PocketPC with a three degree of freedom linear
acceleration meter is used as the experimental platform for
data acquisition. Dynamic Movement Primitives are used to
learn the limit cycle behavior associated with the rhythmic
gestures. We outline the open technical and user experience
challenges in the development of usable rhythmic interfaces.
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INTRODUCTION
Our everyday life is filled with rhythmic patterns of behav-
ior, from walking, dancing, swimming, waving, rocking a
baby to sleep, cursive handwriting and manual labor, such as
sawing or hammering. Traditional working songs were of-
ten used to help a group of workers entrain to a comfortable
pace of work on repetitive tasks, and ease the strain of labor.
As you improve at a sport such as skiing, or rock climb-
ing typically your initially clumsy, jerky moves improve as
you find your ‘natural rhythm’ and benefit from greater effi-
ciency of motion, as well as enjoyment. There has, however,
been little work on the introduction of rhythm to user in-
terfaces for computers. This was understandable in desktop
scenarios, but with mobile interaction we have both needs
and opportunities to introduce rhythmic interaction. Mobile
devices are used while people walk – an understanding of
rhythmic interaction will allow us to improve design, and
work with the user’s gait, rather than viewing it as a distur-
bance. Mobile devices have small displays, and are often
used in noisy settings, but rhythmic feedback, whether au-
dio, visual or haptic, is a very clear signal which can be used
to alter walking speed, or entrain with and control the user’s
gesturing. An important benefit of rhythmic gestures is that
it feels natural to repeat the gesture until the system recog-

nizes the gesture, whereas with discrete gestures, an unrec-
ognized gesture causes the user more frustration. There is
a growing background of work on rhythm from psychology,
[3, 2, 9], linking it with synchronization theory in physics
[4]. Rhythmic models of cursive writing include [8]. Rhyth-
mic interaction between a Phantom force-feedback device
and a human, in a simulated dance, is demonstrated in [1].

DYNAMIC MOVEMENT PRIMITIVES
The modelling approach taken in this paper is to use the
Dynamic Movement Primitives (DMP) of Schaalet al. [7,
6], which were developed to train robots to imitate human
movements. The approach has already been proved in appli-
cation in robotics, for imitation and skill learning. The ad-
vantages suggested in that domain, include spatial and tem-
poral invariance (in terms of shifts or scalings), and its ability
to cope well with disturbances, while still performing well in
complex tasks. In this framework, gestures performed with
a mobile device held in a moving hand can be represented
with a second order dynamic equation system as follows:

τ ż = αz(βz(g − y)− z) + f

ẏ = z
(1)

wherey(t), z(t) and ż(t) are the position, velocity and ac-
celeration of the device at timet, respectively. Coefficients
αz andβz reflect the physiological properties of the hand
moving the device. Parameterτ is a time-scale factor which
decides how quickly the goal stateg (discrete gestures) or
limit cycle (rhythmic gestures)g(t) of the movement can
be reached. Functionf(t) is the control of the movement.
Without any control,f = 0, and appropriate parameter set-
tings,αz/4 ≥ βz, this system will converge from its initial
state to the goal state in an exponential, overdamped man-
ner. More interesting movements and gestures can be ob-
tained by having non-zerof . Learning a control function
on the basis of an exemplar movement trajectory becomes a
very difficult problem iff is an arbitrary nonlinear function.
When assuming a DMP model for the control function, the
supervised learning problem can be solved with the Recep-
tive Field Weighted Regression (RFWR) algorithm [5]. For
rhythmic movements, the DMP models are constructed in
the following way:

τ ṙ = αr(A− r) (2)

τ φ̇ = 1 (3)

v = [r sin(φ), r cos(φ)]T (4)
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Ψi = e−hi( mod (φ,2π)−ci)
2

(5)

f =
∑N

i=1 ΨiwT
i v∑N

i=1 Ψi

(6)

Here an oscillating systemv excites the movement of the
hand. It is defined by variablesr(t) and φ(t) and has an
amplitudeA and angular velocity1/τ . The (z, y, r) sys-
tem will be stable whenαr = αz/2. Kernel functionsΨi

are nonlinear basis functions which are activated around a
certain phaseci of the movement. The widths of their ef-
fective phase bands are defined by parametershi. Gestures
are weighted sums of such basis functions. Gesture specific
weights, or linear regression parameters of the model,wi

and kernel function parameters can be learned from recorded
demonstrations with RFWR. The desired control function
fdesired is then calculated from a measured movementÿdemo(t):

fdesired = τ ÿdemo + αz(βz(r − ydemo)− ẏdemo) (7)

r(t) = A(1− e−αrt/τ ) (8)

φ(t) = t/τ (9)

whenr(0) = 0 andφ(0) = 0.

The RFWR algorithm is an incremental function approxi-
mation method which assumes that the functions are linear
sums of nonlinear kernel functions. It learns the number of
kernels, the kernel parameters and the linear regression pa-
rameters at the same time. In the beginning, there are no
kernels at all. As the algorithm proceeds through the learn-
ing samples(fdesired, r, φ) one by one, new kernels are in-
troduced if none of the existing kernels is activated beyond
a certain threshold. Also, kernels are pruned to avoid over-
lapping: if two kernels are activated at the same time over
a given threshold, the one with a wider effective phase band
will be removed. New kernels are initially centered around
the phase of the corresponding learning sample. The effec-
tive widths of the kernels are updated with a gradient decent
based method whereas the linear regression parameters are
learnt with Newton’s method. Incremental learning of new
gestures is enabled by learning the linear regression param-
eters independently for each kernel function.

Implementation
The DMP model of rhythmic gestures and the RFWR algo-
rithm [10] used for learning the model parameters were im-
plemented in Matlab. The code1 was modified 1) to include
a rhythmic DMP kernel function (5) with(r, φ) as its input,
and 2) to havev as an input of the whole RFWR model. In-
put variablesr(t), φ(t), andv(t) were generated with equa-
tions (8), (9), (4), respectively, and by settingA = 1 and
αr = 1. The time scale variable was set toτ = T/2π, where
T was the period of the rhythmic gesture estimated with an
autocorrelation function. The other system parameters were
set toαz = 2αr = 2 and βz = αz/4 = 0.5. Velocity
and position of the movement were estimated by integrat-
ing the measured acceleration numerically. As one period
of a rhythmic gesture should have a zero-mean acceleration
(ignoring the irrelevant gravitational component), the accel-

1http://homepages.inf.ed.ac.uk/svijayak/software/LWPR/index.html

eration measurements were preprocessed by subtracting the
mean in moving time window of widthT . Estimated veloci-
ties and positions were preprocessed in a similar way. Initial
velocities and positions were set to zero. The desired output
values of RFWR model were then composed according to
equation (7). The three measured acceleration components
were treated independently from each other.

Figure 1. PocketPC with XSens accelerometer
(weight=10.35g) attached at the base.

EXPERIMENT
To test whether it was possible to generate and model rhyth-
mic behaviour reliably with a mobile device. We used an
HP5550 PocketPC equipped with a 3-axis Xsens P3C lin-
ear accelerometer attached to the serial port, as shown in
Figure 1. It samples acceleration readings at 90Hz. In this
study we used the PocketPC in a free-standing manner, log-
ging data as gestures were performed. The data were later
transferred to a PC for the modelling work. Our exploratory
experiment was to log data from a single user performing
two sets of 10 different gestures with a PocketPC, and to
evaluate the suitability of rhythmic DMP models for repre-
senting these actions. All the gestures were performed by
one subject while standing, holding the device in her right
hand and moving the device in front of her mid-body. The
following gestures were recorded, and are visualised in Ta-
ble 1:

1. Device swung from left to right
2. Device swung back and forth
3. Device moved up and down
4. Anti-clockwise circles drawn with the device
5. Clockwise circles drawn with the device
6. Tapping side of device on left hand,”ti-ti-ti ...”
7. Tapping side of device on left hand,”taa-ti-ti-taa-ti-ti ...”
8. Anti-clockwise eights (from the top) drawn with device
9. Clockwise eights (from the top) drawn with device

10. Tilting the device from left to right

Usability comments
While a range of gestures might seem appropriate at first
sight, there are certain types of rhythmic motions which are
easier and more comfortable to perform, and which are more
stable when the subject is perturbed. In case of gesture 10,
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1. 2. 3.

4. 5. 6.

7. 8. 10.

Table 1. Logged gesture data. Upper plots are 3.0 sec-
onds of three-axis acceleration time-series, lower plots
are 2-D projections via principal components of 3-D po-
sition trajectory, integrated from acceleration data.

it felt difficult to maintain exact beat as it is a small-scale
movement – only the forearm is twisted – with a relatively
high frequency. In repetition, gesture 10 started to feel un-
comfortable and difficult to control. Thus, gesture 10 seems
to be of bad design in respect to usability, and it is not well
suited for the current implementation of rhythmic DMP mod-
elling because of variability in the rhythm. Gestures 6 and 7
were easy and comfortable to perform, and maintaining the
beat did not feel difficult to the subject. However, a closer
examination of the measurement reveals that the phase is
drifting, causing some difficulty to the modelling process,
when fixedτ is used. There were no particular problems in
performing the rest of the ten gestures.

Modelling results
Figure 2 illustrates how well the rhythmic DMP approach
can model the control termf of the dynamical system (1).
The black curve represents the training data, that is the val-
ues offdesired calculated with equation (7) and using mea-
sured accelerations and numerically integrated velocities and
positions. The grey curve corresponds to the control values
predicted by the rhythmic DMP model (6), the parameters of
which have been estimated using the training data. The nor-
malized mean square error (nMSE) for the prediction was
0.185 and the number of kernel functions was 57. It can be
seen from the figure that the rhythmic DMP model can cap-
ture the general shape of the control function well but the mi-
nor details are lost. The predicted and measured control val-
ues are slightly out of phase, as our current implementation
assumes the period of a gesture to be constant over time. The
measured traces also typically show a fair amount of varia-

tion from cycle to cycle, which the DMP model does not
replicate. Figure 3 shows the phase plane behaviors of the
dynamical system induced by two non-zero controls. The
black curve corresponds to the system’s response to the mea-
sured controlfdesired whereas the grey curve is the system’s
response to the predicted control. Note that the DMP not
only models the rhythmic behaviour, but also its onset. As
would be expected, the discrepancy between the two system
behaviors increases in time as the prediction errors of the
control are accumulated in the integration of velocity and po-
sition. Results for the other components of acceleration and
gestures, except gestures 6, 7 and 10, are essentially similar
to these shown here for gesture 4 and its first acceleration
component. Drifting phase and sharp peaks in acceleration
data (very typical to gestures 6 and 7) caused the problems
as our implementation of the DMP models assumes the pe-
riod of the rhythmic movement to be constant over time.
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Figure 2. Comparison of the measured and predicted
control for gesture 4 (1st acceleration component).
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Figure 3. The measured and predicted phase plane (ve-
locity, position, time) behavior for gesture 4,(1st acceler-
ation component).

APPLICATIONS
Gesture recognition
The obvious application of the combination of accelerome-
ters and rhythmic DMP modelling is gestural human-computer
interaction. The kernel functions, or movement primitives,
are learned from a database containing recordings of differ-
ent kinds of gestures and thus they are gesture-independent.
The linear regression parameters of the DMP model are learned
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separately for each gesture, using recordings of one type of
gesture and are therefore gesture-dependent. Further ges-
tures can be learned easily by including further submod-
els, and adjusting the linear regression parameters according
to recorded gesture exemplars and introducing new kernel
functions if necessary. Such an incremental learning will
not degrade the recognition system’s performance on the
previously learned gestures. The gesture-dependent model
parameters can be used as features in a gesture recognition
task.

Model-driven feedback mechanisms
The gesture-dependent model parameters are also well suited
to natural feedback generation, especially audio or vibration
feedback. As in [11], for any classifier, different gestures can
be sonified by linking each movement primitive to a different
audio source and adjusting the intensity of the source propor-
tionally with the similarity of the observed movement. This
provides feedback about the system’s interpretation of user
intention, conditioned on the data seen so far. With DMP
models, we can also link the parameters of the second-order
dynamic equations of discrete or rhythmic DMPs to phys-
ically appropriate audio feedback, i.e., pick audio compo-
nents relating to the mass, damping and spring terms for the
discrete case, and a beat and amplitude for the rhythmic case.

Providing a sonification or vibrational feedback for gestures
can serve several purposes. Firstly, the device can be used
simply as an instrument, just for producing interesting sound
effects or tactile patterns. Secondly, the feedback conveys
the recognition engine’s interpretation (and confidence) of
the gesture being performed which can help the user ac-
tually perform the gesture more accurately. The problems
we observed related to the variability in beat in gesture per-
formance is an area where rhythmic audio or vibrotactile
feedback could be invaluable in entraining with and stabilis-
ing user performance, and therefore improving recognition
rates. Thirdly, the feedback can add a modality to the in-
teraction between the device and the user making it more
efficient, less dependent on the visual modality, and more
engaging or realistic, in, for example, a gaming application.

CONCLUSIONS AND OUTLOOK
Our experimental system for acquisition and modelling of
rhythmic gesture data with a PocketPC represents a starting
point for rhythmic gesture research. We sampled a range
of 10 test rhythmic gestures, and built models to represent
these gestures using the Dynamic Movement Primitive ap-
proach. These models can be used to provide a spatiotempo-
ral gesture classification, and can form the basis of new ways
of generating vibrotactile and audio feedback, during classi-
fication. This initial investigation highlighted a number of
challenges in this area.

Technical challenges
Currently the individual components of acceleration are mod-
elled independently – modelling the interaction among the
components will improve the model quality. The speed of
the rhythm the gestures are performed with should be viewed

as a time-varying variable, as it tends to drift in time both be-
tween users and within gestures. In order to make gesture-
based interaction truly fluent, a way to segment gestures
performed in an uninterrupted flow needs to be introduced.
The finite state machine approach to combining movement
primitives in robotics suggests close parallels between this
approach and speech-recognition algorithms. The typical
recognition accuracy and delay in response as the system
recognizes examples from a useful range of gestures needs
to be tested in a realistic and complete study.

User experience challenges
Careful design of the gestures is of paramount importance.
Gestures should be easy for the human motor system to per-
form under a range of conditions, easy to remember, and
easy to associate with their meaning or the functionality they
arouse. In addition, they should be distinct enough not to
be confused with each other by the user or recognition en-
gine. Feedback generation applications lead to the problem
of selecting audio or vibration sources which are perceptu-
ally distinctive, descriptive in respect to the parameters or
gestures they represent, and produce pleasing combinations.
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